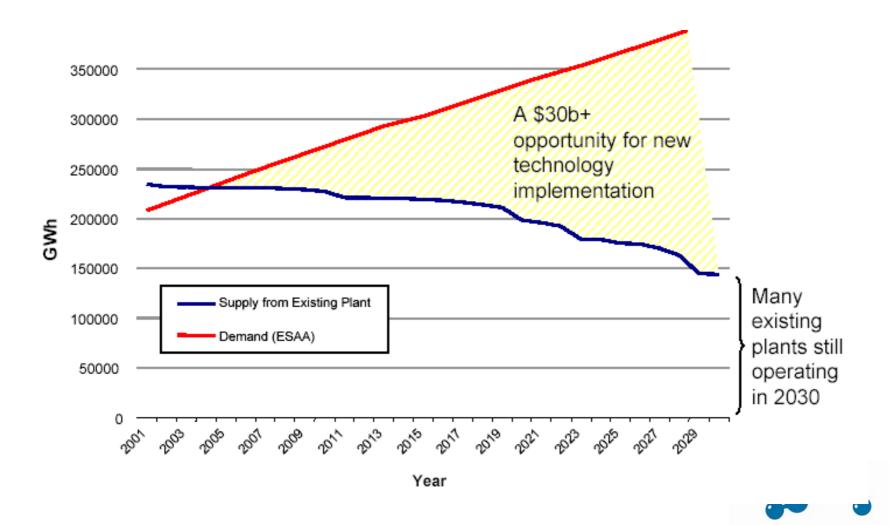
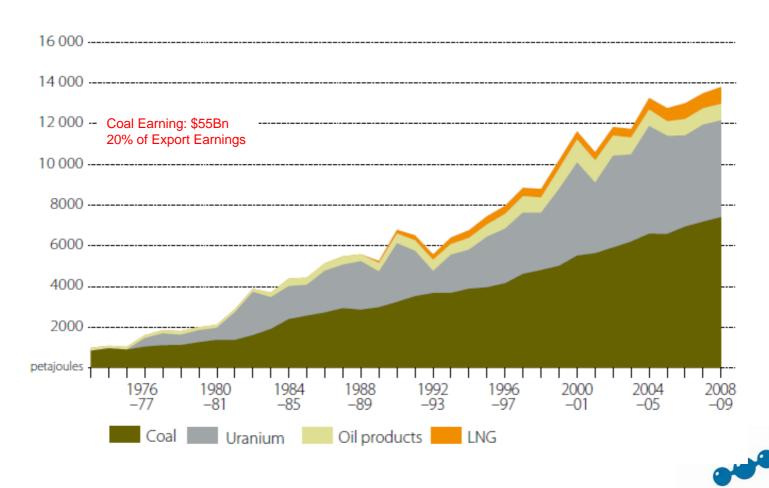

Australian National Low Emissions Coal R&D

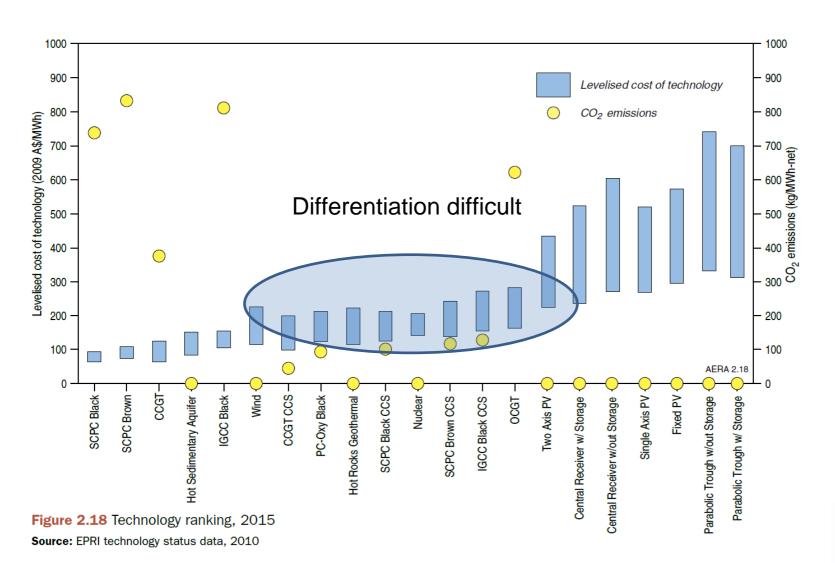
Dr Noel Simento


Australia- Japan Coal Technology Workshop March 2011

ANLEC R&D - Commenced Activities March 2010


Australian Electricity Supply & Demand

anlecr&d


Low Emissions from Coal to Support Australian Markets

Australian energy exports

Source: ABARE

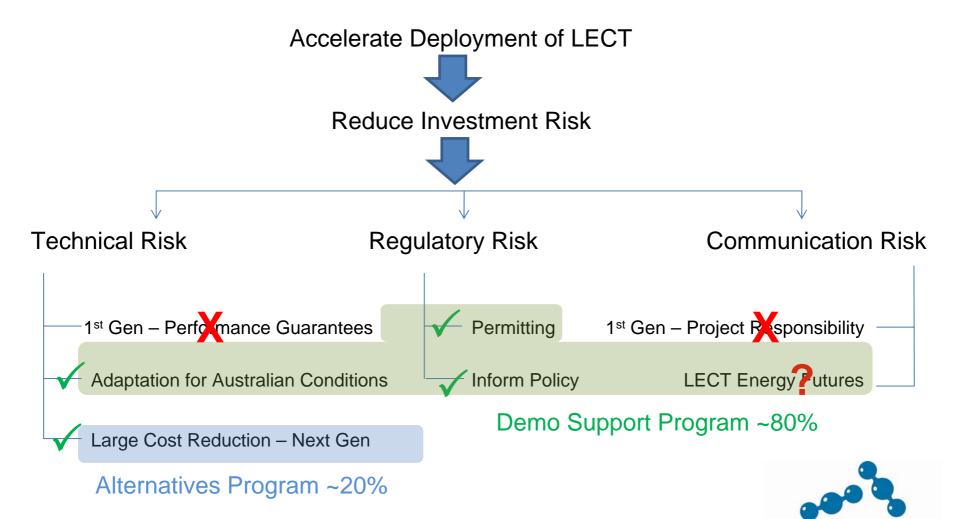
Relative Costs

Prospective Demonstration CCS Projects

Project	Technology	Partners	Details
Callide Oxy-fuel Project	Oxy-fuel	CS Energy, IHI, JPower, Mitsui, Schlumberger, Xstrata	www.callideoxyfuel.com
Wandoan Power/CTSCo	IGCC+CCS	Stanwell Corporation, GE Energy,Xstrata	www.wandoanpower.com.au
CarbonNet CO ₂ Hub	CO ₂ Storage	Department of Primary Industry, Victoria, HRL, TruEnergy, Loy Yang Power, Schlumberger, MHI, Southern Company	
South West Collie Hub	CO ₂ Storage	Dept of Mines and Petroleum, WA, Griffin Energy, Verve Energy, BHP Billiton Worsley Alumina, Wesfarmers Premier Coal, Perdaman Chemicals and Fertilisers, and Alcoa Australia	http://www.dmp.wa.gov.au/9525.aspx
Delta PCC	PCC+CCS	Delta Electricity, NSW	
ZeroGen*	IGCC+CCS	Zerogen Pty, MHI and others	http://www.zerogen.com.au/

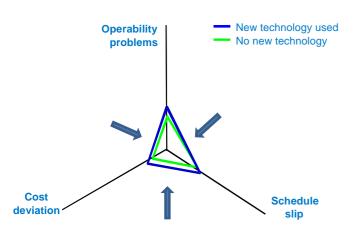
^{*}Project undergoing significant change

ANLEC R&D Objectives


- The near term risk reduction and technology developments necessary for successful demonstration of LECT in Australia.
- > Support for and investigation of issues affecting the performance of the early demonstration projects.
- The delivery of independently validated, data and knowledge to assist key stakeholders understand benefits and assess the real risks associated with the deployment of CCS in Australia.

Areas of Coal to Power Interest

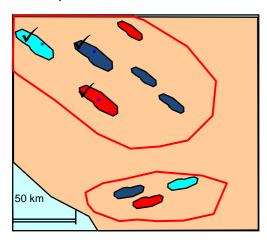
- ✓ Advanced Brown Coal Technologies
- ✓ Carbon Dioxide Transport and Storage
- ✓ Integrated Gasification Combined Cycle (IGCC)
- Oxy-Fuel Combustion
- ✓ Post Combustion Capture (PCC) of CO₂
- ✓ Techno-Economic Analyses for Low Emissions Energy from Coal



ANLEC R&D Objectives

Objectives - Surface

Reduce Project risk and increase likelihood of success


- Validation and Reporting of Performance
- •Bi-products and Emissions
- •Managing Variability In-line coal analysis
- Dynamic Simulation
 - IGCC Plant + Pipeline + Well Field + NEM
- Flow sheet modelling
- Supplementary Fuel
- Community Engagement
- Water usage efficiency
- Options for low S coal
- Catalyst Optimisation
- Materials
- CO2 System Optimisation
- CO2 dispersion modelling

Important to integrate Knowledge Transfer and R&D into Demo program

Objectives - Subsurface

Reduce Project risk, provide independently verified tools and procedures

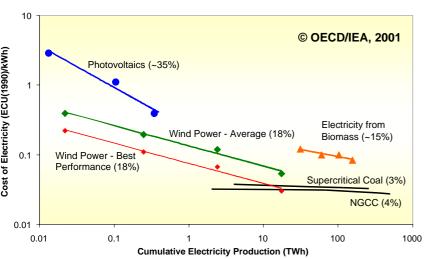
Viable Options

- Storage Capacity Estimation
 - Measurement and estimation
 - Resource conflicts
 - A best practice "how to"
- Fate of CO2 in the Ground
 - Trapping mechanisms
 - Leakage studies
- Monitoring, Measurement & Verification
 - 'fit for purpose' and not 'over the top' MMV

Environmental Permitting

Environmental impacts of amine based CO₂ PCC processes

Objective: Provide detailed assessment of the nature of degradation products from liquid absorbents for PCC


- Develop mass balance and life cycle analysis of candidate liquid absorbents when used in PCC
- Determine the fate of PCC emissions into the atmosphere
- Develop a protocol for evaluation of liquid absorbents for use in PCC
- Carry out analysis of legislative, regulatory and permitting requirements for the use of PCC in Australian power stations

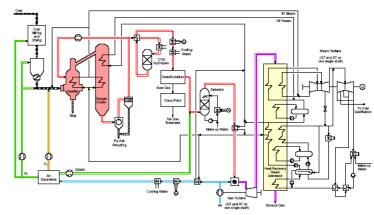
Mitigation of resource conflicts for CO₂ storage

- Objective: To identify the potential impacts of carbon storage on water, and other resources at each of the four flagship CCS sites
- Provision of baseline information and analyses is a critical step in identification and mitigation of risk.
- Determines the extent of required site characterization, and input to the appropriate design of monitoring and verification of CO₂ storage
- Outcome of the study:
 - identification of all important conflicting resources for CO₂ storage
 - compilation of existing water level and water chemistry data and
 - a comprehensive monitoring program for detection of changes in groundwater levels and chemistry for each site.

COST REDUCTION

Low cost hybrid capture technology development

Objective: Test the cost reduction potential of a hybrid process (adsorption + solvent scrubbing)


- Will investigate the use of low energy adsorption for initial enrichment
- Removal of contaminants can be integrated into the adsorption process to prevent downstream issues with solvent scrubbing
- The effect of operating variables such as enrichment on power requirements of both stages is unknown
- Examination of hybrid capture processes is still in its infancy

Precipitating Systems for Solvent CO2 Capture

Objective: Uses super saturation conditions to reexamine effectiveness of CO₂ capture with carbonate solvents

- Preliminary assessment suggests there would be many benefits thermodynamically if the system were allowed to form a precipitate
- Potential 25% reduction in energy requirement available
- Degradation effects of NOx and SOx to be determined

ADAPTATION for AUSTRALIA

Metal foam heat exchange for dry cooling

- Objective: Tests for "step-reduction" opportunities for water demand reduction to the IGCC process
- Addresses alternative to finned-tubes with a class of porous materials called metal foams
- Initial with forced air systems, but metal foams also potentially open the way for dry natural draft cooling towers
- Air heat exchangers will be a reality in the IGCC configurations and requires examination for improved efficiency

IGCC Solids disposal and utilisation

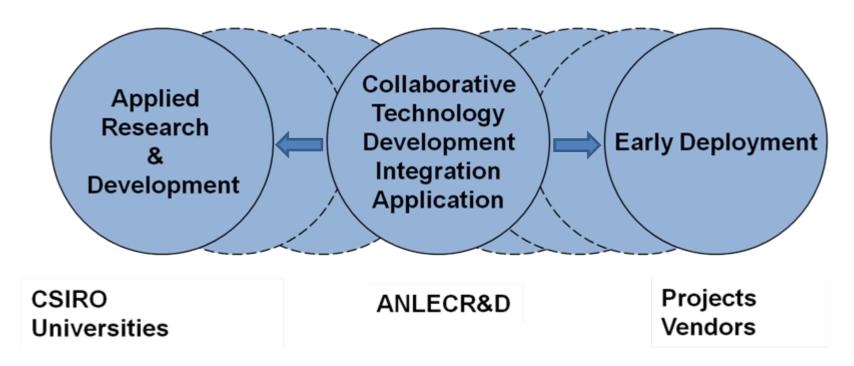
Objective: To understand the important issues that may impact on solid by-product utilisation or disposal

- Reviews legislation and regulations relevant to handling, storage, utilisation, and disposal of IGCC by-products
- Laboratory-based program where existing samples will be assessed to identify issues that may impact on solid by-product utilisation or disposal
- Planning for demonstration relevant sample acquisition schedule if required

Storage –OTWAY Stage 2

Objectives: To complete investigating residual saturation processes using the Huff-n-Puff (inject/soak/back-produce) CO2 injection testing method.

To demonstrate that injection in an unconfined aquifer is safe and can be monitored reliably, CO2 is residually trapped


Otway stage 2B/2C one of the few opportunities to get real data

- Reduce uncertainties in accessing potential storage sites thus expediting demonstration project development cycle
- Allow demonstration projects to perform exploration and appraisal programs
- Increase the overall body of knowledge of key issues facing CO2 injection in saline aquifers
- Understand injection effects in saline aquifers

Conclusions

- ➤ Very important for ANLEC R&D to execute a needs driven R&D program to assist demonstration projects
 - to link with national / international R&D programs
 - to engage Demos and Vendors
 - to use the best researcher for the task
- ➤ Building a flexible R&D program that can respond to changing circumstances

ANLEC R&D Role

- Adapt and apply for Australian conditions
- Strong focus on advancing the near term deployment of CCS
- Strong support for an open transparent process for selecting needs-driven R&D, which supports
 first-of-a-kind demonstrations

Thank you

Dr. Noel Simento Acting Managing DirectorPO Box 536, Civic Square, ACT 2608, Australia
T +61 2 6175 6400 | E noel.simento@anlecrd.com.au

