

LizardTech’s MrSID Technology

contact:

Jon Skiffington

206-652-5211

jskiffington@lizardtech.com

For over a decade, the MrSID® technology from LizardTech® has been the

GIS industry’s leading solution to the problem of storage and management

of large geospatial datasets. Today, as the precision of sensors increases

and as new data forms such as multispectral and LiDAR become more

widely available, the need for advanced compression technology such as

MrSID continues to grow.

In this white paper, LizardTech introduces you to the concept of

compression, MrSID technology, and the features that the MrSID format

brings to your applications and workflows.

I. The Need for Data Compression

II. MrSID Technology

III. MrSID Technology for Imagery

IV. MrSID Technology for LiDAR

V. LizardTech’s Products

VI. Conclusion

Appendix A. What is Compression?

Appendix B. Compression with MrSID Technology

Figures

LizardTech’s MrSID Technology Page 2

Copyright © 2010 LizardTech, a Celartem company. All rights reserved.

LizardTech, MrSID, GeoExpress, Express Server, Spatial Express, and Express Suite are registered trademarks in
the United States and are the property of Celartem Inc. dba LizardTech. MG2, MG3, MG4, and LiDAR Compressor
and the LizardTech, GeoExpress, Express Server, Spatial Express, Express Suite, LiDAR Compressor, ExpressView
and GeoViewer logos are trademarks, and are the property of Celartem Inc. dba LizardTech. Unauthorized use is
prohibited. All other trademarks are the property of their respective owners.

LizardTech
1008 Western Avenue, Suite 200
Seattle, Washington 98104
www.lizardtech.com

LizardTech’s MrSID Technology Page 3

I. The Need for Data Compression

Aerial and satellite imagery have been used by the geospatial community for decades. It is only in recent years,

however, that such imagery has truly become critical, highly accurate, and ubiquitous: for this we can credit the

Katrina disaster response efforts, worldwide counterterrorism initiatives, technical achievements in optics and signal

processing, and browser-based mapping frameworks. Unfortunately, as rapid access to such data has become an

imperative, organizations continue to struggle with storing, accessing, and exploiting the massive archives of high-

resolution data that are so vital. National security agencies, web content providers, and your county government all

have the same set of challenges.

Because digital image files are so large, maintaining imagery in its raw, uncompressed form requires immense

physical storage resources, and accessing raw data requires high-bandwidth networks and large memory

workstations. A typical alternative is to store imagery in compressed form, using file formats like JPEG. Although

JPEG versions of the images may enable faster access to lower resolution image overviews, their quality is not

suitable for analysis and exploitation work at high resolution. This often leads to the practice of storing multiple

versions of each dataset, at different resolutions or compression ratios – one for browsing, one for analysis, and so

on. The storage and maintenance problem gets worse, not better.

And yet still technology marches on. Remote sensing platforms now produce datasets with eight 16-bit spectral

bands where they used to only produce three 8-bit RGB color bands. Aerial LiDAR sensors operate at 300 KHz and

yield centimeter-accurate elevations. And while a terabyte (TB) of USB-ready, hard-drive storage can be yours for

under $100, experience has shown cheaper drives may result in users collecting and archiving correspondingly more

data.

We know from working with customers such as the United States Geological Survey (USGS) and the National

Geospatial-Intelligence Agency (NGA) that today’s geospatial workflows regularly require support for files

hundreds of gigabytes in size, storage of the imagery without significant quality loss, access to multiple resolutions

or overviews quickly, efficient random access into the file to support arbitrary scene requests, and so on.

For over a decade, the patented MrSID® technology from LizardTech® has been the GIS industry’s leading

solution to these problems. Our applications such as GeoExpress® and Express Server® are used by thousands of

people every day to encode and deliver imagery. And thousands more use MrSID files in hundreds of applications

including ESRI ArcGIS, ERDAS Imagine, and Google Earth.

With the introduction of the MG4™ format, the latest version of the MrSID technology, LizardTech now offers

compression for new kinds of datasets like multispectral images and LiDAR point clouds. In this white paper, we

will introduce you to MrSID technology: what features it offers, where it can be applied, and how it works.

II. MrSID Technology

What is Compression?

Compression just means making data more compact so it occupies less space, but the word sometimes has negative

connotations in our industry: often compressing imagery resulted in degraded data quality. You could have high

fidelity or you could save disk space – but not both.

Consider a typical aerial image that is in 8-bit color and is 6,000 pixels wide by 6,000 pixels high. This means the

raw data would consist of about 100 megabytes (MB) on disk: 36 million pixels (6,000 x 6,000), with each pixel

requiring three bytes (three color bands of one byte each). A common workflow might, in fact, have dozens or even

hundreds of such images arranged as tiles to make up a complete mosaic, but let’s just consider the one image.

LizardTech’s MrSID Technology Page 4

When the pixels are stored in an uncompressed (raw) form like this, the image data is not compressed at all: the

amount of disk space required is equal to the number of bytes needed to represent the pixels (plus some small

amount for metadata such as the geospatial positions of the corner points). Geospatial file formats like GeoTIFF

store data in this raw, or uncompressed, way: every single pixel is fully represented. Uncompressed formats have

the advantage of representing each pixel’s data exactly as it was originally recorded, and so we say the image data is

lossless. The obvious disadvantage, of course, is all the disk space you need.

Through the use of various algorithms, however, we can often represent the pixel data in a more efficient form.

Intuitively, you can think of it this way: if the data consisted of a sequence of five identical values such as 123 123

123 123 123, you might instead be able to code it using a sort of shorthand notation like 123[5] in which you store

the value only once but add a “repeat count” to it. Techniques like this yield data that is compressed – which means

less disk space is needed – but the image data is still lossless.

If we push our compression algorithms further, we can find techniques which do not store the data for each pixel

exactly but instead store only approximations of the data. Again intuitively, a high precision number like 3.1415,

which requires five digits, might be stored as just the single-digit number 3, an 80% reduction in digit space (a 5:1

compression ratio). The JPEG file format, commonly used for small images on the web, uses this sort of lossy

compression. The penalty for such lossy compression schemes is that you typically lose image quality: edges might

not be as sharp, colors might seem flatter, small artifacts might be introduced. For some less demanding geospatial

workflows, this might be acceptable.

In summary, then, we have a spectrum of three kinds of compression and data loss: uncompressed and lossless;

compressed and lossless; and compressed and lossy. The naive techniques just described to achieve these kinds of

compression will work, but by no means would provide high compression ratios, high image quality, and high

performance. To do compression well in the real world, the algorithms need to be designed for specific kinds of

data, such as geospatial imagery, and specific kinds of workflows.

MrSID Technology: Quality and Performance

The compression techniques used by MrSID technology provide both high quality imagery and high performance

while still meeting our industry’s challenging workflows.

Image Quality

MrSID technology’s lossless compression yields compression ratios of 2:1 for typical imagery. This means you

need only half the storage space and yet still retain your numerically identical, original data.

For further storage savings, MrSID technology’s lossy compression can yield typical ratios of up to 20:1 while still

offering a level of image quality that makes the data indistinguishable to the eye for most workflows. We refer to

this style of compression as being visually lossless: there is still data loss, but with respect to what the image is being

used for, the amount of loss is imperceptible.

Higher compression ratios are, of course, possible. Depending on how much image quality you need to retain, and

depending on the type of your original imagery, ratios of 40:1 and beyond can be used.

Encoding Performance

Geospatial datasets can grow to consume terabytes of disk space. Sometimes the dataset is just one large file, but

often it consists of hundreds of smaller tiles that, taken together, form a large mosaic. Either way, with many

applications the amount of memory required to process and compress such large datasets is prohibitive, requiring the

use of server-class hardware or requiring the end user to work with their imagery “piecemeal”, only a subset of the

tiles at a time.

LizardTech’s MrSID Technology Page 5

MrSID technology is designed to address this problem. With full support for input and output file sizes larger than 2

GB and with support for 64-bit processors, there is virtually no limit to the size of the imagery that can be

compressed.

Viewing Performance

Even at a ratio of 20:1, compression of a 20 TB dataset still results in an extremely large (1 TB) MrSID file. Users

are often nervous about working with files of that size because many GIS applications will attempt to ingest the

entire file, causing excessive and occasionally fatal demands on the CPU and memory. Two aspects of MrSID

technology solve this problem.

First, the encoding technique we use creates multiple resolutions of the image within the generated MrSID file. This

is similar in effect to the trick of creating image “pyramids”, but the MrSID technique does not create extra files for

all the pyramid levels nor incur the corresponding overhead in storage space. Instead, the resolution levels are

inherent in the encoding scheme and fully contained within the single MrSID output file itself. These levels are

scaled such that each level is one quarter of the previous level: for example, the full image at 1024x1024, then a

quarter-scale image at 512x512, then a sixteenth-scale image at 256x256, and so on down to an “icon” or

“thumbnail” of typically 32x32. Applications can be instructed to extract and process to only the level of detail

required, without having to decode (and perhaps then manually down-sample) the entire full-resolution image.

In addition to enabling requests for only the resolution level desired, MrSID technology offers selective

decompression, which allows applications to request and decode only the scene (geographic area) of interest from

the file. Some other file formats and compression schemes, by contrast, require the whole image to be decoded even

if only a small part is to be shown on the screen.

Introducing the MG4 Format

The prototype for MrSID technology was developed at Los Alamos National Laboratory in 1992. LizardTech’s

subsequent commercial version of the technology was called the MrSID Generation 2 (MG2) format and was

introduced in 1998. The next version, the MrSID Generation 3(MG3) format, introduced in 2002, offered improved

image quality and key features such as lossless encoding.

After a decade which saw the MrSID format become a de facto industry standard, LizardTech introduced the next

generation of the MrSID family. In response to customer demand, we have extended the MrSID format to MrSID

Generation 4 (MG4) to support multispectral imagery, enabling users to compress 4-band NAIP data, 8-band

Landsat data or even 224-band AVIRIS data, losslessly or with our usual high-quality visually lossless compression.

The MG4 format also adds support for alpha bands, enabling users with shapefiles defining the boundaries of their

image data to perform more complex mosaicking operations than ever before.

Until now, MrSID technology has only supported raster data – pixels arranged in a very regular, 2D grid – but in the

past few years, customers with very large, irregular, 3D elevation datasets have asked us for compression support.

With the MG4 format, we have added support for LiDAR point clouds. With LiDAR data, users of the MrSID

format get many of the same key features found in our raster compression technology, including lossless and

visually lossless compression, and selective decoding.

MrSID technology is available in LizardTech’s suite of applications and tools, ranging from full-featured encoding

applications to image servers to lightweight viewers. In addition, through our integration partners, MrSID files are

supported in hundreds of GIS applications. Whether you are using older MG2 files in your legacy applications,

taking advantage of MG3's lossless files in your current workflows, or have a new need to efficiently encode

multispectral raster or LiDAR point cloud datasets, MrSID compression technologies will support your needs.

LizardTech’s MrSID Technology Page 6

III. MrSID Technology for Imagery

In this section we describe in more detail some of the features and capabilities of the MrSID technology for raster

image data.

Data Types and Formats

The MrSID technology is agnostic with respect to the input file format, as long as the input pixel data meets certain

datatype requirements. This means that MrSID files can be generated from a variety of data sources including

GeoTIFF, Imagine, and ECW.

The MrSID technology supports most data types used in geospatial raster imagery today: up to 16 bits per sample

(signed or unsigned). Raster image data is almost always represented using unsigned integers. Digital elevation

models and file formats like DTED, however, often use a signed integer representation, and so to support situations

where our users want to compress these sorts of datasets, or perhaps use terrain models as base layers for their

visualizations, MrSID supports signed integer data of up to 16 bits.

The MrSID technology also supports 1-band grayscale, 3-band RGB, and 1- to 255-band multispectral or

hyperspectral imagery.

Image Quality

As discussed above, MrSID technology offers excellent image quality for a given file size target.

• Numerically lossless: This level of compression typically yields a 2:1 compression ratio, for a 50%

reduction in storage space. Lossless compression should be used when it is critical that all bits of the

original image be preserved. This is the case for archival storage, as well as for uncommon workflows

where no possible loss of precision is ever acceptable. You may also wish to use lossless compression

when you are generating a “master” image from which other derivative images will be made, as through the

MrSID optimization process described below.

• Visually lossless: This level of compression is typically 20:1 for RGB and 10:1 for grayscale imagery.

This is the most common level of compression quality used, as it preserves the appearance of the imagery

for most workflows, including use of your imagery as a background layer and for many forms of visual

analysis and exploitation.

• Lossy: Beyond 20:1, image degradation and artifacts can appear, although often not too significantly until

ratios of 40:1 or 50:1. Such lossy quality may be acceptable when the imagery is used only as a

background layer for appearance or when the image quality is less important than the storage size or speed,

such as for informal visual inspections.

Performance

When considering performance, we usually consider the cost of running some process, such as compression or

decompression, in terms of memory usage, CPU usage, and I/O bandwidth. The MrSID technology is designed with

these concerns in mind.

• Compression: When dealing with very large images, many image processing algorithms first partition the

image into tiles and then process each tile independently. This allows the computation to proceed without

slowing down due to excessive paging of memory to disk. However, especially in the case of compression

algorithms, such tiling can introduce artifacts in the resulting image because the algorithms cannot

efficiently process cross-tile regions. MrSID technology is specifically designed to process imagery whose

LizardTech’s MrSID Technology Page 7

size is larger than the amount of RAM available on the machine without resorting to tiling schemes and

therefore without introducing any tiling artifacts.

• Decompression: When decompressing imagery, the most common use case is for viewing, which means

extracting out scenes – only some subsets or regions of the image are needed at any one time. With the

multiresolution support inherent in the MrSID format, the viewing application may first decide the

resolution level needed to display the scene at some physical screen resolution and then extract only the

resolution levels needed; this significantly improves disk I/O time and lowers the amount of imagery the

CPU must process. Additionally, the viewer need only request those portions of the file that correspond to

the region of interest; the entire image (at the given level) need not be processed, again saving I/O

bandwidth and processing time.

When decompressing the entire image is required, the performance of the decompression step is roughly comparable

to that of the earlier compression step: again, MrSID technology is designed to run within reasonable amounts of

RAM, even for large datasets. If lossy compression was used, the decompression will be somewhat faster since

there is correspondingly less data being read in and processed.

Optimization

For most users, the typical image compression workflow consists of a compression followed by one or more

decompressions, either for viewing (small decodes) or for bringing the image back into some other format for some

other tool or purpose (large decodes), as shown in the top line of Figure 1. In many cases, however, the need for the

large decode step can be reduced.

Once an image is in the MrSID format, a new MrSID file can be generated from it without resorting to a decode

followed by a re-encode – this means you can generate derivative products from a single source, as shown in the

bottom of Figure 1. This is referred to as “optimizing” the image.

For example, a data provider might create and archive a lossless MrSID file to use as a “master”, and then as

customer requests come in, that master copy can be used to quickly generate new MrSID files that fit a variety of

needs:

• a MrSID file with a lower baseline resolution – for example, resolution levels can be removed if only one

foot per pixel resolution is needed from a six-inch resolution image

• a MrSID file requiring less storage space – for example, 20:1 compression can be used to fit the image onto

a CD or DVD

• a MrSID file containing less area – for example, a scene containing only a certain neighborhood can be

extracted from an image covering a whole city

Again, to meet these three different requirements (or perhaps some combination of them) only one fast step is

required to generate a new MrSID file from the original MrSID file. There is no need to decode the entire image

first.

Metadata

Because MrSID is a geospatial data format, MrSID files also include geospatial referencing information such as the

coordinate reference system (CRS), the geographic extents (corner points) of the image, and the pixel resolution.

This metadata is an inherent part of the MrSID file format and is based on the well-known GeoTIFF tag scheme.

When performing a reprojection operation or one of the optimization steps described above, the metadata is updated

to reflect the properties of the derived image: when performing scale reduction, for example, the resolution metadata

is updated accordingly.

LizardTech’s MrSID Technology Page 8

MrSID metadata also is used to record what operations may have been performed on your dataset. For example, you

can determine if the file you have still corresponds to the lossless original data or if it has been modified in some

way.

This native geographic metadata support allows you use a third-party application to import your MrSID imagery for

use as a base map with other georeferenced datasets you might have.

Multispectral Support

For many years, some types of geospatial data have included more than just the usual three color (RGB) bands.

Only recently, however, have these kinds of multispectral datasets started to be widely available to GIS users. For

example, in 2011, USDA’s NAIP program plans to collect data for 15 states which will contain the red, green, and

blue (RGB) bands plus a fourth infrared (IR) band. DigitalGlobe’s recently launched WorldView 2 satellite records

RGB plus five additional bands: a yellow band, two IR bands, and two “coastal” bands. Other remote sensing

platforms are now collecting hyperspectral datasets, typically one hundred or more narrow bands. All these

additional bands are chosen for their abilities to improve feature classification and extraction by providing more

discriminating information in areas such as vegetation cover, shallow-water bathymetry, and man-made features.

To support these new, richer datasets, the MrSID technology can compress images with up to 255 bands. The same

key features are still available: lossless and lossy encoding, multiple resolution levels, and selective decoding.

As more data is being encoded and decoded, of course, more time will be required. Figure 2a shows the relative

performance of encoding 5Kx5K pixel images with 1, 2, 4, 8, 16, and 32 bands of data: the time required scales

linearly, when normalized to the number of bands. That is, if it takes 1 minute to encode a 1-banded image, it will

take 10 minutes to encode an 10-banded image of the same width and height.

The time required to decode imagery with varying numbers of bands scales similarly. However, many users of

multispectral imagery only view one or perhaps three of the bands at a time, mapping the bands into the familiar

grayscale or RGB space. In the same way that the MrSID algorithms will perform selective decompression for

viewing only the scene of interest, they will also decode only the bands of interest. Figure 2b shows the relative

time it takes to decode 1-, 2-, and 4-band scenes from images with 1, 2, 4, 8, 16, and 32 bands of data: the time

required does not depend on the number of bands. More concretely, if it takes 1 minute to extract a single band

from 1-banded image, it will take only 1 minute to extract a single band from a 10-banded image of the same

width/height.

Alpha Bands

In previous versions of the MrSID format, nodata regions were indicated by a sentinel pixel value, typically black.

When mosaicking tiles together, nodata regions would be used to indicate how to “combine” one image on top of

another. Users who have worked with MrSID images in the past, however, may have noticed a problem with this.

A black nodata pixel, represented by (0,0,0) might be slightly changed when subjected to lossy compression. The

value (0,0,0) might change to (1,0,2) or (0,2,0) – by itself visually indistinguishable from black, but in a mosaicking

context it is no longer the nodata sentinel value and so in the worst case this might have caused “speckling” artifacts

to appear.

The MG4 format uses an alpha band instead of a single nodata pixel value to indicate which areas of the image do

not have valid data. When encoding existing imagery, users indicate which pixel value corresponds to nodata and a

mask is created corresponding to those values. Subsequent mosaicking operations then use that mask to determine

how to combine tiles. Lossy compression no longer affects this process, because while the putative nodata pixels

might get slightly changed, the alpha mask is always kept lossless and is always honored by the decoders.

LizardTech’s MrSID Technology Page 9

The alpha band is treated just like the other bands in the image, such as the RGB bands, except that it is never

subjected to any lossy compression. Because the alpha band contains relatively simple sequences of data – very

long runs of ones or of zeros – it compresses losslessly extremely well and little or no overhead will be noticeable in

your MrSID files.

Tiling and Composites

Many of our customers have a single MrSID file which covers a large geographic region. With the ability of the

MrSID technology to composite multiple MrSID files together, you can have one MrSID file that is made up

internally of dozens of MrSID files serving as image tiles. You can even combine older MG2 files in your MrSID

composite image. MrSID composite images are created with a special overview tile, so even files consisting of

hundreds of tiles can be quickly viewed at lower resolutions which span multiple tiles.

As new MrSID tiles are acquired – such as from a more recent flight, perhaps with higher accuracy data – these tiles

can be easily added to the existing MrSID composite image. Because only MrSID files are involved, this process

does not require any decompression or compression steps and so can be done very quickly. When displaying the

data, the new tiles’ data will correctly layer on top of the older data. Additionally, the overview tile is automatically

updated to account for the new tiles.

Differences among the MG2, MG3, and MG4 Formats

As the MrSID technology has evolved over the years, the range of capabilities supported has evolved as well.

Specifically:

• MG2 does not support lossless compression

• MG2 does not support optimization

• MG2 does not support composite images

• Only MG2 supports 32-bit floating point data

• Only MG4 supports signed integer data

• Only MG4 supports alpha masking

• Only MG4 offers support for multispectral and hyperspectral imagery

While some applications may only write newer versions of the MrSID format, all applications that read MrSID files

will always continue to support all versions of the format. These considerations are important to keep in mind, since

there are so many older MG2 and MG3 files kept in long-term archives.

IV. MrSID Technology for LiDAR

After what seems like only a few years, LiDAR is now becoming a mainstream GIS technology. LiDAR data is

already being used in a variety of areas, including utility corridor monitoring, construction of centimeter-accurate

surface and elevation models, and vegetation or biomass measurement.

As with raster imagery, however, this data comes with a cost: file size. A typical day of LiDAR acquisition can

result in a dataset hundreds of gigabytes in size and the amount of data collected will continue to grow as sensors

improve in resolution and functionality. Large files mean storage hassles and hampered interactive workflows. But

technologies like MrSID have been developed to address those problems for raster imagery – can the MrSID

technology be used for LiDAR point clouds as well?

A typical LiDAR collection scenario consists of an aircraft with a GPS, IMU (inertial measurement unit), a laser that

emits over one hundred thousand pulses per second, and a laser receiver. As each laser pulse is reflected off the

LizardTech’s MrSID Technology Page 10

ground, it is received by the sensor on the aircraft, which then stores data including the time of the pulse, the

inferred (x,y,z) position, and the intensity of the return signal. In addition, we might later perform a classification

analysis that identifies what each return represents – tree canopy, impervious surface, water, etc.

This makes LiDAR data fundamentally different from image data in three ways. First, and most obviously, we have

a Z height component in LiDAR data. Second, we may also have a set of attributes associated with each point, such

as intensity, classification label, or transmitted time of the laser pulse – more than just the pixel value (color) in

images. And third, the LiDAR data do not lie on an implicit regular grid, as image data do: each LiDAR point must

be stored explicitly, as we cannot infer position based on an implicit grid location.

Although the algorithms differ, the MrSID compression support for LiDAR gives still the same core features we

find in the raster world.

Selective decompression – As the point cloud data is encoded, a spatial index is created which keeps track

of where the compressed points are located in geographic space, regardless of where they may be located in

the MrSID file. This means that the data for a desired region (bounding box) can be accessed and decoded

without reading (or, worse, decoding) the whole file as may be the case with LAS files.

Multiple resolutions – Because the data is on an irregular grid, the multiresolution (pyramid) scheme

described earlier for raster imagery is not as effective. Instead, the MrSID file is designed so that

applications may request a certain density of points within the region of interest; as further requests are

made, additional points may be retrieved. This allows an application to try to achieve a uniform point

density across the entire dataset, rather than have an excess of points in some areas when the workflow

does not require them.

Lossless and lossy compression – The data points are encoded using, again, techniques similar to the

MrSID algorithms for raster compression, allowing for typical lossless compression ratios of 4:1. Lossy

compression ratios of 10:1 or higher are typical. However, lossy compression is achieved only by

removing some points from the dataset, unlike the approximation technique intuitively described above.

(Consider that if the decimal value of a point position was “rounded”, then the point would actually move

in space; this is a more significant issue for high-accuracy elevation workflows than for workflows using

the intensity values of imagery.)

LiDAR data is often stored as LAS files, equivalent in spirit to GeoTIFF files in that the data is in an uncompressed,

lossless format. It is interesting to compare the cost of extracting a scene from a large LAS file versus from a

MrSID file. Figure 3 shows the time it takes to decode scenes from a point cloud encoded in the LAS file format

and the MrSID file format. The scenes range from 1% of the total volume of the point cloud up to 64% of the total

volume. The time to decode from the LAS file is constant, because extracting data from an unindexed

representation requires walking through every point in the cloud, regardless of scene size. The time required to read

the MG4 file is significantly slower for large scenes (over a third of the file, in this case) due to the computational

overhead of the decompression algorithms. For smaller scenes, more realistic of many viewing and analysis

workflows, the built-in spatial index inherent in the MG4 format dramatically speeds up the data access compared to

LAS.

V. LizardTech’s Products and Integrations

LizardTech was formed as a spin-off from Los Alamos National Laboratory to commercialize their MrSID

compression technology. Since its first commercial release in 1998, the MrSID file format has become an industry

standard. Today LizardTech offers a number of products that create, manage, and distribute MrSID imagery.

LizardTech’s MrSID Technology Page 11

GeoExpress

The GeoExpress application is LizardTech’s flagship product for compressing imagery. It supports creation of

MrSID files and includes tools for mosaicking, reprojecting, and color balancing imagery. The latest release,

GeoExpress 8, adds support for the MG4 format. GeoExpress also fully supports JPEG 2000, an ISO standard

technology similar to MrSID technology.

LiDAR Compressor

The LiDAR Compressor application is LizardTech’s first product to support LiDAR data with the new MG4 format.

The software supports lossless compression up to 4:1 and offers both mosaicking and previewing. It supports

reading both the LAS and ASCII point cloud file formats.

Express Server

The LizardTech Express Server system is the best solution for distributing MrSID imagery over the internet. A

client connected to a website running the Express Server image server can download and view high-resolution

imagery quickly using industry-standard protocols such as WMS. Client applications can include browser plug-ins

for the desktop, applications on hand-held devices, or enterprise GIS applications.

The Express Server system can also be used in combination with ESRI’s ArcGIS Server and ArcGIS Image Server

products to speed up image delivery. You can also publish Express Server catalogs as layers in ArcGIS Server and

ArcGIS Image Server, or you can connect an ArcMap client directly to Express Server host so you can work with

datasets hundreds of gigabytes in size right on your desktop.

Spatial Express

The Spatial Express database extension enables you to store, manage, and access massive MrSID images natively

inside an Oracle Spatial database. Rather than relying only on files in a file system, with the Spatial Express

database extension you can better manage your data holdings and more easily integrate your imagery into your other

geospatial datasets, because the imagery data is available via native Oracle GeoRaster queries.

GeoViewer and ExpressView

LizardTech offers two freely downloadable viewers for MrSID imagery.

GeoViewer is a standalone application for viewing raster imagery, vector overlays and LiDAR data. With

GeoViewer you can combine, view and export visual layers from varied sources, such as local repositories, Express

Server catalogs, and WMS servers.

The ExpressView Browser Plug-in enables you to view MrSID imagery in Internet Explorer or Firefox. Like

GeoViewer, ExpressView enables you to save a portion of an image in a number of other image formats.

LizardTech MrSID Decode SDK

LizardTech offers an SDK to enable MrSID file format support in third-party applications. The SDK exposes C and

C++ APIs that enables developers to open raster and LiDAR MrSID files, read the geospatial metadata, and extract

scenes of arbitrary size and scale. The SDK is taken from the same code base LizardTech uses to build its own

applications.

Our SDK may be downloaded and integrated into your application for free. Versions of the SDK are available for

Windows, Linux, Solaris, and Macintosh.

LizardTech’s MrSID Technology Page 12

Third Party Integration

Through our SDK program, hundreds of geospatial applications support the MrSID file format. ESRI’s ArcMap,

ERDAS’ Imagine, and Google Earth all support importing MrSID imagery as fully georeferenced raster layers.

VI. Conclusion

LizardTech’s MrSID technology is designed to be the most effective storage solution for geospatial imagery and

elevation data on the market. We recognize that the quality of your data can be just as important as the cost of

storing and accessing it, and we’ve developed the features of MrSID with that in mind:

• Data quality from lossless to visually lossless to lossy

• Compression ratios from 2:1 to 20:1 and beyond

• Multiple resolutions to obviate manually constructing and managing image pyramids

• Selective decompression for fast access to small scenes in big files

• Support for up to 255 spectral bands

• Support for irregular, 3D data sets like elevation data and point clouds

All these features are available in LizardTech’s own suite of products and, through our partners, the MG2 and MG3

format is supported in all the other major GIS applications on the market today. Third-party adoption for the MG4

raster and LiDAR has already begun.

Every year, more airborne and satellite sensors are collecting more and more data, with new spectral bands and

higher bit depths. Our software was developed to compress two-dimensional image data, and is now supporting

three-dimensional elevation data. As we look to the future, we are starting to see some customer needs for

compressing even more types of data such as sonar, SAR, and datasets with explicit time dimensions. LizardTech

and our MrSID technology will continue to track the needs of our industry to make it easier to store, manage, and

distribute geospatial data.

LizardTech’s MrSID Technology Page 13

Appendix A. What is Compression?

Adapted from “Image Compression – Why Is It Now So Important?”, Matt Fleagle and Michael P. Gerlek, GeoWorld, September 2008.

Compression makes files smaller while preserving all or most of the data they contain. In imaging, compression

enables you to store an archive of many more image files on a disk than you could if they were uncompressed, and

to reduce the bandwidth required to transmit them across a network, so you can send more of them faster.

Raster images (satellite images and aerial photographs, for example) are much larger on average than vector images

(predominately line-based images like maps and drawings) and other types of files, which is why imaging and

compression are such constant companions.

But compression is often misunderstood. Some people assume that compression necessarily entails image

degradation, which is not true. Some confuse compression, which is reducing the size of an image file (as measured

in bytes), with cropping, which is reducing the dimensions of an image by reducing its scope. There are also several

kinds of compression, different algorithms used for different purposes. Finally, choices made in compressing image

files have consequences far beyond the moment of compression.

What Does it Mean to Compress an Image?

An image is made up of a certain number of pixels according to its width and height. Each pixel is made up of a

certain number of samples, determined by the number of bands (colors) the image has. A pixel from an RGB image

has three samples: one each for the red, green and blue color bands. Each sample is in turn composed of a certain

number of bits, typically between 8 and 16. Eight bits equal one byte.

The nominal size of an image (in bytes) is its width times its height times the number of samples times the number

of bytes per sample. For example, the nominal size of an 8-bit RGB image measuring 1000 x 2000 is calculated as

follows:

1000 (width) x 2000 (height) x 3 (samples) x 1 (byte) = 6,000,000 bytes = 6 MB

A compression ratio is the amount or degree of reduction in an image’s file size, expressed as the ratio of its nominal

size to the target size (the size we intend it to be after compression). Compressing an image at a ratio of 20:1 means

that our target size is 5 percent of the nominal size.

Compressed at a ratio of 20:1, the size of the above image is:

6,000,000 / 20 = 300,000 = 300 KB

How Compression Works

Using Fewer Bytes

Compression at a practical level is reducing the number of bytes it takes to communicate the data. We can do this in

several ways. As an example, let’s consider an array of 16 numbers representing pixel sample values like those

discussed above:

9 9 9 11 11 11 9 9 9 10 9 9 9 11 11 11

Alternatively, in an averaging method, we would take pairs of numbers starting at the beginning and average them

together resulting in the following array of eight numbers

9 10 11 9 9 9 10 11

LizardTech’s MrSID Technology Page 14

because the average of 9 and 9 is 9, the average of 9 and 11 is 10, and the average of 9 and 10 is 9 (rounding down

to the nearest integer). If these values described a line, the line produced by this array would approximate that

produced by the original, but we’ve reduced the amount of data by a factor of two.

In a run-length encoding method, we replace runs of identical values with just two numbers, the value itself and a

repeat count. Using again our array of 16 numbers, we would get this:

9[3] 11[3] 9[3] 10[1] 9[3] 11[3]

With a resulting array of twelve items, the run-length encoding method here gives us a byte savings of almost a

quarter.

Using a third approach, a dictionary method, we remark common sequences of values and replace them with special

tokens, storing the sequences and the associated tokens in a dictionary at the top of the file.

Dictionary: A = 9 9 9
 B = 11 11 11

Data: A B A 10 A B

Here we’ve reduced the actual data to just six items, but we have to store the dictionary too.

These are very simplistic examples using a short, unrepresentative input, but we can make some observations. First,

it might take some time to encode or decode: think about the time involved in searching for and updating those

common sequences, for example.

Second, you might lose data: in the “averaging” example we’ve discarded data in the rounding operation and can

never get it back. Compressed image files can be described as either lossless or lossy. Lossless means that no pixel

data has actually been discarded; even if the number of bits it takes to describe the data has been reduced, you can

still reverse the process and arrive at the exact same data that you started with. The run-length encoding and

dictionary methods above represent lossless compression. That is, using the run-length duets or the dictionary and

six data values, you can reconstruct the original string of 16 numbers. The averaging method, however, is lossy. You

can’t infer the 16 original values from the eight averaged values. The precision lost by that encoding process is lost

for good.

Image Quality and Artifacts

Two costs of compression are performance and artifacts. Compressed files may take longer to process (e.g. color

balance, further compress) or to decode (e.g. decompress, view). And compression can introduce visible patterns,

anomalies or distortions in the image that were not present in the original data.

You might see at least two kinds of artifacts when you look at an image. A mosaic (an image composed of two or

more joined images or “tiles”) might display seam lines as an artifact of the mosaicking process or tonal imbalances

caused by differences in the weather conditions under which each tile was photographed. These are image-level

artifacts not related to compression.

Compression artifacts are caused by the mathematical algorithms used to compress images, and different

compression algorithms leave different artifacts. Common artifacts include blocking (appearance of the image being

composed of small squares), seam lines (discontinuities along tile boundaries), ringing (“echoes” of sharp edges),

and flattening (small gradients or color changes in otherwise constant areas are smoothed or even removed).

LizardTech’s MrSID Technology Page 15

Appendix B. Compression with MrSID Technology

Adapted from “Compressing Lidar Data”, Michael P. Gerlek, PE&RS, November 2009.

The MrSID technology relies on two key algorithms to encode data. First, a wavelet is used to change the data into

a form that serves to represent the data at multiple resolutions. The wavelet transform is a mathematical

transformation of the data that is, in general, lossless. The second step is to encode the data produced by the wavelet

transform into a new representation that is significantly more compact than the original and yet still lossless;

optionally, this step may also reduce the precision of the data for even more space savings at the cost of incurring

some data loss.

Wavelet Encoding

Wavelet encoding can be thought of as nothing more than a weighted averaging and differencing scheme. Consider

a list of 4 numbers: {2, 6, 14, 6}. By pairwise averaging, we can reduce this to a “second level” list of two numbers,

{4, 10}, and a list of second level “differences”, {+2, -4}. Performing the same operation again on the {4, 10} list,

we get the third-level list {7} and the third level difference list {+3}. This is shown in Figure 4.

These three lists, and the two associated difference lists, are used to represent the original four-element list at three

levels of resolution. Observe that only the final singleton list {7} and two difference lists of {+3} and {+2, -4} are

required to perform the inverse operation and restore the original input list. With only these three lists, we can

reconstruct the second level: the third level list {7} and the difference list {+3} yields {4, 10} (because 7-3=4 and

7+3=10). The second level list {4, 10} and the second level difference list {+2,-4} yields in turn the original list (4-

2, 4+2, 10-(-4), 10+(-4)).

Although the details are somewhat more complicated in practice, the principle is the same for image data. Using a

1D wavelet across both dimensions of the 2D array of pixel data, we reduce the image to a pyramid of images, each

level being half the width and height of the previous level and including the corresponding difference list. This is a

mathematically lossless process. No significant compression has been achieved, but we have a better representation

of the data because it inherently reflects the data at multiple resolution levels. This is similar to the well-known

manual image pyramid scheme, which has power-of-two sequential reductions in resolution. These reduced

resolution decodes fall directly out of the wavelet decomposition, making them easily accessible.

In the case of LiDAR data, the situation is somewhat different because raster datasets are regularly gridded while

point cloud datasets are not. In the former case, we don’t need to explicitly encode the x and y coordinates, just the

(pixel) values at each grid point. In the latter case, having no implicit reference grid, we must encode the coordinates

and any associated values (such as intensity). In a decompression at less than the full resolution of the data, a subset

of the pyramid levels are used to compute the data to be returned; the resulting point cloud is effectively

subsampled.

Arithmetic Encoding and Bit Planes

The points produced by the wavelet decomposition are grouped into spatially adjacent blocks that can now be

encoded independently. Within each block, we consider the data as sets of significant bits: the most significant bit of

each piece of data forms the first “bit plane”, the second most significant bit of each item forms the second bit plane,

and so on. We use an encoding technique known as arithmetic encoding to efficiently (and losslessly) compress

these strings of bits. It can be thought of as using winzip or gzip on a small binary array, although it is more efficient

in general.

If we wish, as part of this process we may choose to remove a number of least significant bits from each point. For

example, a block of numbers such as {314, 572, 419, 845} nominally requires twelve (four times three) digits of

LizardTech’s MrSID Technology Page 16

representation. However, if stored as {31_, 57_, 41_, 84_}, where _ represents an omitted digit, only eight (four

times two) digits are required, and if stored as {3__, 5__, 4__, 8__}, only four digits are required. Clearly 310 is

only an approximation of 314; such is the nature of lossy compression – space is traded off for precision.

Again, this description is only to provide some intuition into the actual process but the key properties are the same.

We have reduced the storage requirements of our data, and can adjust the amount of loss we are willing to accept.

Lossless means not throwing away any bits, lossy means we throw away least significant bits. For lossy compression

one cannot simply remove arbitrary bits from arbitrary blocks, however, statistics are kept to determine the relative

“importance” of each block (based on resolution level and potential error), and thus less important blocks are more

likely to lose bits.

We also have processed our data in blocks, allowing for spatially adjacent points to be stored (and accessed)

independently. This gives us our selective decompression property, as we only need to access (and decompress) a

subset of the entire file if we are only interested in a subset of the entire spatial extent of the point cloud.

Putting It Together

The wavelet transform followed by the bit plane encoding gives us a representation of the data in the file format that

offers some of the capabilities we have discussed in this white paper. For example, a MrSID file can be further

compressed (optimized) by simply considering each already-encoded bit plane and truncating its precision by the

degree necessary to achieve the smaller target file size. Selective decompression can be achieved by selecting only

those blocks of bits relevant to the scene (and resolution scale) and then performing the inverse of the bit plane

encoding and the wavelet transform on them. As long as no bit planes have been truncated (incurring data loss),

these inverse transforms are numerically lossless, thus ensuring you will get back exactly the original data you

started with.

LizardTech’s MrSID Technology Page 17

Figures

Figure 1

Compressor

Source

image

MrSID

image Decompressor

Viewed

image

Optimizer

LizardTech’s MrSID Technology Page 18

Figure 2a: Time to encode an image with a varying numbers of bands

Figure 2b: Time to decode an image with a varying numbers of bands

0

2

4

6

8

10

1 2 4 8 16 32

e
n

co
d

e
 t

im
e

 (
n

o
rm

a
li

ze
d

)

number of bands in source image

0

5

10

15

20

1 2 4 8 16 32

d
e

co
d

e
 t

im
e

number of bands in source image

1 band decode

2 band decode

4 band decode

LizardTech’s MrSID Technology Page 19

Figure 3: Time to decode various scene sizes from a LiDAR file, using LAS and MG4 formats

0

4

8

12

16

1 2 4 8 16 32 64

T
im

e

Size of decode scene

LAS

MG4

LizardTech’s MrSID Technology Page 20

Figure 4

2 6 14 6 {2,6,14,6}

4±2 10±(-4) {4,10}, with {+2,-4}

7±3 {7}, with {+3}

