
Master thesis

Describing Live programming using program

transformations and a callstack explicit interpreter

by

Olov Johansson

LITH-IDA-EX--06/045--SE

Supervisor : Tobias Nurmiranta

Dept. of Computer and Information Science
at Linköping University

Examiner : Anders Haraldsson, Associate professor

Dept. of Computer and Information Science
at Linköping University

Abstract

A formalization of how to apply incremental modifications to a running
program while deterministically preserving state is presented. These are
described using source code transformations converted to abstract syntax
tree and callstack transformations. A rationale for why dynamically typed
languages benefit most from the concept is given, as are explanations to
the selected programming language and implementation using an explicit
callstack.

Keywords : live programming, incremental, program transformations,
explicit callstack, dynamic programming language, interpreted, javascript

iii

iv

Acknowledgements

Thanks to my examiner Anders Haraldsson and my supervisor Tobias Nur-
miranta for being positive and encouraging, for interesting and helpful dis-
cussions and for letting me hack and write away.

Thanks to Brendan Eich and the Mozilla organization for writing fine
software and releasing it as free software for others to build their work on.

v

vi

Contents

1 Introduction 1

1.1 Background . 1
1.2 Purpose . 2
1.3 Typographic conventions . 3
1.4 Report and source code availability 4
1.5 Structure . 4

2 Live programming justified 5

2.1 Type information as programmer aid 5
2.2 Identifier verification as programmer aid 6
2.3 REPL as programmer aid 7
2.4 Debugging is a two way process 8
2.5 Three mantras . 8
2.6 Levelling up tests and design by contract 10
2.7 Delivering via Live programming 10
2.8 How to deliver it . 12
2.9 Proof of concept prototype 13

3 JavaScript 17

3.1 Syntax . 17
3.2 Logical operators . 18
3.3 Definitions . 18
3.4 Scoping . 18
3.5 Dynamic (and weak) type 20

vii

viii CONTENTS

3.6 Closures . 20
3.7 Prototype-based object model 21
3.8 Arrays . 23

4 JavaScript interpreter implementation 25

4.1 Parser . 25
4.1.1 AST structure . 26

4.2 Evaluator . 27
4.2.1 Implicit callstack . 27
4.2.2 Explicit callstack . 31
4.2.3 Reference and value arguments 35
4.2.4 Function and constructor calls 36

4.3 Active/passive terminology 37
4.3.1 Source code correspondence 39

5 Source code transformations 41

5.1 Insertions . 41
5.1.1 Insertion into an active block sequence 42
5.1.2 Insertion into an active comma sequence 42
5.1.3 Insertion into an active variable declaration sequence 43
5.1.4 Insertion into an active array initializer 43
5.1.5 Insertion into an active object initializer 44
5.1.6 Insertion into an active arguments list 44
5.1.7 Insertion into a parameter list of an active function . 44

5.2 Deletions . 45
5.3 Replace . 45

5.3.1 Replace an active statement or expression 46
5.3.2 Compatible replace 47
5.3.3 Replace a passive statement or expression 47

5.4 Expand . 48
5.4.1 Expand an active statement or expression 48
5.4.2 Expand a passive statement or expression 50

5.5 Reduce . 51
5.5.1 Reduce an active statement or expression 51
5.5.2 Reduce a passive statement or expression 52

5.6 Swap . 52

CONTENTS ix

5.6.1 Swap active statements or expressions 52
5.6.2 Swap passive statements or expressions 54

5.7 Updating scope . 54

6 AST and callstack transformations 57

6.1 Insertions . 58
6.1.1 Insertion into an active sequence 58
6.1.2 Insertion into an active array initializer 59
6.1.3 Insertion into a parameter list of an active function . 61

6.2 Deletions . 61
6.3 Replace . 62
6.4 Expand . 63
6.5 Reduce . 65
6.6 Swap . 66

7 Related work 69

7.1 Stackless Python . 69
7.2 The “Lisp machines” . 70
7.3 Smalltalk . 70
7.4 Visual Studio 2005 . 70

8 Discussion 73

8.1 The prototype environment 74
8.2 Future work . 75

A Sample Live programming session 77

B AST for GCD program 83

Bibliography 91

x CONTENTS

Chapter 1

Introduction

1.1 Background

Traditional integrated development environments have often been centered
around either the “Edit, Compile and Run” cycle or the “Read-Eval-Print
Loop”. Debuggers have become very powerful and are often integrated in
the same interface as the editor, yet the “Edit, Compile and Run” cycle re-
mains. The need to repeatedly quit running/debugging, modify the source
code, re-compile and run/debug again has been deeply rooted as some kind
of prerequisite, partly because the toolset tend to be separated, partly be-
cause it’s often described that way in literature and perhaps partly because
it is, indeed, needed.

There are many drawbacks of having to quit the running program for re-
compiling, as opposed to the “just works” approach where modified textual
source code should result in an incrementally updated running program.
One is the loss of context – perhaps it’s not trivial to get the program into
the same state (due to expensive data collection or event programming, for
instance), another is loss of productivity due to lack of instant feedback.
Silly mistakes such as misspelled variable names or off-by-one loops are
easily detected with a good debugger but become extremely expensive to
correct if the program needs to quit, recompile and restart instead of“apply

1

2 1.2. Purpose

code changes and continue”.
But that’s just a scratch on the surface. Incremental modifications to

a running program could just as well be used the opposite way around by
applying in to the empty program and building up the solution from there
(instead of using it to fix bugs in incorrect problem solutions). An example
of such a session can be found in appendix A.

In order to support these modifications without a restart of the program
and without any unnecessary rollback of the program counter/position at
all, they must be expressed through transformations on the existing pro-
gram. A program is typically represented as machine code, bytecode or
an abstract syntax tree, together with a stack for intermediary values and
return addresses (the callstack, from now on). Creating a new program rep-
resentation (corresponding to the modified source code) and replacing the
old one is what causes program restart or rollback, thus the need for trans-
forming the existing program representation. Preferably as transparent as
possible to the programmer, who modifies/transforms textual source code.
A good development environment supporting this concept, “Live program-
ming”, should automatically convert those source code transformations to
transformations on the internal program representation.

1.2 Purpose

The goals of my work is to motivate and define the Live programming con-
cept a bit more precise than “modify running code and continue”, outline
what kind of typical source code transformations it implies, develop sup-
porting operations for those using AST (abstract syntax tree) and callstack
transformations and create a prototype implementation with a development
environment for proof of concept. The chosen transformations are covered
in this report, as are small parts of the source code (inserted throughout
the text when appropriate). Chapter 2 elaborates further on the Live pro-
gramming concept. This report presents the theoretical foundations for the
prototype implementation, the prototype itself is complementary to the re-
port and its source code is freely available, see section 1.4. A screenshot of
the prototype follows at the end of chapter 2.

I focus on dynamically typed (from now on: dynamic) languages that

Introduction 3

are interpreted using their AST representations. I will present some aids
Live programming brings to both dynamic and statically typed (from now
on: static) languages. The dynamic language chosen is JavaScript. The
evaluator part of the interpreter must permit modifications to its callstack,
an existing JavaScript interpreter is modified to facilitate this, see chapter
2 and 4 for more information.

1.3 Typographic conventions

All source code snippets are written using a monospaced font, so are parts
of the source code whenever it’s referenced in the text. Removed (as for
readability) text segments are indicated with A node of the abstract
syntax tree are referred to as <TYPE> and can relate to either all or a specific
instance of the type, depending on context.

AST’s are visualised in some examples. A node in the shape of an ellipse
indicates that no incoming or outgoing edges have been excluded, a house
shape (arrow upwards) indicates that incoming edges and ancestor nodes
have been excluded and an upside down house (arrow downwards) indicates
excluded outgoing edges and descendants. The type names are written in-
side the nodes, although not in all capital letters for increased readabil-
ity. In the example tree below ancestors to <RETURN> and descendants to
<CALL> are excluded, <PLUS> and <IDENTIFIER> are both complete.

Return

Plus

value

Identifier: a

0

Call

1

4 1.4. Report and source code availability

1.4 Report and source code availability

The full source code of the modified interpreter and the prototype environ-
ment implementing the program transformations, is available at
http://liveprogramming.org together with an electronic version of this re-
port. All source code are licensed under the free software licenses MPL1,
GPL2 and LGPL3, see the source code for more information. The inter-
preter is derived from Narcissus, written by Brendan Eich at Mozilla.

1.5 Structure

Chapter 2 elaborates on the Live programming concept, chapter 3 is a crash
course in the JavaScript language and can be skipped but should rather be
complemented with other material such as the recommended book. Chap-
ter 4 discusses the inner workings of the interpreter and necessary changes
to it, as well as some necessary terminology for the future chapters. Chap-
ter 5 and 6 define incremental modifications to a program from the users as
well as the language and environment implementers perspective. Related
work follows in chapter 7 and a concluding discussion (with future work)
in chapter 8. Appendix A describes a small Live programming session, ap-
pendix B has the source code and AST for an example program and can be
useful to quickly get an understanding of the AST structure. The reader
will likely benefit the most by reading from start to end, in order.

1http://www.mozilla.org/MPL/
2http://www.gnu.org/licenses/gpl.html
3http://www.gnu.org/licenses/lgpl.html

Chapter 2

Live programming
justified

This chapter elaborates on the Live programming concept by presenting
some aids and problems as well as reflecting on programming from an in-
cremental perspective. Live programming is defined via program transfor-
mations and the programming language to implement a prototype with is
chosen.

2.1 Type information as programmer aid

Static languages carry excessive (explicit or implicit) type information in
its source code so it’s natural to create an editor that take use of it to help
out the programmer. Most programmers expect to see an argumentlist
after typing the name of a function/method and left parentheses, as do
they expect to see a list of object properties/variables/methods once they
type the dereferencing operator on an object reference in the source code.
Most (static language) development environments provide these aids. The
editor has an integrated parser for the language to accommodate this.

There are limitations of how much information can be given about an
object in edit time while the program is not yet running, though. The

5

6 2.2. Identifier verification as programmer aid

type information for an object reference isn’t always the actual type, but
rather a base type higher up in the inheritance chain. More specialized
information for those can’t be determined until the program is actually
run.

For dynamic languages, this is unfortunately the common case. No
type information is available for references, at all. While built-in type
initializers such as 3, ’asdf’ or [’first-in-list’, 2] wear implicit type
information, it’s lost as soon as they are assigned to a reference. It’s as if all
references were typed as Object (or similar). One could use type inference
algorithms onto the full program source code to deduce type information,
while this would work on simple examples it would fail on many, example
follows. The type information for a reference (or rather, type information
for what it refers to) is thus only available at runtime.

function f() {

return ’asdf’;

}

z = f();

z.<display list of string methods here>

function g() {

return (switch = !switch) ? ’asdf’ : 101;

}

z = g();

z.<can’t display a list here>

2.2 Identifier verification as programmer aid

A feature of static languages are that they won’t compile code that includes
erroneous identifiers such as misspelled local variables or function/method
names. The typical interpreted dynamic language will indicate the error
in runtime, instead – less helpful for the programmer and much more time
consuming. Even worse, the erroneous code needs to actually execute which
means that all possible code paths may need to run to expose the error.

As for type information, some identifier verification is possible to do
at edit time for dynamic languages too, although it’s not very common.

Live programming justified 7

If the dynamic language is lexically scoped then it’s indeed possible to
determine what identifiers are visible at any position in the source code.
This cover local variable names and (possibly nested) function names, but
it doesn’t cover object properties (methods, member variables) since they
are typically allowed to be created/deleted ad hoc at runtime. The call
duck.quack() may execute properly the first time but not the second,
from the exact same spot in the source code, all depending on the dynamic
nature on the program (assuming that the duck object may be altered
in between). Verification of an object property is thus only possible at
runtime.

2.3 REPL as programmer aid

The Read-Eval-Print Loop is used in Lisp and Scheme systems perhaps
more than anywhere else. The typical arrangement is to have one “code
buffer” containing the source code of the program. The buffer can at any
time be re-evaluated, “sent to the interpreter”. Then there is the “eval
prompt”, into which the programmer can type code snippets, often calling
functions that has been defined in the code buffer. The code snippet gets
evaluated and the result is printed, thus the “Read-Eval-Print Loop”name.

This tend to bring a different style of programming where the program-
mer is encouraged to experiment its way into solving the problem instead
of knowing it beforehand. Functions are called and the result value are in-
spected by the programmer, who can then determine what to do next with
the returned value. The programming technique has an informal “result
driven” style to it.

Often the REPL belongs to the top-level of the program only but some-
times it can be spawned from inside a called function, enabling the pro-
grammer to inspect arguments or object properties and evaluate arbitrary
expressions in the current scope of the paused program.

8 2.4. Debugging is a two way process

2.4 Debugging is a two way process

A good debugger is a (the) power tool for any experienced programmer.
The debugger is most often used after a defect has been detected to pinpoint
a troublesome part of the code. Once it has been found, the debugger is
usually quit and the editor is entered once again, in the traditional Edit,
Compile and Debug/Run manner. Most debuggers give the programmer
tools to inspect and modify the current state of local variables and memory
(with no restart), few debuggers does the same to code modifications. This
can be especially frustrating for simple errors, such as wrong identifier
names or off-by-one comparisons. Adding features (integrated into the
debugger) to modify the current code as well as to add new in runtime
would be beneficial for many kinds of bug fixes.

2.5 Three mantras

These three mantras all attest to programming as a highly iterative process
of changes to a program.

“You aren’t going to need it”

The way YAGNI is usually described, it says that you shouldn’t
add any code today which will only be used by feature that is
needed tomorrow. On the face of it this sounds simple. The
issue comes with such things as frameworks, reusable compo-
nents, and flexible design. Such things are complicated to build.
You pay an extra up-front cost to build them, in the expectation
that you will gain back that cost later. This idea of building
flexibility up-front is seen as a key part of effective software
design.

However XP’s advice is that you not build flexible compo-
nents and frameworks for the first case that needs that func-
tionality. Let these structures grow as they are needed. If I
want a Money class today that handles addition but not multi-
plication then I build only addition into the Money class. Even

Live programming justified 9

if I’m sure I’ll need multiplication in the next iteration, and
understand how to do it easily, and think it’ll be really quick to
do, I’ll still leave it till that next iteration.

– Martin Fowler, “Is Design Dead?” [1]

“Do the simplest thing that could possibly work”

It was a question: ”Given what we’re trying to do now, what is
the simplest thing that could possibly work?” In other words,
let’s focus on the goal. The goal right now is to make this
routine do this thing. Let’s not worry about what somebody
reading the code tomorrow is going to think. Let’s not worry
about whether it’s efficient. Let’s not even worry about whether
it will work. Let’s just write the simplest thing that could
possibly work.

Once we had written it, we could look at it. And we’d say,
”Oh yeah, now we know what’s going on,” because the mere act
of writing it organized our thoughts. Maybe it worked. Maybe
it didn’t. Maybe we had to code some more. But we had
been blocked from making progress, and now we weren’t. We
had been thinking about too much at once, trying to achieve
too complicated a goal, trying to code it too well. Maybe we
had been trying to impress our friends with our knowledge of
computer science, whatever. But we decided to try whatever is
most simple: to write an if statement, return a constant, use a
linear search. We would just write it and see it work. We knew
that once it worked, we’d be in a better position to think of
what we really wanted.

– “A Conversation with Ward Cunningham, Part V” [2]

“Don’t repeat yourself”

Every piece of knowledge must have a single, unambiguous,
authoritative representation within a system. The alternative
is to have the same thing expressed in two or more places. If

10 2.6. Levelling up tests and design by contract

you change one, you have to remember to change the others, or,
like the alien computers, your program will be brought to its
knees by a contradiction. It isn’t a question on whether you’ll
remember: it’s a question of when you’ll forget.

– “The Pragmatic Programmers” [3]

2.6 Levelling up tests and design by contract

Tests are used to verify functionality in a code unit, bigger module or full
system. The Extreme Programming [4] crew, led by authorities such as
Kent Beck, have been very pushing in formalizing tests1 into code so that
the tests can be reproduced and continuously executed to detect regressions
as soon as possible. XP takes this as far as “design tests first”. But then
what, when the tests are run on the empty program? Instead of just using
the tests to print out a “success” or “error” for each test case and then be
done with it (evolving into the Edit, Compile and Run/Debug/Test cycle),
the test could be aiding the programmer to implement to code faster, and
better. The test is a program in itself, the programmer should be able
to modify his code while the test suite is still running (it’s down on the
callstack, somewhere), that’s “Test driven programming” for you.

The same applies to Design by Contract [3], a technique developed by
Bertrand Meyer for the language Eiffel. The preconditions, postconditions
and class invariants of DBC are verified at the entry and exit of a function,
if they are not met an error is indicated, often raising an exception.

2.7 Delivering via Live programming

My stand is that to deliver these aids, as good as possible, the programmer
needs to be given the appropriate tools to move parts of the programming
from edit time to runtime. There are two extremes, one is doing only very
small changes at runtime, the other is starting out with nothing and writing
the whole program in runtime. The highest productivity (depending on

1make no mistake, XP has accomplished a lot more besides pushing tests

Live programming justified 11

the programmer) should be somewhere between the two. Either way, Live
programming should be about bringing the means without enforcing use of
it.

This means integrating the editor and debugger into one. All the usual
functions of an debugger are available but at any time the programmer
can choose to modify the source code, either by adding new functions and
modifying function that’s not active on the callstack, or by modifying code
that is actually running (but paused).

Looking into Smalltalk, much of this has been done and many Smalltalk
programmers swear by it. Smalltalk environments are very much focused on
incrementally extending the program by adding new objects and methods.
Code can be replaced, in the Smalltalk case any method can be modified.
The problem, however, is that upon doing this the callstack (and thus
the active program position) will rollback to the first call of the modified
method, at least that was my experience of the popular open source Squeak
[5] implementation.

Visual Studio on the other hand is the complete opposite to Squeak
regarding modifying active programs. Visual Studio was one of the first
C++ development environment (that I am aware of, at least) to support
the “edit and continue” operation, which is very handy for fixing small
faults (such as off-by-one errors) but limited to such small changes. Visual
Studio 2005 was released in November 2005 and recently brought to my
attention. I was impressed with the improved edit and continue support
they implemented in it, it’s complete in some ways such as it transforms
the callstack correctly, sadly it has severe limitations such as its inability
to transform expressions and that new functions can’t be defined without
restarting.

Live programming delivers:

Reflecting on the previous sections Live programming can help a dynamic
language with:

• Type information – the debugger can help with inspecting types and
values, so can the editor since they are integrated into one. The
reference to inspect just needs to be into scope somewhere on the

12 2.8. How to deliver it

callstack.

• Identifier verification – if the lexical scope of the identifier is active
then it’s possible to tell whether it’s defined or not. As for object
properties the only way to really tell is by evaluating it, which can
be done by adding the code and stepping into it.

• REPL – there is no reason not to bring an eval window to the pro-
grammer as a complement to the source window.

• Debugging – it is a two way process, indeed, and by providing means
of actually fixing the defects, with no restart and no rollback, the
programmer gains productivity.

• Three mantras – they boil down to advocating an iterative (often
incremental) process of programming. “You aren’t going to need it”
highlights the importance of resisting the temptation of doing too
much when you know too little – instead work yourself from inside the
problem and out, adding features. “Do the simplest thing that could
possibly work” is about solving the mental vacuum of staring into the
problem by doing something, perhaps just to learn that it was wrong,
still it was something (REPL is helpful here as well, encouraging the
programmer to look at part solutions). “Don’t repeat yourself” (XP
has a similar “Once and only once”) need support for refactoring in
the form of breaking out a piece of code into a separate function, for
instance.

2.8 How to deliver it

Live programming is code transformation

Live programming: Modifying source code for an active pro-
gram through well defined transformations, while retaining and
updating the callstack in a sane manner.

Parsing a textfile or source code and then starting evaluating it is nothing
new, neither is attaching debugging functionality for stepping, breakpoints

Live programming justified 13

and variable inspection. The tricky part comes when the programmer mod-
ifies the source code. The modifications made to the source code must be
detected and “injected” into the program, the environment should just do
“the right thing” (the programmer is certainly confident in what the mod-
ifications meant, so there is in most cases a right thing to do). If the
programmer inserted a new statement just after the current evaluating one
inside of a function, the wrong thing to do would be to restart the func-
tion from the beginning (or even worse, quit the program), the right thing
would be to finish evaluating the current statement and proceed with the
inserted one, as if it would have been there to start with. If the program
crashes on a misspelled identifier the right thing to do is to let the pro-
grammer change that identifier and continue (keeping the current program
position). Similarly, a crash due to a call to an undefined function should
be able to resolve by defining the function and continuing.

The key problem is that the running program needs to be transformed
into the new version, it can’t simply be replaced. I am confident that
these transformations are possible for a compiled program as well as an
interpreted one, but I do believe it’s easier for interpreted ones. I set-
tled on creating a prototype implementation of a dynamic programming
language interpreter for proof of concept. The interpreter works directly
on an AST using an explicit (modifiable) callstack. Mapping source code
transformations into changes on the running program thus comes down to
transforming the AST and transforming the callstack.

2.9 Proof of concept prototype

I wanted to use an existing programming language specification rather than
creating a new one. I chose JavaScript, partly because it’s a quite small
language, commonly used and because there are multiple FLOSS2 imple-
mentations available. It’s syntactically and semantically neither trivial as
Lisp, Scheme or Smalltalk3, nor as complex as Perl, Python or Ruby. It
is object oriented but with a prototype based object model instead of a
class based, saving syntax by instead implementing object oriented fea-

2Free/Libre and Open Source Software
3considering everything is done with messages

14 2.9. Proof of concept prototype

tures through the normal constructions of the language. The prototype
based object model originate from the programming language Self [6].

Among the JavaScript implementations are SpiderMonkey (implemented
in C), Rhino (implemented in Java), Narcissus (implemented in JavaScript
itself) and KJS (implemented in C++), the first three of which are cre-
ated by the Mozilla organization, KJS are created by the KDE project for
their web browser Konqueror (and later adopted by Apple for their spinoff,
Safari). SpiderMonkey is a high performance implementation running in-
side every Firefox browser, Rhino is object oriented in its design and more
structured and Narcissus is very elegant although very slow. Narcissus is
meta circular and borrows much of its functionality (for objects and arrays,
for instance) from the underlying JavaScript host, that’s how it can con-
sist of only approximately 2000 lines of code, evenly divided between the
parser and evaluator. Narcissus is written by Brendan Eich, the inventor
of JavaScript and also the author of SpiderMonkey.

I chose Narcissus as a base for my work since the parser should be almost
the same and the evaluator could be similar in style, although needing a
rewrite for an explicit callstack. Using a JavaScript evaluator written in
JavaScript itself meant that I could run it inside a web browser, giving free
access to all the available GUI web elements there. A screenshot of the
prototype running inside Firefox follows.

Live programming justified 15

16 2.9. Proof of concept prototype

Chapter 3

JavaScript

JavaScript is a dynamically typed, lexically scoped programming language.
Numerous books have been written about the JavaScript language, most
of which are mainly targeting web designers. Stating that one book is
better than another, or that one book is especially poorly written in a
technical and/or educational way is highly subjective and perhaps of little
academic value. I suffice to say that I only found one book “good enough”
– namely JavaScript: The Definitive Guide [7]. Among other books I read
were Dynamic HTML: The Definitive Reference [8] and JavaScript Bible
[9]. The ECMAScript specification is freely available on the web [10] but
can’t be recommended to anyone except JavaScript language implementers.

I recommend the reader to borrow the nearest copy of JavaScript the
Definitive Guide to get up to speed with JavaScript, most of the book is a
reference for web programming and can be skipped for the non-interested
reader. I will give a very brief description of the language here.

3.1 Syntax

JavaScript has a very C-like syntax, The C Programming Language [11]
(commonly called K&R C) is a great introduction for the reader who is
unfamiliar with it.

17

18 3.2. Logical operators

3.2 Logical operators

In C, the short-circuiting logical operators && and || return 0 or 1, in
JavaScript they return the value of the evaluated left or right operand. The
&& operator returns the left operand if it evaluates to false, undefined,
null, 0 or the empty string "", otherwise the evaluated right operand. The
|| operator returns the left operand if it evaluates to non-false, otherwise
the evaluated right operand. This makes some expressions shorter to write
(the alternative would be an temporary assignment followed by an if or
?:).

return o && o.f();

var v = keywords[id] || IDENTIFIER;

3.3 Definitions

Variables are defined with the var statement:

var x; // defaults to undefined

var y=square(3), z; // initializer expressions are optional

const pi=3.14142; // constants can’t be reassigned

Functions can be defined in three ways:

function double1(x) { // named function

return x*2;

}

var double2 = function(x) { // anonymous function, ‘‘lambda’’

return x*2;

}

// eval-calling Function object

var double3 = new Function(’x’, ’return x*2’);

3.4 Scoping

JavaScript is lexically scoped (as opposed to dynamically scoped) but has
function local scope as opposed to block local scope, meaning that any

JavaScript 19

variable defined inside a function (no matter in what sub-block of the func-
tion the definition resides in) will become visible from anywhere inside that
function. A side effect of this is that a variable can’t be shadowed unless
it’s defined once again in a nested function.

function f(x) {

if (true) {

var x = 23; // not shadowed but initializer is run

}

function g() {

var x = 42; // old x shadowed

}

g();

return x; // returns 23, always

}

The rules for how variables and function names are created and initialized
into scope is as follows: First, when a function call is made, as many of the
functions parameters as possible are assigned to the callers arguments. If
there are less arguments than parameters, the rest are assigned to unde-

fined. Second, all the names of the inner named functions are assigned to
those functions. Last, all local variables are assigned to undefined. The
initializers (if any) for those local variables aren’t evaluated until the var

or const statements are entered inside the function. An example follows.

function f(x) {

function printvars() {

print(x + ’ ’ + y + ’ ’ + z + ’ ’ + g());

}

printvars(); // prints ’arg undefined undefined inner’

if (true) {

var y = ’local’;

}

var z;

printvars(); // prints ’arg local undefined inner’

function g() {

return ’inner’;

20 3.5. Dynamic (and weak) type

}

z = ’local2’;

printvars(); // prints ’arg local local2 inner’

}

f(’arg’);

3.5 Dynamic (and weak) type

JavaScript is dynamically and weakly typed:

function addone(x) {

return x+1;

}

var a = addone(42); // a = 43

var b = addone(’42’); // b = 421

Like Scheme, JavaScript evaluates left-sides of function calls:

function f(x) { .. }

function g(x) { .. }

(a ? f : g)(x);

3.6 Closures

JavaScript has proper closures, the typical bank account example from
Structure and Interpretation of Computer Programs [12] translated into
JavaScript from Scheme looks like:

function make_account(balance) {

function withdraw(amount) {

if (balance >= amount)

return balance -= amount;

else

return ’Insufficient funds’;

}

function deposit(amount) {

return balance += amount;

JavaScript 21

}

return function(m) {

if (m == ’withdraw’)

return withdraw;

else if (m == ’deposit’)

return deposit;

else

throw ’Unknown request -- make_account’;

}

}

The function make_account() can be used as follows, where each call to
acc or acc2 returns the locally defined deposit() or withdraw() function,
which is then applied to the specified amount. Each call to make_account()
will produce a completely separate account “object”, which maintains its
own local balance.

var acc = make_account(100), acc2 = make_account(500);

acc(’withdraw’)(30); // returns: 70

acc2(’deposit’)(130); // returns: 630

acc(’deposit’)(130); // returns: 200

acc2(’withdraw’)(700); // returns: ’Insufficient funds’

3.7 Prototype-based object model

An object is created with the new operator or an object initializer. The
object is a hashtable where the key is called a property, in JavaScript
terminology.

var o = new Object();

o.key1 = ’one’; // identifier key indexing

o[’key2’] = 2; // string key indexing

var o2 = {key1: ’one’, key2: 2}; // object initializer

Any valid expression can be assigned to an object property, just like any
other variable. Specifically, functions (any of the three forms) can be as-
signed. When a function reference is accessed from an object using the .

22 3.7. Prototype-based object model

(dot) or [] (brackets) operator and then directly called, the special variable
this will become bound to that specific object.

function doubleUp() {

this.val *= 2;

}

var o = {val: 10};

o.doub = doubleUp;

var o2 = {val: 12};

o2.doub = doubleUp;

o.doub(); // o.val becomes 20

o2.doub(); // o.val becomes 24

o[’doub’](); // o.val becomes 40

If an undefined property of an object is accessed and the prototype prop-
erty refers to another object, then the lookup will continue in that object
instead, continuing with that objects prototype until the key has been
found or prototype is null.

The new operator allocates an object and calls a function, inside which
the variable this gets bound to the allocated object. The prototype prop-
erty of the created object is assigned the value of the prototype property
for that function. The functions that are called through new are commonly
called constructor functions, since they tend to initialize an object. The
default Object() constructor function does nothing.

The translation of the closure based make_account() into a version
using native JavaScript object functionality follows, where Account() is
the constructor function (JavaScript lacks classes).

function Account(balance) {

this.balance = balance;

}

Account.prototype.withdraw = function(amount) {

if (this.balance >= amount)

return this.balance -= amount;

else

return "Insufficient funds";

JavaScript 23

}

Account.prototype.deposit = function(amount) {

return this.balance += amount;

}

var acc = new Account(100), acc2 = new Account(500);

acc.withdraw(30); // returns: 70

acc2.deposit(130); // returns: 630

acc.deposit(130); // returns: 200

acc2.withdraw(700); // returns: ’Insufficient funds’

3.8 Arrays

Arrays are heavily used in JavaScript code, an array is also an object, thus
properties apart from indices can be used as well. Arrays have the property
length.

var a = new Array(); // optional initial size argument, default 0

a[0] = ’test’; // grows as necessary

a[2] = 101;

a = [’test’, undefined, 101]; // array initializer

24 3.8. Arrays

Chapter 4

JavaScript interpreter
implementation

This chapter describes the Narcissus JavaScript interpreter which is written
in JavaScript itself. The structure of the abstract syntax tree produced by
the parser along with the made modifications are described and motivated,
as is the rewritten evaluator. The evaluator was originally written in an
implicit callstack style which made (immediate) callstack transformations
impossible, thus the rewrite to an explicit callstack.

4.1 Parser

The parser is written in the common recursive descent [13] style, consuming
tokens (created from a stream of characters by the scanner) and yielding
nodes resulting in an abstract syntax tree (AST). Sometimes one distin-
guishes between parse trees and AST’s, where the former is more decorated
than necessary while the latter is minimal. Two examples from Narcissus
are groups (parentheses in expressions, used for overriding operator prece-
dence) and semicolons (used to terminate expressions and turn them into
statements, grammatically). Neither of these are normally of value for
evaluating a tree (abstract or not) however Narcissus keeps them in the

25

26 4.1. Parser

AST. Since a richer AST should be easier to map onto (and update from)
modified source code, this might be beneficial.

4.1.1 AST structure

The AST is made up by a series of nested JavaScript objects (each node
being one distinct JavaScript object). Each node is augmented with type
and corresponding source code (indices and tokenizer reference) as well as
type specific information and references to its children, if any.

Consider the small greatest common divisor program that follows below,
with its corresponding AST in JavaScript object notation and graphical
visualization found in Appendix B. The AST has been stripped from some
information for readability. Note that the AST has sufficient information
to be able to recreate the source code in text format (apart from whitespace
and comments) via deparsing, if so necessary. To facilitate bringing local
variables and functions in scope, each <SCRIPT> node has a funDecls and
varDecls property which are simply lists of references to all declarations
inside the <SCRIPT>, where each function has a <SCRIPT> node as body
(think of the obligatory curly braces for functions as being the <SCRIPT>)
and the main program in itself being a <SCRIPT> too. The example shows
that the top <SCRIPT> node has a and divisor as varDecls and gcd as
funDecls. Note that the declarations can be on any block level (as for
inside if-statements and such), it’s only the parent function (if any) that
matters. The function gcd() has no local variables or functions aside from
the parameters, which can be found in the params list.

I extended Narcissus’ parser giving all nodes two more properties: par-
ent and parentprop. The first being a reference to the parent node and the
second indicating from which property (such as: ’body’, ’expression’,
’0’ and ’1’) in the parent the node is referenced. Thus, for any1 node in
a valid AST node.parent[node.parentprop] equals node. The effect of
this is that the AST can be conveniently traversed upwards and a node can
easily link itself out of the AST.

1the exception being the root node, whose parent is null

JavaScript interpreter implementation 27

GCD source code

function gcd(i,j) {

while (i!=j) {

if (i > j)

i = i-j;

else

j -= i; // note the AST difference compared to j = j-i

}

return i;

}

var a = 9, divisor;

println(divisor = gcd(a,12));

4.2 Evaluator

4.2.1 Implicit callstack

The core of the Narcissus evaluator is the execute() function, which ba-
sically is a switch-case for the different AST node types. The evaluation
proceeds by further recursive calls to execute(), on different nodes (n)
and possibly different execution contexts (x). The function getValue()

is extensively used to convert identifier references to their bound values,
by searching through the lexical scope chain. The underlying stack holds
the current node and its necessary state for continued evaluation, often
implicit in return addresses. Consider the tiny example below, presented
as JavaScript source code along with the corresponding AST in object and
graphical representation.

Example JavaScript source code

if (a==123)

;

28 4.2. Evaluator

AST object representation

{

type: IF,

condition: {

type: EQ,

0: {

type: IDENTIFIER,

value: a

},

1: {

type: NUMBER,

value: 123

}

},

thenPart: {

type: SEMICOLON,

expression: null

}

}

AST graphical representation

If

Eq

condition

Semicolon

thenPart

Identifier: a

0

Number: 123

1

JavaScript interpreter implementation 29

The relevant parts of execute() for evaluating the example follows.

function execute(n, x) {

...

switch (n.type) {

....

case EQ:

v = getValue(execute(n[0], x)) == getValue(execute(n[1], x));

break;

...

case IF:

if (getValue(execute(n.condition, x)))

execute(n.thenPart, x);

else if (n.elsePart)

execute(n.elsePart, x);

break;

...

case NUMBER:

v = n.value;

break;

...

case SEMICOLON:

if (n.expression)

x.result = getValue(execute(n.expression, x));

break;

...

}

return v;

}

30 4.2. Evaluator

The trace of execution follows (operands are evaluated left to right).

execute(<IF>, x)

execute(<EQ>, x)

execute(<IDENTIFIER>, x)

returns <reference>

execute(<NUMBER>, x)

returns 123

returns true

execute(<SEMICOLON>, x)

returns undefined

returns undefined

Passing the node as a formal parameter to execute() is necessary but
passing the current execution context is a bit redundant as it’s unlikely to
change between each execution call. An explicit separate execution context
stack could have been used to remedy that. Another source of stack usage
are the the local variables inside execute(), since the lack of block local
scope forces all variables to be visible in every case branch. Temporarily
partial results from expressions will also be stacked up, such as the left
hand side in the <EQ> case above. Some form of return address must also
be saved.

A recursive evaluator will need to rely on some form of control flow
breaking mechanism in the underlying implementation language to sup-
port early return from functions, break/continue from loops and throwing
exceptions. Narcissus uses exceptions heavily for this, wrapping try{}

catch{} around the call to execute() of any type that may break control
flow. In a C implementation setjmp() and longjmp() would typically be
used instead.

While the stack usage is a bit more excessive than necessary, that’s not
the main problem (Narcissus wasn’t designed for raw speed). To support
Live programming we need facilities to explicitly transform the callstack,
and as explained most of that information is (explicit or implicit) buried
on the underlying stack and impossible to reach. This means that the eval-
uator needs to be wrapped inside out, exposing every single element that
has relevance to the program execution on an explicit callstack. The evalu-
ator will turn iterative instead of recursive, which will cause some pleasant

JavaScript interpreter implementation 31

side effects such as pause and resume of the program while retaining state.
Breakpoints and singlestepping will thus come for free, independent of un-
derlying support.

4.2.2 Explicit callstack

To create an explicit callstack instead of the underlying implicit one, the
parameters and return values as shown in the trace above need to be lifted
from the underlying implementation and explicitly put into a data struc-
ture, consisting of a list of successive stack frames (using a resizable list for
each frame). Each frame corresponds to the explicit and implicit data for
each recursive execute() call. Assuming that the plan is to put the current
execution context on the stack only when it’s needed, the basic structure
of the callstack is:

[<NODE1>, arg1_1, arg1_2 .. arg1_n1] ->

[<NODE2>, arg2_1, arg2_2 .. arg2_n2] ->

.. ->

[<NODEm>, argm_1, argm_2 .. argm_nm]

Each stack frame is enclosed in brackets, the entire callstack being the series
of stack frames, separated by -> for clarity. The first element is a reference
to the evaluating node (corresponding to n in execute()) and the rest are
arguments returned from evaluation of sub expressions or other necessary
data for keeping state. The function call execute(node,x) is equivalent to
creating the new frame [<NODE>] and pushing it on the callstack. Return
(with value) from execute() is equivalent to popping the top frame (the
callee) of the callstack and appending the return value (if any) to the new
top frame (the caller). The evaluation continues iteratively on the top
(current) frame.

A translation of the trace for the example program into the explicit
callstack structure follows.

32 4.2. Evaluator

[<IF>]

[<IF>] -> [<EQ>]

[<IF>] -> [<EQ>], [<IDENTIFIER>]

[<IF>] -> [<EQ>, 123]

[<IF>] -> [<EQ>, 123] -> [<NUMBER>]

[<IF>] -> [<EQ>, 123, 123]

[<IF>, true]

[<IF>] -> [<SEMICOLON>]

[<IF>]

--empty callstack--

Apart from not sending the execution context into each frame, statements
never return anything (thus <SEMICOLON> doesn’t put undefined into <IF>’s
frame. The implicit recursive execute() did return undefined for any
statement, this was hardly by purpose but rather a side effect of the im-
plementation language (JavaScript functions returns undefined, if nothing
else is specified).

The callstack data structure has one more property besides the list of
frames, a reference to the node inside the most recently removed frame,
prevn. When prevn is null it indicates that the current frame just got
pushed, otherwise it indicates which node the evaluator just returned from.

The relevant parts (for the tiny example) of the rewritten evaluator
follows. The data structure opReferenceArg is further explained in section
4.2.3.

function pushframe(node) {

callstack.prevn = null;

callstack.push([node]); // create and push new frame

}

function popframe() {

callstack.prevn = callstack.pop()[0]; // popframe

}

function popframe_pusharg(value) {

if (callstack.length>1) {

var retframe = callstack[callstack.length-2];

var refArg = opReferenceArg[retframe[0].type];

if (refArg == undefined || retframe.length == refArg) {

JavaScript interpreter implementation 33

value = getValue(value);

}

else if (opValidateReference[retframe[0].type] != false) {

validateReference(value); // may trigger an exception

}

retframe.push(value); // pusharg

}

callstack.prevn = callstack.pop()[0]; // popframe

}

while (callstack.length>0) {

frame = callstack.top();

n = frame[0];

prevn = callstack.prevn;

...

switch (n.type) {

....

case EQ:

if (prevn == n[1]) {

popframe_pusharg(frame[1] == frame[2]);

}

else {

pushframe(n[prevn == null ? 0 : 1]);

}

break;

...

case IF:

if (prevn == null) {

pushframe(n.condition);

}

else if (prevn == n.condition) {

if (frame.pop()) {

pushframe(n.thenPart);

}

else if (n.elsePart) {

pushframe(n.elsePart);

}

else {

34 4.2. Evaluator

popframe();

}

}

else {

popframe();

}

break;

...

case NUMBER:

popframe_pusharg(n.value);

break;

...

case SEMICOLON:

if (prevn == null && n.expression) {

pushframe(n.expression);

}

else {

popframe();

}

...

}

}

If the callstack data structure had not been extended with the prevn prop-
erty, the example callstacks as translated from the sample trace could not
have resulted in a terminating program. Consider the callstack when the
<IF> node is the most current. These three occurrences correlate to the
states “just got pushed” (first [<IF>]), “returned from condition” ([<IF>,
true]) and “returned from then- or else part” (last [<IF>]). The first and
last of these frames looks exactly the same, yet it’s possible to distinguish
between them thanks to the prevn property.

Without prevn the frame would need to be augmented with more data
instead, where the “returned from then- or else part” state could correlate
to ([<IF>, null, null]). The length could then be used to distinguish
between the three states. Another option would be to insert a state counter

JavaScript interpreter implementation 35

that the frame has (and updates) for its lifetime. The prevn solution is
preferred since it is the least redundant and improves consistency between
frames of different node types.

The evaluation of <EQ> consist of the states “just got pushed”([<EQ>]),
“returned from left expression” ([<EQ>, 123]) and “returned from right
expression” ([<EQ>, 123, 123]). These three states can be distinguished
using either prevn (as shown in the evaluator above) or the frame length
(as shown below).

if (frame.length < 3) {

pushframe(n[frame.length-1]);

}

else {

popframe_pusharg(frame[1] == frame[2]);

}

4.2.3 Reference and value arguments

A modification to the usage of the getValue() procedure has been made
so that a reference gets converted to its bound value (when it should)
by the callee instead of the caller, this makes the callstack more accu-
rately reflect the program and is convenient for human inspection, but
it isn’t strictly necessary otherwise. It does make the code shorter and
less error-prone though, since most of the sprinkled getValue() calls gets
replaced with the opReferenceArg data structure and some code inside
popframe_pusharg().

var opReferenceArg = {

// i == -1: all arguments are reference arguments

// i != -1: frame[i] is a value argument,

// others are reference arguments

// i == undefined: (default) all arguments are value arguments

NEW: -1, NEW_WITH_ARGS: -1, DOT: -1, CALL: -1, DELETE: -1,

TYPEOF: -1, INCREMENT: -1, DECREMENT: -1, GROUP: -1,

INDEX: 2, ASSIGN: 2

};

36 4.2. Evaluator

References are created by evaluation of <IDENTIFIER>, <DOT> or <INDEX>
nodes, for instance to enable assignments with any of these as the lvalue.
Most nodes want their arguments converted to values (if the argument
came from a reference), such as <IF> and <EQ> in the example above. The
exceptions can be found in opReferenceArg above. An example of how
such nodes evaluate follows with the prefix and postfix <INCREMENT> and
<DECREMENT> operators, note that the delaying of getValue() until the else
clause is crucial, otherwise no reference would be available for assigning the
result (via putValue()).

case INCREMENT:

case DECREMENT:

if (prevn == null) {

pushframe(n[0]);

}

else {

t = frame.pop();

u = Number(getValue(t));

if (n.postfix)

v = u;

putValue(t, (n.type == INCREMENT) ? ++u : --u, n[0]);

if (!n.postfix)

v = u;

popframe_pusharg(v);

}

break;

4.2.4 Function and constructor calls

Instead of pushing the execution context into every frame as the recursive
execute() does, it gets pushed only for <SCRIPT> frames, which are created
for the top script and each function call.

Evaluating <RETURN> is now possible without underlying exception sup-
port (thanks to the explicit callstack) by searching the callstack for the
most recent <CALL> stack frame, and transferring the return value there
(bypassing the <SCRIPT> frame in between). The saved execution context
gets restored, as well.

JavaScript interpreter implementation 37

An example on how the normal control flow is skipped by rollbacking
parts of the callstack is shown below. The same concepts apply for all
similar statements: return, break, continue as well as for exceptions
(try, catch and finally paired with throw statements).

function double(x) {

return 2*x;

}

double(42);

Callstack before and after return statement:

[<SCRIPT>, <context>] -> [<SEMICOLON>] -> [<CALL>] ->

[<SCRIPT>, <context>] -> [<RETURN>, 84]

⇓

[<SCRIPT>, <context>] -> [<SEMICOLON>] -> [<CALL> 84]

4.3 Active/passive terminology

Any node in the AST is either active or passive. Consider the gcd pro-
gram, where we interrupt just after <GT> pushed its second operand, the
<IDENTIFIER> j for evaluation. The callstack is:

[<SCRIPT>, <context>] -> [<SEMICOLON>] -> [<CALL>, println] ->

[<LIST>] -> [<ASSIGN>, divisor] -> [<CALL>] ->

[<SCRIPT>, <context>] -> [<WHILE>] -> [<BLOCK>] -> [<IF>] ->

[<GT>, 9] -> [<IDENTIFIER>]

Each frame in the callstack has a reference to the corresponding AST node
and necessary state information. All these nodes are considered active
since they have begun evaluating, but not yet finished. All the others are
considered passive. For our interrupted example program <NE> is passive
(though it was active recently, before <WHILE> pushed its body <BLOCK>)
and <GT> is active (as are many other nodes). <GT> has two children,
<IDENTIFIER> i and j, of which the first has already been evaluated (that’s

38 4.3. Active/passive terminology

where the 9 came from) and is passive, the second being pushed on top on
the callstack right now, thus active.

An active node can have none, some or all of its children active simul-
taneously. Consider this example, where both the true (<MUL> node) and
false (NUMBER node) expressions for the ternary ?: operator (CONDITIONAL
node) are active, through recursion.

function faculty(n) {

return n>1 ? n*‘faculty(n-1)‘ : ‘1‘;

}

‘faculty(2)‘;

[<SCRIPT>, <context>] -> [<SEMICOLON>] -> [<CALL>] ->

[<SCRIPT>, <context>] -> [<RETURN>] -> [<CONDITIONAL>] ->

[<MUL>, 2] -> [<CALL>] -> [<SCRIPT>, <context>] -> [<RETURN>] ->

[<CONDITIONAL>] -> [<NUMBER>]

With one exception all descendants to a passive node are passive and all an-
cestors to an active node are active. The parent to an active <SCRIPT> node
is not necessarily active but the <CALL>2 node from which the function was
invoked is, or the other way around a <SCRIPT> node may be active even
though its parent (a <FUNCTION> node typically) is passive. The <CALL>

and <SCRIPT> nodes are runtime related (caller and callee) but typically
not immediately related in the AST. If the <SCRIPT> node represents the
top level script instead of a function body the parent is always null.

if (true) {

function faculty(n) {

‘return n>1 ? n*faculty(n-1) : 1;‘

}

}

‘faculty(2)‘;

[<SCRIPT>, <context>] -> [<SEMICOLON>] -> [<CALL>] ->

[<SCRIPT>, <context>] -> [<RETURN>]

2can be <NEW> or <NEW_WITH_ARGS> also, actually

JavaScript interpreter implementation 39

4.3.1 Source code correspondence

Surrounding backticks will sometimes be used to signify that a statement
or an expression in the textual source code is active. All active statements
or expressions won’t be put inside backticks, for readability reasons. As
stated before all ancestors to an active node are active as long as function
boundaries aren’t crossed, thus (‘a‘*b-7/4)+2; implies (‘a*b‘-7/4)+2;,
(‘a*b-7/4‘)+2;, ‘(a*b-7/4)‘+2;, ‘(a*b-7/4)+2‘; and ‘(a*b-7/4)+2;‘.
Typically all active <CALL>3 nodes and the topmost node on the callstack
will be backticked, covering all function calls as well as the current position,
as in the two previous faculty examples.

3<NEW> or <NEW_WITH_ARGS> applies here, too

40 4.3. Active/passive terminology

Chapter 5

Source code
transformations

Source code transformations are the basis of Live programming since they
define how changes can be made to the program, in an incremental fashion.
The six basic classes of these operations are insert, delete, replace, expand,
reduce and swap.

The operations are shown below exemplified with JavaScript source
code. Most of the transformations are likely to be applicable to any im-
perative or functional programming language, some would require less and
others more.

5.1 Insertions

A fundamental source code transformation is the insertion of new expres-
sions or statements into an active or passive sequence.

41

42 5.1. Insertions

5.1.1 Insertion into an active block sequence

while (true) {

‘f(x)‘;

x++;

}

⇓

while (true) {

if (x<10)

break;

‘f(x)‘;

x = update(x);

x++;

}

The active function call got prepended with an if statement and appended
with an assignment. A <BLOCK> is a sequence of strictly ordered state-
ments and has no return value, the block is a statement itself. Evaluation
will continue with x = update(x); once f(x); returns and the prepended
statement won’t evaluate until next invoke of the <BLOCK>.

5.1.2 Insertion into an active comma sequence

x = 0.707, 3.14, ‘square(3)‘;

⇓

x = 0.707, sqrt(2), 3.14, ‘square(3)‘, 2>1;

Comma sequences are the equivalent of block sequence with expressions
instead of statements. The comma sequence is an expression itself and
returns the value of the last expression. An insertion is thus handled simi-
larly, evaluation continues with the next expression in the updated sequence
(sqrt(2) won’t evaluate).

Source code transformations 43

5.1.3 Insertion into an active variable declaration se-
quence

var x=1, ‘z=square(3)‘;

⇓

var x=1, y=sqrt(2), ‘z=square(3)‘, w=2>1;

As for comma sequences y=sqrt(2) won’t run. The variable y will be
brought into scope though, with value undefined. More about this in
section 5.7.

5.1.4 Insertion into an active array initializer

x = [0.707, 3.14, ‘square(3)‘];

⇓

x = [0.707, sqrt(2), 3.14, ‘square(3)‘, 2>1];

An array initializer can’t be handled equivalently to block and comma se-
quences, if it would the example would result in x = [0.707, 3.14, 9,

true]. An slightly better variant is to skip evaluation of the prepended
expressions (sqrt(2) in the example) but return the array in the cor-
rect length and with the evaluated expressions bound to the updated in-
dices and undefined for the others, x = [0.707, undefined, 3.14, 9,

true]. Better still, couldn’t sqrt(2) run as soon as square(3) returns,
x = [0.707, 1.4142, 3.14, 9, true]? This do change the strict left to
right evaluation order of the expressions but is more likely to produce the
result the programmer actually intended with the source code transforma-
tion.

44 5.1. Insertions

5.1.5 Insertion into an active object initializer

x = {a: 0.707, c: 3.14, d: ‘square(3)‘];

⇓

x = {a: 0.707, b: sqrt(2), c: 3.14, d: ‘square(3)‘, e: 2>1};

Object initializers are handled just as array initializers, the result is x =

{a: 0.707, b: 1.4142, c: 3.14, d: 9, e: true} if the evalua-
tion order is relaxed or x = {a: 0.707, b: undefined, c: 3.14, d:

9, e: true} otherwise.

5.1.6 Insertion into an active arguments list

x = f(0.707, 3.14, ‘square(3)‘);

⇓

x = f(0.707, sqrt(2), 3.14, ‘square(3)‘, 2>1);

The resulting call is f(0.707, 1.4142, 3.14, 9, true), same behaviour
as for array initializers. Note that a function call that has already been
dispatched (the function reference and all arguments have been evaluated
and the body of the called function has started evaluating) isn’t affected
by changes to the argument list.

5.1.7 Insertion into a parameter list of an active func-
tion

function f(x, y) {

return ‘x*y‘;

}

‘f(1, 2, 3, 4)‘;

⇓

Source code transformations 45

function f(x, a, y, b) {

‘...‘

}

‘f(1, 2, 3, 4)‘;

JavaScript binds as many evaluated arguments as possible to the parame-
ters of the called function. The full list of arguments are available for the
callee by the special arguments variable, an array like1 object.

The initial call resulted in x=1, y=2 and arguments=[1,2,3,4] (or
rather arguments={0:1, 1:2, 2:3, 3:4} since it’s an object, not an ar-
ray). The source code transformation doesn’t affect neither x and y (which
may have been re-assigned since) nor arguments (which reflect the caller
arguments, not the callee parameters). The parameters a and b will be
brought into scope though, with value undefined. More about this is in
section 5.7.

5.2 Deletions

Deletions are the direct opposite to insertions, having defined how inser-
tions work deletions should be fairly obvious. Note that only passive state-
ments or expressions can be deleted unless a rollbacking replace (see below)
precedes the operation.

5.3 Replace

The replace source code transformation removes an active or passive state-
ment and replaces it with another, while retaining as much callstack infor-
mation as possible.

1Interested readers can investigate the Narcissus source code to find out how Brendan
Eich, the father of JavaScript, feels about this decision. Hint: search for “curse ECMA”.

46 5.3. Replace

5.3.1 Replace an active statement or expression

function f(x) {

return ‘x>3‘ ? 10 : 0;

}

var c = g(a)+(5-a)/‘f(b)‘;

⇓

function f(x) {

return x>3 ? 10 : 0;

}

var c = g(a)+‘10*b‘;

For replacing an active statement or expression a partial rollback (possibly
following through function calls) of the callstack is necessary, discarding
state and data corresponding to the removed parts of the source code. In
the example the whole division expression got replaced (with a multipli-
cation), but the rollback didn’t need to erase the already evaluated value
returned from g(a) (which return value is hanging on the callstack as the
left operand to the addition). Evaluation will continue with the multipli-
cation, directly after the transformation.

Common simple expression replacements are numbers or identifiers (for
variable or function lookup), since they are either self or atomically evalu-
ating no rollback (or rollback of one step, depending on approach) is ever
needed. Three examples follow, the first exemplifying a misspelled identi-
fier that triggered a runtime exception which the user has then corrected
(while retaining callstack). The second and third exemplifies that whole
statements can be replaced, as well.

var c = f(b)*‘valeu‘;

⇓

var c = f(b)*‘value‘;

if (a>b)

return ‘a*3‘;

Source code transformations 47

⇓

if (a>b)

‘break‘;

if (a>b) {

‘c()‘;

}

⇓

‘a -= b‘;

5.3.2 Compatible replace

var d = f(a) - g(b)*‘h(c)‘;

⇓

var d = f(a) - g(b)/‘h(c)‘;

The return value from f(a) and g(b) are both hanging on the callstack,
waiting for h(c) to return. The multiplication is now replaced with a divi-
sion. The normal replace transformation would include a callstack rollback
leaving only the left operand of the substraction intact, however since mul-
tiplication and division are compatible (they are both binary operators)
the operands can be transferred from the old operator into the new one,
thus the value of g(b) remains and h(c) remains active.

5.3.3 Replace a passive statement or expression

Replacing passive statements or expressions is an easier subcase of replacing
active, since the callstack never needs to be altered.

A special case that might be a bit confusing is the addition of a state-
ment or expression that was previously empty, i.e. adding an else-clause
to a if statement or an expression to a return statement (both of which

48 5.4. Expand

are done in the example that follows). They can be mistaken for inser-
tion into sequence or replace active statement or expression but are both
examples of replacing passive statement and expression.

if (a>=10)

‘return‘;

⇓

if (a>=10)

‘return a‘;

else

a++;

5.4 Expand

Expanding is similar to replacing except we wish to retain and expand
(instead of rollbacking) the callstack and internal program representation
(AST, bytecode or whatever chosen).

5.4.1 Expand an active statement or expression

Examples follows.

Wrap parentheses around expression:

a = g(x)*‘f(x)‘+1;

⇓

a = (g(x)*‘f(x)‘)+1;

Note that the parentheses must comply to the already implicit evaluation
order (due to operator precedence). Had the parentheses been placed as a
= g(x)*(f(x)+1); instead, this would have corresponded to an reduction
(see section 5.5) to a = g(x)*‘f(x)‘; followed by an expansion to a =

g(x)*(‘f(x)‘+1);. Note that the left operand of the multiplication re-
mains intact on the callstack during the reduction and expansion, keeping
f(x) active.

Source code transformations 49

Wrap block around statement:

if (b)

a = f(c)-‘3*b‘;

⇓

if (b) {

a = f(c)-‘3*b‘;

}

Wrapping a block around a single statement is commonly used to accom-
modate the insertion of more statements for the conditional or loop.

Wrap conditional or loop around statement:

a = f(c)-‘3*b‘;

⇓

while (a>10) {

a = f(c)-‘3*b‘;

}

In this example both a while statement and a block statement got wrapped
around the assignment.

Add unary operator to expression:

f(c)-(d*‘f(b)‘)

⇓

f(c)-~(d*‘f(b)‘)

The function call f(b) is currently evaluating and there are two values (left
side operands to substraction and multiplication) hanging on the callstack.
The multiplication got expanded with a bitwise negation, the intended re-
sult is to finish the active function call, multiply the two operands (nothing
new here) but afterwards negate the result before subtracting.

50 5.4. Expand

Add binary operator to expression:

f(c)-‘3*b‘;

⇓

f(c)-‘3*b‘/d;

This example is similar to adding an unary operator. It’s obvious that
once 3*b has finished evaluating, d should evaluate and the two results be
divided, continuing on with the substraction.

Inserting a binary operator with a new left side value complicates the
situation, as for f(c)-d/‘3*b‘;. The division can’t resume as usual once
3*b has finished, since the left side operand isn’t available.

Some languages has unspecified evaluation order of operands. The C
language is one of those [11] with three obvious exceptions (the operands
to &&, || and ?:). Others, such as Java [14] and JavaScript [10], specifies
a strict left to right evaluation order, for good and bad2.

If the left to right evaluation order is to be strictly respected, then
the only choice is to either forbid this transformation (forcing a rollbacking
replace instead of expand) or to consider the left operand evaluated with an
undefined value. For most cases it’s simply better to relax the evaluation
order and allow operators to calculate their operands in arbitrary order3,
enabling the full use of the transformation.

5.4.2 Expand a passive statement or expression

Expanding passive statements or expressions is an easier subcase of ex-
panding active, since the callstack never needs to be altered.

2making life harder for optimizers and specification compliant Live programmers
3excluding &&, || and ?: just as C does, for obvious reasons

Source code transformations 51

5.5 Reduce

Reducing is the opposite to expanding. It corresponds to throwing away
information from the callstack and the internal program representation,
though not more than necessary.

5.5.1 Reduce an active statement or expression

Examples follows.

Reduce expression:

a = f(c)-‘3*b‘;

⇓

a = ‘3*b‘;

The reduction of the substraction operator results in the already calculated
return value from f(c) being obsolete and removed from the callstack.
Reducing operators that have more than one operand generally results
in exactly one of them remaining (the programmer needs to select which
operand to reduce the operator into).

Reduce statement:

if (f(c)-‘3*b‘)

g(a);

⇓

f(c)-‘3*b‘;

A statement can be reduced to any of its inner expressions or statements
(an if statement has a condition expression, a then statement and an
optional else statement). Note that it’s the outer statement that is active,
not necessarily one of the inner (the same applies for reducing expressions).

52 5.6. Swap

Note that a statement that gets reduced into an expression, as in the
example, most likely need to be turned into an statement again by adding
an extra semicolon. There is one exception to this in JavaScript, the initial-
izing part of the for expression, which in most of the cases is an expression
but is allowed to be a var statement instead. The reduction of for (var

z=‘f(x)‘ ...); into for (‘f(x)‘ ...); is thus legal.

5.5.2 Reduce a passive statement or expression

Reducing passive statements or expressions is an easier subcase of reducing
active, since the callstack never needs to be altered.

5.6 Swap

Expressions or statements should be movable within the same function
(or top-level script). There are two obvious choices, either let the source
overwrite the destination and put a placeholder in source’s original place
(this would force destination to be passive), or instead swap source and
destination (any or both of source and destination can be active). Swap is
a superset of move, thus explained further.

Swapping is similar to reduction followed by an expansion, for both the
swapped statements/expressions (if active).

5.6.1 Swap active statements or expressions

Consider that one statement/expression is active and one passive, as in the
example below. After the swap (between - and 1) and once sqrt(4) has
returned and the substraction been performed, the evaluation will continue
in the array initializer, just as if the functions had been called from there
originally. The function f will return [33, 7, 2].

Source code transformations 53

function f(z) {

z += square(3)-‘sqrt(4)‘;

if (z>100) {

return [11*3, 1, 2];

}

}

⇓

function f(z) {

z += 1;

if (z>100) {

return [11*3, square(3)-‘sqrt(4)‘, 2];

}

}

The swapped statements/expressions need not to be direct descendant to
each other, blockwise. When an active expression/statement is to be moved
inside conditional blocks such as if and while, it shall be though of as the
branch/loop was taken based on the condition was true (though the condi-
tion was never checked). That means that the while loop in the following
example will terminate upon its next iteration (when it will actually check
its condition), the if branch will terminate without the else part being
considered according to if semantics – the then part has been evaluated,
after all.

function f(z) {

if (false) {

while (false) {

0;

}

}

else if (z>100) {

z += ‘g(z/0.5, 101)‘;

}

}

⇓

54 5.7. Updating scope

function f(z) {

if (false) {

while (false) {

‘g(z/0.5, 101)‘;

}

}

else if (z>100) {

z += 0;

}

}

Some swaps would be illegal unless one of the swapped statements/expressions
is wrapped into parentheses, due to operator precedence as discussed in sec-
tion 5.4. Consider the added parentheses in the following example demon-
strating a swap between the + and y.

c = f(a)+‘f(b)‘-1;

z = x*y;

⇓

c = y-1;

z = x*(f(a)+‘f(b)‘);

5.6.2 Swap passive statements or expressions

Swapping two statements/expressions that are both passive is an easier
subcase of swapping where one or both are active, since the callstack never
needs to be altered.

5.7 Updating scope

JavaScript is lexically scoped, the visible variables and functions can thus
be determined for any location in the source code. JavaScript has block
local scope, as discussed in section 3.4 so all variable (function parameters
included) and named function declarations are visible anywhere from the
function (or top level script) they are declared in.

Source code transformations 55

As soon as a source code transformation results in new such declara-
tions the scope must be updated for all running instances on the callstack.
All transformations besides swap are potentially affected. These changes
come from new var statements, insertions into existing var statements,
new named function declarations and insertions into parameter lists of
active functions. The new variables (and parameters) are created with
value undefined, the new named function declarations are bound to the
function itself.

How should removed variables and functions be handled? Most of the
classes of operations described in this chapter can result in deleted variables,
and they should be supportable by removing declarations from scope in the
same way as bringing them in.

Closures can lead to some problems when it comes to modifying scope.
Consider the bank account example from section 3.6. The returned closure
from make_account() can be stuffed away in a variable and be kept unused
for a while. Imagine that two source code transformation are made as shown
below, the insertion of a doubleup() function and a corresponding inserted
if statement inside the dispatcher. The modification will work just fine for
new accounts, but that stuffed away account will unfortunately error out
when doubleup is to be returned, with a ReferenceError: doubleup is

not defined. This is because balance, deposit and withdraw were all
captured at the time the dispatch function was created. Added declarations
only get added to the running instances (of the dispatcher) on the callstack
(and to those run after the transformation, obviously), thus the problem.
There are two solutions to the problem, either keep track of all closures
(function objects) created, by means of an list of weak4 references for each
function node. The alternative is to update the scope lazily instead, by
having each function invoke verifying its current scope against the expected
(by the possibly updated lexical scope of the AST).

4they would need to be weak to not hinder garbage collection

56 5.7. Updating scope

function make_account(balance) {

function doubleup() { // inserted function declaration statement

return balance *= 2;

}

...

return function(m) {

if (m == ’doubleup’) // inserted if statement

return doubleup;

...

}

}

Chapter 6

AST and callstack
transformations

The source code transformations are mapped into transformations of the
AST and the callstack. An intermediary AST is often parsed from the new
source code, the current AST is then modified (as to linking in nodes from
the intermediary AST) and the root of the intermediary AST is released.

These transformations are visualised with graphs showing in parallel the
intermediary and transformed (relinked current) AST’s. Dotted nodes and
edges indicate that the edge or node got removed. Note that the initial
AST before the transform (current) isn’t visualised separately since it’s
easily derivable from the transformed by following the dotted edges.

Some transformations can be made directly on the current AST, with-
out any need for an intermediary AST. The node properties parent and
parentprop are updated as necessary for all transformations and involved
nodes. The example transformations in the following sections correlate to
the JavaScript source code for the same examples in chapter 5.

57

58 6.1. Insertions

6.1 Insertions

6.1.1 Insertion into an active sequence

The same transformations apply for block, comma and variable declaration
sequences. Insertion into an active block sequence are exemplified below.

AST transformation

The sequence holds a list of subnodes by the means of numbered edges, the
insertion corresponds to creating new edges from the sequence node into
nodes in the intermediary AST, as well as reordering the current edges as
necessary.

Intermediary AST Transformed AST

Block

If

0

Semicolon

1

Semicolon

2

Semicolon

3

Call

expression

Assign: =

expression

Increment

expression

Block

0 2

Semicolon

10

Semicolon

3 1

Call

expression

Increment

expression

Callstack transformation

The next node to evaluate from a block is determined by incrementing
the previous node index (parentprop), thus no need to transform the call-
stack even though prevn might have changed index upon return from it.

AST and callstack transformations 59

The code for evaluating <BLOCK> nodes follows, <COMMA> and <VAR> nodes
follows the same pattern.

case BLOCK:

i = (prevn != null) ? prevn.parentprop+1 : 0;

if (i < n.length) {

pushframe(n[i]);

}

else {

popframe();

}

break;

6.1.2 Insertion into an active array initializer

The same transformations apply for object initializers and arguments lists
as well.

AST transformation

The AST is transformed following the same procedure as for insertion into
sequences, section 6.1.1.

Callstack transformation

The callstack is searched for the inserted array initializer’s active frames.
Note that the node can be active simultaneously in many frames, due to
recursion.

The frame holds a reference to the AST node (as usual), an index to
the first prepended unevaluated expression or -1 if none and the evaluated
array values so far. If any of these values are nullish (an unique value
that can’t be referenced from the user program) this indicates that the
corresponding expression hasn’t been evaluated. The following code shows
how the array initializer continues evaluation based on this. Thanks to the
index pointing out the first unevaluated expression there is no performance
hit for evaluation of untransformed array initializers.

60 6.1. Insertions

case ARRAY_INIT:

if (prevn == null) {

if (n.length > 0) {

frame.push(-1);

pushframe(n[0]);

}

else {

popframe_pusharg([]);

}

}

else {

i = (prevn.parentprop-0);

s = frame[1];

frame[(i++) + 2] = frame.pop();

frame[1] = -1;

if (s != -1 && s < i) {

j = s+2;

}

else {

j = i+2;

}

for (; j<frame.length; j++) {

if (frame[j] === nullish) {

break;

}

}

if ((j -= 2) < n.length) {

pushframe(n[j]);

}

else {

popframe_pusharg(frame.slice(2));

}

}

break;

The callstack transformation corresponds to inserting nullish values into
the list of evaluated expressions, if the inserted expression is prior to the

AST and callstack transformations 61

active one. The “first nullish” index is updated unless it’s already less
than the index of the inserted expression (indicating a previous insertion
that hasn’t been evaluated yet).

The unique nullish value is printed as tilde, ∼.

... [<ARRAY_INIT>, -1, 0.707, 3.14] -> [<CALL>, ...] ...

⇓

... [<ARRAY_INIT>, 1, 0.707, ~, 3.14] -> [<CALL>, ...] ...

6.1.3 Insertion into a parameter list of an active func-
tion

AST transformation

The params property of the corresponding <FUNCTION> node holds a list of
the parameter names and gets updated to reflect the added parameters.

Callstack transformation

The callstack is searched for running all instances of the function, matching
active <SCRIPT> nodes to the functions body property. The new parameters
are then inserted into scope with value undefined. No other callstack
modifications are made.

6.2 Deletions

Deletions are the direct opposite to insertions, having defined how inser-
tions work deletions should be fairly obvious.

62 6.3. Replace

6.3 Replace

Replace corresponds to replacing an edge in the current AST with another
pointing to a node in the intermediary AST.

AST transformation

Intermediary AST Transformed AST

Plus

Call

0

Mul

1

Number: 10

0

Identifier: b

1

Plus

1

Call

0

Div

1

Group

0

Call

1

Minus

0

Number: 5

0

Identifier: a

1

Identifier: f

0

List

1

Identifier: b

0

AST and callstack transformations 63

Callstack transformation

The first frame that refers to the replaced node and all successive frames
thereafter gets removed (a rollback). A new frame for the new node gets
pushed instead.

[<SCRIPT>, <context>] -> [<VAR>] -> [<PLUS>, 1, ~] ->

[<DIV>, 4, ~] -> [<CALL>] -> [<SCRIPT>, <context>] ->

[<RETURN>] -> [<CONDITIONAL>] -> [<GT>]

⇓

[<SCRIPT>, <context>] -> [<VAR>] -> [<PLUS>, 1, ~] -> [<MUL>]

6.4 Expand

Expand corresponds to replacing an edge in the current AST with another
pointing to a node in the intermediary AST, similar to replace. The dif-
ference is that an edge inside the intermediary AST is replaced as well,
pointing back into the transformed AST. No nodes are thus removed from
the transformed AST. Exemplified below is adding a binary operator to an
expression from section 5.4.

64 6.4. Expand

AST transformation

Intermediary AST

Transformed AST

Minus

Call

0

Div

1

Mul

0

Identifier: d

1

Mul

0

Number: 3

0

Identifier: b

1

Minus1

Call

01

Number: 3

0

Identifier: b

1

Callstack transformation

New generated frames need to be inserted into the framestack prior to the
expanded node.

[<SCRIPT>, <context>] -> [<SEMICOLON>] -> [<MINUS>, 2, ~] -> [<MUL>]

⇓

[<SCRIPT>, <context>] -> [<SEMICOLON>] -> [<MINUS>, 2, ~] ->

[<DIV>, ~, ~] -> [<MUL>]

AST and callstack transformations 65

6.5 Reduce

Reduce is performed directly on the current AST without need for an in-
termediary. An edge is replaced with another, pointing to an ancestor of
the reduced node.

AST transformation

Assign: =

Identifier: a

0

Minus

1

Mul

1

Call

0 1

Number: 3

0

Identifier: b

1

Callstack transformation

Frames corresponding to the removed nodes as a result of the reductions
are removed from the callstack.

[<SCRIPT>, <context>] -> [<SEMICOLON>] -> [<ASSIGN>, a, ~] ->

[<MINUS>, 2, ~] -> [<MUL>]

⇓

[<SCRIPT>, <context>] -> [<SEMICOLON>] -> [<ASSIGN>, a, ~] ->

[<MUL>]

66 6.6. Swap

6.6 Swap

As for reduce, swap is performed directly on the current AST without need
for an intermediary. The two swapped nodes switch positions in the AST
by swapping their incoming edges. None of the nodes may be an ancestor
of the other.

AST transformation

Script

Semicolon

0

If

1

Assign: +

expression

Identifier: z

0

Minus

1

Number: 1

1

Gt

condition

Block

thenPart

Identifier: z

0

Number: 100

1

Return

0

Array_init

value

1 1

Mul

0

Number: 2

2

AST and callstack transformations 67

Callstack transformation

An ancestor chain is generated for each of the nodes by traversing their
parent references until a <SCRIPT> node is found. The ancestor chains
are used to find the nearest common ancestor for the swapped nodes. The
<SCRIPT> node representing the body of the function is the nearest com-
mon ancestor for the example. A reduction and expansion follows. The
procedure is repeated twice if both nodes are active.

... -> [<SCRIPT>, <context>] -> [<SEMICOLON>] -> [<ASSIGN>, z, ~] ->

[<MINUS>, 9, ~] -> [<CALL>]

⇓

... -> [<SCRIPT>, <context>] -> [<MINUS>, 9, ~] -> [<CALL>]

⇓

... -> [<SCRIPT>, <context>] -> [<IF>] -> [<BLOCK>] -> [<RETURN>] ->

[<ARRAY_INIT>, -1, 33] -> [<MINUS>, 9, ~] -> [<CALL>]

68 6.6. Swap

Chapter 7

Related work

This chapter discusses related work in the form of programming language
implementations and integrated development environments.

7.1 Stackless Python

Stackless Python [15] is a variant of the Python interpreter, “an experimen-
tal implementation that supports continuations, generators, microthreads,
and coroutines”. The author does a very similar implicit to explicit call-
stack modification that I describe in chapter 4. Python is written in C
instead of in itself, but the concepts apply precisely the same – turn a re-
cursive evaluator iterative and get rid of the borrowed underlying implicit
stack. Christian Tismer had a different reason than mine, to enable contin-
uations, microthreads and coroutines. Interestingly, the explicit access to
the callstack remains the key for both his and mine objectives. One of the
results he present in his paper is that the performance difference between
the implicit and explicit callstack versions is negligible.

69

70 7.2. The “Lisp machines”

7.2 The “Lisp machines”

I’ve heard numerous stories about the mythical Lisp machines that seem
to have been able to do almost everything besides making coffee. Unfor-
tunately I haven’t been able try one out myself1, I have been able to get
my hands on the Interlisp reference manual [16] though. It’s clear that this
system was very much about modifying an active program, I haven’t de-
crypted how much it was about keeping as much as possible of the callstack
(instead of rollbacking it) though. It’s kind of natural that Lisp has been
a source of experimenting with the concept (just as Smalltalk) since it has
a very exact and consequent syntax, the source code is the AST. I would
very much like to try the system for real, to see what actual similarities
there are and what features and good ideas can be borrowed over – I’m
sure there are plenty.

7.3 Smalltalk

I’ve tried one Smalltalk implementation (Squeak) while there are plenty
of others. More actual experience with other implementations would be
needed to cherry pick all the nice Live programming’ish features2 that are
available in Smalltalk land.

7.4 Visual Studio 2005

As a big surprise to me, see section 2.7, the latest version of Microsoft’s
IDE has taken Live programming much further than previous versions,
and in some aspects further than most others3. It is great in its integration
into their editor/debugger, the environment guesses what kind of source
code transformation is meant (see chapter 5) without hints (apart from
modified source code) and tends to do the right thing most of the time.
The tests I performed showed that they do correctly maintain the callstack
when moving recursed statements around. Most transformations are only

1I came as close as “there is one, but no keyboard”
2apart from 1+2*3 being 9
3as far as I know

Related work 71

possible on statement level, not expression level. It’s possible to wrap an
if statement around an active statement but illegal to add a multiplication
around an active function call, for instance. It’s a pity that much of the
previous work (available in Smalltalk for decades), such as adding functions
and manipulating function signatures in runtime is entirely absent. So
Visual Studio is both leading and lagging behind, at the same time. What’s
perhaps most interesting of all is that they support these transformations
for compiled static languages, not dynamic interpreted ones. I tried it using
both C# compiled for their managed .NET platform and C++ compiled
to machine code.

72 7.4. Visual Studio 2005

Chapter 8

Discussion

How can Live programming, if seen as one additional method or technique
in the toolbox of the experienced programmer, be evaluated? Is it “good
enough”? Is it “better”1? Depends on who you ask. As long as it’s imple-
mented into an existing language and development environment without
getting in the way of the programmer, it won’t be yelled at. This means
that there should be a negligible performance hit, if any, for normal eval-
uation and debugging. The actual transformation operations can be a bit
more costly if necessary. Those outlined in this report for a dynamic in-
terpreted language can be considered negligible in cost. For a compiled
language the actual transformation may take a bit longer due to more
passes and more difference between source code and actual program inter-
nal representation. As long as it’s about interactive changes done by the
programmer, as long as 100-500 ms should be tolerable, plentiful for even
the heaviest compiler under those circumstances.

Performance wise it comes down to (at least for interpreted languages):
Can the implementation of the language be done with an explicit callstack
at similar memory and cycle cost. While this wasn’t my main focus with
the report, I believe that I’ve showed that an explicit callstack potentially
saves memory, at least. Other reports tell that the cycle cost should be

1better than what? (it isn’t a replacement)

73

74 8.1. The prototype environment

comparable. Rewriting an existing evaluator (which is tuned for perfor-
mance to start with) and benchmarking the two will tell.

How much productivity can be gained from heavily use of Live program-
ming? No idea. Somewhere between “nothing” to “plenty” is reasonable
to expect. An survey could be made where programming problems were
given to “similar skilled” programmers, using either the normal editor and
debugger combination or the described Live programming environment.
One could look at the time it took, the completeness and efficiency of the
solutions. Perhaps more valuable survey data are collected by letting the
same programmer solve the same problems in both environments, and see
if he/she felt more productive in any of them.

As long as there are no drawbacks, the question shouldn’t be “why?”
but rather “why not?”.

8.1 The prototype environment

I built a simple environment hosted inside the web browser based on the
work in this report. I had no decorations on the source code other than
normal characters (actually, I color the source code corresponding to the top
most active node, but I never rely on it to track changes). The programmer
change the text and press “commit” to have the program updated. This
means that some source code transformations can be mixed up, and the
programmer explicitly needs to tell the environment by marking parts of
the source code with another color, to tell that something was inserted for
instance. This is a problem that is solvable by attaching node information
to ranges of source code, making it easy to track which code was added,
changed or moved.

Apart from the defined transformations, the environment handles the
usual debugging facilities such as step into, step over, step out and break-
points. The environment can also move the current program position any-
where inside a function (similar to the swap operation). The reader can
try the prototype environment directly from http://liveprogramming.org.
A screenshot of the prototype is shown at the end of chapter 2.

Discussion 75

8.2 Future work

A list of proposals for future work is presented below, with brief descrip-
tions.

• Completeness of the defined transformations: A difficult ques-
tion to answer is if the defined transformations are incomplete or
overlapping. Are they too tightly bound to the language, can they
be expressed in more general terms?

• Considering threaded programs: All the work done in this report
has considered single-threaded programs. Most should be applicable
to multi-threaded programs as well, it’s just more callstacks to handle,
still it would need confirmation.

• Explicit callstack benefits: Having an explicit callstack opens up
for microthreads, coroutines and continuations, which would be in-
teresting to implement in the JavaScript interpreter.

• Self modifying code: For the situation when the interpreter is
written in the same programming language as it implements (thus
sharing the same data structures) exposing the AST to the code via
a special variable, say ast, would enable the code to modify itself via
the same operations that are normally used by the programmer in
an environment. If the callstack is exposed too, a program would be
able to implement functionality such as microthreads and coroutines
itself, without any other language support.

• Educational tool: If serialization is added to the interpreter the
state of a paused program could easily be transferred from one web
browser to another, via a server. The teacher and students could
exchange http links, and improve/debug the program together.

• Live programming for other languages: I would like to see Live
programming enabled environments for some of the more common
used dynamic languages such as Python, Ruby, Perl or perhaps PHP
(with a web twist), as well as Smalltalk and those Lisp machines2.

2if someone finds that missing keyboard

76 8.2. Future work

• Performance evaluation: An explicit callstack interpreter could
be written to benchmark against an implicit callstack version, both
implementing the same language and both tuned for performance.

• Verifying the need of an explicit callstack: More work could
be put into trying to bring as many (any?) of the Live programming
operations as possible into an implicit callstack evaluator. This would
most likely result in some form of lazy transformations.

• Implementation in C: An implementation of both the evaluator
and the Live programming operations could be written in a lower
level language to verify that the Live programming functionalities
isn’t relying on the meta circular evaluator.

Appendix A

Sample Live programming
session

Here follows a sample session to show how a series of different Live pro-
gramming source code transformations can be combined to build a program
from scratch (with instant feedback and verification) as well as to fix bugs.
The program is an implementation of the merge sort [17] sorting algorithm.
The reader is encouraged to visit http://liveprogramming.org and try it out
from there.

An array and function call, to start with. Run until a reference error occurs.

var unsorted = [9, 3, 1, 5, 4, 8, 7, 2, 3, 5, 8, 2, 6, 4];

‘mergesort(unsorted)‘;

Create the function, with a minimal bi-partitioning for a start. Insertion
into an active block sequence. Step until a reference error occurs.

var unsorted = [9, 3, 1, 5, 4, 8, 7, 2, 3, 5, 8, 2, 6, 4];

‘mergesort(unsorted)‘;

function mergesort(l) {

var mid = ‘a‘.length/2;

77

78

var left = a.slice(0,mid), right = a.slice(mid);

}

Correct a to l. Replace an active expression. Step over the declarations.

function mergesort(l) {

var mid = l.length/2;

‘var left = l.slice(0,mid), right = l.slice(mid)‘;

}

Add a new variable and a recursive call for the left partition. Recurse until
l.length is 3, mid becomes 1.5. How will slice handle this? Step and see
that left has the first element [9] and right has the two other, a valid
result. Continue into another recursive call with the list [9].

function mergesort(l) {

var mid = l.length/2;

var left = l.slice(0,mid), right = l.slice(mid);

var leftsorted = ‘mergesort(left)‘;

}

A list with only one (or none) element is sorted, return it as-is.

function mergesort(l) {

‘if (l.length < 1)

return l;‘

var mid = l.length/2;

var left = l.slice(0,mid), right = l.slice(mid);

var leftsorted = mergesort(left);

}

Step, the if condition evaluated false (off-by-one). Compatible replace.
Change the operator and back up to the if statement, again, return.

function mergesort(l) {

if (l.length <= 1)

Sample Live programming session 79

‘return l‘;

var mid = l.length/2;

var left = l.slice(0,mid), right = l.slice(mid);

var leftsorted = mergesort(left);

}

The variable leftsorted has now been assigned. Add rightsorted as well
to start the other recursion. Insertion into an active variable declaration
sequence. Step over the declarations. Insert call to merge, run until a
reference error occurs.

function mergesort(l) {

if (l.length <= 1)

return l;

var mid = l.length/2;

var left = l.slice(0,mid), right = l.slice(mid);

var leftsorted = mergesort(left), rightsorted = mergesort(right);

‘merge(leftsorted,rightsorted)‘;

}

Create a small merge function.

function mergesort(l) {

function merge(a,b) {

}

...

}

Add an empty return list and select one of the two start elements, step
until another reference error occur.

function merge(a,b) {

var merged = [];

merged.push(a[‘i‘]<b[j] ? a[i] : b[j]);

}

80

Add variable declarations. Assign i and j to 0 in the eval window.

function merge(a,b) {

var merged = [];

var i=0; j=0;

merged.push(a[‘i‘]<b[j] ? a[i] : b[j]);

}

Add a while statement around the selection. Expand an active statement.

function merge(a,b) {

var merged = [];

var i=0; j=0;

while (i<a.length && j<b.length)

merged.push(a[‘i‘]<b[j] ? a[i] : b[j]);

}

Increment for the indices was forgotten, thus j is wrong next iteration.
Modify and run j++ in the eval window.

function merge(a,b) {

var merged = [];

var i=0; j=0;

while (‘i<a.length && j<b.length‘)

merged.push(a[i]<b[j] ? a[i++] : b[j++]);

}

Push the remainders.

function merge(a,b) {

var merged = [];

var i=0; j=0;

while (i<a.length && j<b.length)

merged.push(a[i]<b[j] ? a[i++] : b[j++]);

while (‘i<a.length‘)

merged.push(a[i++]);

while (j<b.length)

merged.push(b[j++]);

}

Sample Live programming session 81

Return the result.

function merge(a,b) {

var merged = [];

var i=0; j=0;

while (i<a.length && j<b.length)

merged.push(a[i]<b[j] ? a[i++] : b[j++]);

while (i<a.length)

merged.push(a[i++]);

while (j<b.length)

merged.push(b[j++]);

‘return merged‘;

}

The result from merge should be returned from mergesort, as well, add
return statement around the function call. Reduce an active statement
and expand an active expression. The reduction is done to strip the semi-
colon since statements never has semicolon as parent nodes. Could also be
considered a compatible replace.

function mergesort(l) {

...

‘return merge(leftsorted,rightsorted)‘;

}

Add a print of the final sorted array.

‘println(mergesort(unsorted))‘;

The finished program and output data:

var unsorted = [9, 3, 1, 5, 4, 8, 7, 2, 3, 5, 8, 2, 6, 4];

println(mergesort(unsorted));

function mergesort(l) {

function merge(a,b) {

var merged = [];

82

var i=0; j=0;

while (i<a.length && j<b.length)

merged.push(a[i]<b[j] ? a[i++] : b[j++]);

while (i<a.length)

merged.push(a[i++]);

while (j<b.length)

merged.push(b[j++]);

return merged;

}

if (l.length <= 1)

return l;

var mid = l.length/2;

var left = l.slice(0,mid), right = l.slice(mid);

var leftsorted = mergesort(left), rightsorted = mergesort(right);

return merge(leftsorted, rightsorted);

}

Prints: 1,2,2,3,3,4,4,5,5,6,7,8,8,9

Appendix B

AST for GCD program

function gcd(i,j) {

while (i!=j) {

if (i > j)

i = i-j;

else

j -= i;

}

return i;

}

var a = 9, divisor;

println(divisor = gcd(a,12));

83

84

Script

Function

0

Script

body

While

0

Return

1

Ne

condition

Block

body

Identifier: i

0

Identifier: j

1

If

0

Gt

condition

Semicolon

thenPart

Semicolon

elsePart

Identifier: i

0

Identifier: j

1

Assign: =

expression

Identifier: i

0

Minus

1

Identifier: i

0

Identifier: j

1

Assign: -

expression

Identifier: j

0

Identifier: i

1

Identifier: i

value

AST for GCD program 85

Script

Var

1

Semicolon

2

Identifier: a

0

Identifier: divisor

1

Number: 9

initializer

Call

expression

Identifier: println

0

List

1

Assign: =

0

Identifier: divisor

0

Call

1

Identifier: gcd

0

List

1

Identifier: a

0

Number: 12

1

86

{

type: SCRIPT,

0: {

type: FUNCTION,

body: {

type: SCRIPT,

0: {

type: WHILE,

body: {

type: BLOCK,

0: {

type: IF,

condition: {

type: GT,

0: {

type: IDENTIFIER,

value: i

},

1: {

type: IDENTIFIER,

value: j

},

},

elsePart: {

type: SEMICOLON,

expression: {

type: ASSIGN,

0: {

type: IDENTIFIER,

assignOp: 25,

value: j

},

1: {

type: IDENTIFIER,

value: i

},

},

},

thenPart: {

AST for GCD program 87

type: SEMICOLON,

expression: {

type: ASSIGN,

0: {

type: IDENTIFIER,

assignOp: null,

value: i

},

1: {

type: MINUS,

0: {

type: IDENTIFIER,

value: i

},

1: {

type: IDENTIFIER,

value: j

},

},

},

},

},

length: 1,

},

condition: {

type: NE,

0: {

type: IDENTIFIER,

value: i

},

1: {

type: IDENTIFIER,

value: j

},

},

},

1: {

type: RETURN,

value: {

88

type: IDENTIFIER,

value: i

}

},

funDecls: ,

length: 2,

varDecls:

},

functionForm: 0,

name: gcd,

params: i,j,

},

1: {

type: VAR,

0: {

type: IDENTIFIER,

initializer: {

type: NUMBER,

value: 9

},

name: a,

readOnly: false,

},

1: {

type: IDENTIFIER,

name: divisor,

readOnly: false,

},

length: 2,

},

2: {

type: SEMICOLON,

expression: {

type: CALL,

0: {

type: IDENTIFIER,

value: println

},

1: {

AST for GCD program 89

type: LIST,

0: {

type: ASSIGN,

0: {

type: IDENTIFIER,

assignOp: null,

value: divisor

},

1: {

type: CALL,

0: {

type: IDENTIFIER,

value: gcd

},

1: {

type: LIST,

0: {

type: IDENTIFIER,

value: a

},

1: {

type: NUMBER,

value: 12

},

length: 2,

},

},

},

length: 1,

},

},

},

funDecls: <gcd>,

length: 3,

varDecls: <a>, <divisor>

}

90

Bibliography

[1] Martin Fowler. Is Design Dead?
http://www.martinfowler.com/articles/designDead.html, 2004.
Accessed 2006-06-06.

[2] Bill Venners. A Conversation with Ward Cunningham, Part V.
http://www.artima.com/intv/simplestP.html, 2004. Accessed 2006-
06-06.

[3] Andrew Hunt and David Thomas. The Pragmatic Programmer. Ad-
dison Wesley, 1st edition, 2000.

[4] Giancarlo Succi and Michele Marchesi. Extreme Programming Exam-
ined. Addison Wesley, 1st edition, 2001.

[5] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay.
Back to the future: The story of squeak, a practical smalltalk written
in itself. In OOPSLA ’97 Conference Proceedings, 1997.

[6] David Ungar and Randall B. Smith. Self: The power of simplicity. In
OOPSLA ’87 Conference Proceedings, 1987.

[7] David Flanagan. JavaScript: The Definitive Guide. O’Reilly, 4th
edition, 2002.

[8] Danny Goodman. Dynamic HTML: The Definitive Reference.
O’Reilly, 2nd edition, 2002.

91

92 BIBLIOGRAPHY

[9] Danny Goodman and Michael Morrison. JavaScript bible. Wiley, 5th
edition, 2004.

[10] ECMA, http://www.ecma-international.org/publications/files/ECMA-
ST/Ecma-262.pdf. ECMAScript Language Specification, 3rd edition,
1998. Accessed 2006-06-06.

[11] Brian W. Kernighan and Dennis M. Ritchie. The C Programming
Language. Prentice Hall, 2nd edition, 1988.

[12] Harold Abelson and Gerald Jay Sussman. Structure and Interpretation
of Computer Programs. The MIT Press, 2nd edition, 1996.

[13] Michael Scott. Programming Language Pragmatics. Morgan Kauf-
mann Publishers, 1st edition, 2000.

[14] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Lan-
guage Specification. Addison-Wesley Professional, 3rd edition, 2005.

[15] Christian Tismer. Continuations and Stackless Python.
http://www.stackless.com/spcpaper.htm. Accessed 2006-06-06.

[16] Warren Teitelman. Interlisp Reference Manual. Xerox Palo Alto Re-
search Center, 3rd edition, 1978.

[17] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. In-
troduction to Algorithms. The MIT Press, 1st edition, 1996.

