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CMPS 102 
Introduction to Analysis of Algorithms 
Fall 2003 
 

Asymptotic Growth of Functions 
 
We introduce several types of asymptotic notation which are used to compare the performance and 
efficiency of algorithms.  As we’ ll see, the asymptotic run time of an algorithm gives a simple, and 
machine independent, characterization of it’s complexity. 
 
Definition  Let )(ng  be a function.  The set ))(( ngO  is defined as 
 

} )()(0 : ,0 ,0  |  )( {))(( 00 ncgnfnnncnfngO ≤≤≥∀>∃>∃= . 

 
In other words, ))(()( ngOnf ∈  if and only if there exist positive constants c, and 0n , such that for all 

0nn ≥ , the inequality )()(0 ncgnf ≤≤  is satisfied.  We say that )(nf  is Big O of )(ng , or that )(ng  

is an asymptotic upper bound for )(nf .  
 
We often abuse notation slightly by writing ))(()( ngOnf =  to mean ))(()( ngOnf ∈ .  Actually 

))(()( ngOnf ∈  is also an abuse of notation.  We should really write )(gOf ∈  since what we have 
defined is a set of functions, not a set of numbers.  The notational convention ))(( ngO  is useful since 

it allows us to refer to the set )( 3nO  say, without having to introduce a function symbol for the 

polynomial 3n .  Observe that if ))(()( ngOnf =  then )(nf  is asymptotically non-negative, i.e. )(nf  is 
non-negative for all sufficiently large n, and likewise for )(ng .  We make the blanket assumption from 
now on that all functions under discussion are asymptotically non-negative. 
 
In practice we will be concerned with integer valued functions of a (positive) integer n ( ++ → ZZ:g ).  
However, in what follows, it is useful to consider n to be a continuous real variable taking positive 
values and g to be real valued function ( ++ → RR:g ).   
 
Geometrically ))(()( ngOnf =  says: 
 
                                                                                                                     )(ncg  
 
 
                                                                                                                    )(nf  
 
 
 
 
 
                                                                                                                       
                                               0n  
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Example  )30010(10040 2 ++=+ nnOn .  Observe that 30010100400 2 ++≤+≤ nnn  for all 20≥n , 

as can be easily verified.  Thus we may take 200 =n  and 1=c  in the definition.  

                                                                                                                     300102 ++ nn  
 
 
 
                300                                                                                               10040 +n  
 
 
 
 
                100 
 
 
                                    10                                                 20 
 
 
Note that in this example, any value of 0n  greater than 20 will also work, and likewise any value of c 

greater than 1 works.  In general if there exist positive constants 0n  and c such that )()(0 ncgnf ≤≤  

for all 0nn ≥ , then infinitely many such constants also exist.  In order to prove that ))(()( ngOnf =  it 

is not necessary to find the smallest possible 0n  and c making the )()(0 ncgnf ≤≤  true.  It is only 

necessary to show that at least one pair of such constants exist. 
 
Generalizing the last example, we will show that )( 2 edncnOban ++=+  for any constants a-e, and in 
fact ))(()( nqOnp =  whenever )(np  and )(nq  are polynomials with )deg()deg( qp ≤ . 
 
Definition  Let )(ng  be a function and define the set ))(( ngΩ  to be 
 

} )()(0  :  ,0 ,0  |  )( {))(( 00 nfncgnnncnfng ≤≤≥∀>∃>∃=Ω . 

 
We say )(nf  is big Omega of )(ng , and that )(ng  is an asymptotic lower bound for )(nf .  As before 
we write ))(()( ngnf Ω=  to mean ))(()( ngnf Ω∈ .  The geometric interpretation is: 
 
                                                                                                                          )(nf  
 
 
                                                                                                                          )(ncg  
 
 
 
 
 
 
                                                         0n  
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Lemma  ))(()( ngOnf =  if and only if ))(()( nfng Ω= . 

Proof:  If ))(()( ngOnf =  then there exist positive numbers 1c , 1n  such that )()(0 1 ngcnf ≤≤  for all 

1nn ≥ .  Let 12 /1 cc =  and 12 nn = .  Then )()(0 2 ngnfc ≤≤  for all 2nn ≥  , proving ))(()( nfng Ω= .  
The converse is similar and we leave it to the reader.                                                                         ///   
 
Definition  Let )(ng  be a function and define the set ))(())(())(( ngngOng Ω∩=Θ .  Equivalently 
 

   } )()()(0  :  ,0 ,0 ,0  |  )( {))(( 210021 ngcnfngcnnnccnfng ≤≤≤≥∀>∃>∃>∃=Θ . 

 
We write ))(()( ngnf Θ=  and say the )(ng  is an asymptotically tight bound for )(nf , or that )(nf  
and )(ng  are asymptotically equivalent.  We interpret this geometrically as: 
 
                                                                                                                            )(2 ngc  
 
                                                                                                                            )(nf  
 
                                                                                                                            )(1 ngc  
 
 
 
 
 
                                                                0n  

 
Exercise  Prove that if c is a positive constant, then ))(()( nfncf Θ= . 
 
Exercise  Prove that ))(()( ngnf Θ=  if and only if ))(()( nfng Θ= . 
 

Example  Prove that ( )nn Θ=+10 . 

Proof:  According to the definition, we must find positive numbers 021  , , ncc , such that the inequality 

ncnnc 21 100 ≤+≤≤  holds for all 0nn ≥ .  Pick 11 =c , 22 =c , and 100 =n .  Then if 0nn ≥  we 

have:  
                       010 ≤−     and     n≤10  
∴          n)11(10 −≤−      and     n)12(10 −≤  

∴        nc )1(10 2
1−≤−     and     nc )1(10 2

2 −≤  

∴            102
1 +≤ nnc      and     ncn 2

210 ≤+ , 

∴                          ncnnc 2
2

2
1 10 ≤+≤ , 

∴                     ncnnc 21 10 ≤+≤ , 
 
as required.                                                                                                                                       /// 
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The reader may find our choice of  values for the constants 021  , , ncc  in this example somewhat 

mysterious.  Adequate values for these constants can usually be obtained by working backwards 
algebraically from the inequality to be proved.  Notice that in this example there are many valid 

choices.  For instance one checks easily that 2/11 =c , 2/32 =c , and 200 =n  work equally well. 

 
Exercise  Let a, b be real numbers with 0>b .  Prove directly from the definition (as above) that 

)()( bb nan Θ=+ .  (In what follows we learn a much easier way to prove this.) 
 
Lemma   If )()( nhnf ≤  for all sufficiently large n, and if ))(()( ngOnh = , then ))(()( ngOnf = . 

Proof:  The above hypotheses say that there exist positive numbers c  and 1n  such that )()( ncgnh ≤  

for all 1nn ≥ .  Also there exists 2n  such that )()(0 nhnf ≤≤  for all 2nn ≥ .  (Recall )(nf  is assumed 

to be asymptotically non-negative.)  Define ),max( 210 nnn = , so that if 0nn ≥  we have both 1nn ≥  and 

2nn ≥ .  Thus 0nn ≥  implies )()(0 ncgnf ≤≤ , and therefore ))(()( ngOnf = .                                 ///   

 
Exercise  Prove that if )()()( 21 nhnfnh ≤≤  for all sufficiently large n, where ))(()(1 ngnh Ω=  and 

))(()(2 ngOnh = , then ))(()( ngnf Θ= . 
 

Example  Let 1≥k  be a fixed integer.  Prove that )( 1

1

+

=

Θ=� k
n

i

k ni . 

Proof:  Observe that )( 11

11

++

==

==⋅=≤�� kkk
n

i

k
n

i

k nOnnnni , and 

� � � �
� � )()2/1()2/)(2/()2/(2/)2/( 111

2/2/1

+++

===

Ω==≥⋅≥≥≥ ��� kkkkk
n

ni

k
n

ni

k
n

i

k nnnnnnnii . 

By the result of the preceding exercise, we conclude  )( 1

1

+

=

Θ=� k
n

i

k ni .                                     ///   

 
When asymptotic notation appears in a formula such as )()2/(2)( nnTnT Θ+=  we interpret )(nΘ  to 

stand for some anonymous function in the class )(nΘ .  For example  )(31243 2323 nnnnn Θ+=+−+ .  

Here )( 2nΘ  stands for 124 2 +− nn , which belongs to the class )( 2nΘ .   
 

The expression � =
Θn

i
i

1
)(  can be puzzling.  On the surface it stands for )()3()2()1( nΘ++Θ+Θ+Θ � , 

which is meaningless since )constant(Θ  consists of all functions which are bounded above by some 
constant.  We interpret )(iΘ  in this expression to stand for a single function )(if  in the class )(iΘ , 
evaluated at ni  , ,3 ,2 ,1 �= . 
 

Exercise   Prove that )()( 2

1
ni

n

i
Θ=Θ� =

.  The left hand side stands for a single function )(if  summed 

for ni  , ,3 ,2 ,1 �= .  By the previous exercise it is sufficient to show that )()()( 211 nhifnh
n

i
≤≤� =

 for 

all sufficiently large n, where )()( 2
1 nnh Ω=  and )()( 2

2 nOnh = . 
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Definition  } )()(0  : ,0 ,0  |  )( {))(( 00 ncgnfnnncnfngo <≤≥∀>∃>∀= .  We say that )(ng  is a 

strict Asymptotic upper bound for )(nf  and write ))(()( ngonf =  as before.   
 

Lemma   ))(()( ngonf =  if and only if 0
)(

)(
lim =

∞→ ng

nf
n

. 

Proof:  Observe that ))(()( ngonf =  if and only if c
ng

nf
nnnc <≤≥∀>∃>∀

)(

)(
0  : ,0 ,0 00 , which is the 

very definition of the limit statement 0
)(

)(
lim =

∞→ ng

nf
n

.                                                                     ///   

 

Example  )()lg( non =  since 0
)lg(

lim =
∞→ n

n
n

.  (Apply l’Hopitals rule.) 

 

Example  )( nk bon =  for any 0>k  and 1>b  since 0lim =
∞→ n

k

n b

n
.  (Apply l’Hopitals rule � �k  times.)  In 

other words, any exponential grows strictly faster than any polynomial. 
 
By comparing definitions of ))(( ngo  and ))(( ngO one sees immediately that ))(())(( ngOngo ⊆ .  
Also no function can belong to both ))(( ngo  and ))(( ngΩ , as is easily verified (exercise).  Thus 

∅=Ω∩ ))(())(( ngngo , and therefore ))(())(())(( ngngOngo Θ−⊆ .   
 
Definition  } )()(0  : ,0 ,0  |  )( {))(( 00 nfncgnnncnfng <≤≥∀>∃>∀=ω .  Here we say that )(ng  is 

a strict asymptotic lower bound for )(nf  and write ))(()( ngnf ω= . 
 

Exercise   Prove that ))(()( ngnf ω=  if and only if ∞=
∞→ )(

)(
lim

ng

nf
n

. 

 
Exercise   Prove ∅=∩ ))(())(( ngOngω , whence ))(())(())(( ngngng Θ−Ω⊆ω .   
 
The following picture emerges: 
 
 
 
                                                 ))(( ngO                          ))(( ngΩ  
 
 
 
                                       ))(( ngo                 ))(( ngΘ               ))(( ngω  
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Lemma  If L
ng

nf
n

=
∞→ )(

)(
lim , where ∞<≤ L0 , then ))(()( ngOnf = . 

Proof:  The definition of the above limit is εε <−≥∀>∃>∀ L
ng

nf
nnn

)(

)(
  : ,0 ,0 00 .  Thus if we let 

1=ε , there exists a positive number 0n  such that for all 0nn ≥ : 

   1
)(

)( <− L
ng

nf
 

∴     1
)(

)(
1 <−<− L

ng

nf
 

∴             1
)(

)( +< L
ng

nf
 

∴      )()1()( ngLnf ⋅+< . 
 
Now take 1+= Lc  in the definition of O , so that ))(()( ngOnf =  as claimed.                               ///   
 

Lemma  If L
ng

nf
n

=
∞→ )(

)(
lim , where ∞≤< L0 , then ))(()( ngnf Ω= . 

Proof:  The limit statement implies L
nf

ng
n

′=
∞→ )(

)(
lim , where LL /1=′  and hence ∞<′≤ L0 .  By the 

previous lemma ))(()( nfOng = , and therefore ))(()( ngnf Ω= .                                                     ///   
 

Exercise  Prove that if L
ng

nf
n

=
∞→ )(

)(
lim , where ∞<< L0 , then ))(()( ngnf Θ= . 

 
Although ))(( ngo , ))(( ngω , and a certain subset of ))(( ngΘ  are characterized by limits, the full sets 

))(( ngO , ))(( ngΩ , and ))(( ngΘ  have no such characterization as the following examples show. 
 
Example A  Let nng =)(  and nnnf ⋅+= ))sin(1()( . 
                                                                                                             )(2 ng  
 
 
                                                                                                                )(nf  
 
 
 
 
 
 

Clearly ))(()( ngOnf = , but )sin(1
)(

)(
n

ng

nf += , whose limit does not exist.  This example shows that 

the containment ))(())(())(( ngngOngo Θ−⊆  is in general strict since ))(()( ngnf Ω≠  (exercise).  
Therefore ))(()( ngnf Θ≠ , so that ))(())(()( ngngOnf Θ−∈ .  But ))(()( ngonf ≠  since the limit does 
not exist. 
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Example B  Let nng =)(  and nnnf ⋅+= ))sin(2()( .   
                                                                                                              )(3 ng  
 
 
                                                                                                              )(nf  
 
 
                                                                                                              )(ng  
 
 
 
 

Since nnnn 3))sin(2( ≤⋅+≤  for all 0≥n , we have ))(()( ngnf Θ= , but )sin(2
)(

)(
n

ng

nf +=  whose 

limit does not exist. 
 

Exercise  Find functions )(nf  and )(ng  such that ))(())(()( ngngnf Θ−Ω∈ , but 
)(

)(
lim

ng

nf
n ∞→

 does not 

exist (even in the sense of being infinite), so that ))(()( ngnf ω≠ . 
 
 
The preceding limit theorems and counter-examples can be summarized in the following diagram.  

Here L denotes the limit 
)(

)(
lim

ng

nf
L

n ∞→
= , if it exists. 

 
 
                                                  ))(( ngO                            ))(( ngΩ  
                                                                      ))(( ngΘ  
 
                                     ))(( ngo                                                      ))(( ngω  
                                       0=L                       ∞<< L0                   ∞=L  
 
 
 
                                                   Ex A              Ex B 
 
 
 
In spite of the above counter-examples, the preceding limit theorems are a very useful tool for 
establishing asymptotic comparisons between functions.  For instance recall the earlier exercise to 
show )()( bb nan Θ=+  for real numbers a, and b with 0>b .  The result follows immediately from 

111lim
)(

lim ==�
�

�
�
�

	 +=+
∞→∞→

b
b

nb

b

n n

a

n

an
, 

since ∞<<10 . 
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Exercise  Use limits to prove the following: 
a. )()lg( 2nonn =  (here )lg(n  denotes the base 2 logarithm of n.) 

b. )(2 105 nn n ω= . 

c. If )(nP  is a polynomial of degree 0≥k , then )()( knnP Θ= . 
d. ))(())(()( nfnfonf Θ=+ .  (One can always disregard lower order terms) 

e. )()(log εnon k =  for any 0>k  and 0>ε .  (Polynomials grow faster than logs.) 

f. )( nbon =ε  for any 0>ε  and 1>b .  (Exponentials grow faster than polynomials.) 
 
There is an analogy between the asymptotic comparison of functions )(nf  and )(ng , and the 
comparison of real numbers x and y. 
 

))(()( ngOnf =     ~    yx ≤  
))(()( ngnf Θ=     ~    yx =  
))(()( ngnf Ω=     ~    yx ≥  
))(()( ngonf =      ~    yx <  
))(()( ngnf ω=     ~    yx >  

 
Note however that this analogy is not exact since there exist pairs of functions which are not 
comparable, while any two real numbers are comparable.  (See problem 3-2c, p.58.) 


