
Dynamic Analysis of Malware

Laurent Weber

Master Seminar
Research Group “Embedded Malware”

Prof. Dr. Thorsten Holz

July 26, 2010

Horst-Görtz Institute Ruhr-University Bochum

Contents

1 Introduction 1
1.1 Static Analysis of Malware . 1
1.2 Dynamic Analysis of Malware . 1
1.3 Different Dynamic Malware Analysis Methods 2

1.3.1 Behavior-based Malware Analysis . 2
1.3.2 Different Kinds of Dynamic Analysis 2

1.4 Challenges in Malware Analysis Taken From the Wild 3
1.4.1 Complexity . 3
1.4.2 Lack of High Level Semantics . 3
1.4.3 Whole System View . 4

2 State of the Art 5
2.1 Current Dynamic Analysis Tools . 5
2.2 Useful Techniques for Malware Analysis . 5

2.2.1 API Hooking . 5
2.2.2 DLL Injection . 7
2.2.3 Virtual Machine Introspection . 8

2.3 Presentation of Different Malware Analysis Frameworks 9
2.3.1 General Overview of the Frameworks 9
2.3.2 BitBlaze Project . 10
2.3.3 TTAnalyze . 11
2.3.4 CWSandbox . 13

3 Conclusion 17
3.1 Security Application . 17
3.2 Malware Analysis and Defense . 17
3.3 Personal Conclusion . 18

i

1 Introduction

Nowadays malware has become a very lucrative business, spying out confidential information
like online-banking passwords, attacking targets with Distributed Denial of Services (DDOS)
is an well known problem in the everyday life. Cyber-criminals use bots distributed on huge
amounts of computers to remotely attack specific targets. Malware has become a million dollar
business [Sym10] in the underground industry of the Internet.

Researchers want to find ways to analyse malware in a very quick and reliable manner, in order
to be able to stop the spreading of a new malware. The cat and mouse game has been launched
a long time ago. This paper will describe the actual state of the art in malware analysis, as
well as the turnover from static to dynamic analysis. Furthermore, it will briefly introduce three
frameworks: TTAnalyze, CWSandbox and the Bitblaze project.
In this paper we will only focus on analysis of windows binaries because this represents the
majority of the malware.

1.1 Static Analysis of Malware

Malware is a generic term used for every kind of unwanted software, like backdoors, viruses
and worms. In order to keep those malicious pieces of code away from our computers users use
anti-virus software, that is able to detect known malware. These anti-virus software use signa-
ture based recognition, they scan binaries for byte sequences that are characteristic for different
malware. Malware developers adapted to this approach and started to create polymorphic codes
that are changing their signatures and through this are hard to detect for anti-virus software.

Researcher and anti-virus companies are using reverse engineering and manual disassembly
methods to create those signatures and analyse the behaviour of the malware. Due to the in-
creasing amount of malware sent to anti-virus companies every day, it is impossible for them to
analyse the malware manually every time they get a new sample as it is too time consuming and
very challenging, due to the complexity of the task and the lack of semantic information.

1.2 Dynamic Analysis of Malware

Due to the problems of manual malware analysis described in Section 1.1 other methods have
to be found to analyse large amounts of malware in a quick and reliable way. Researchers are
focusing on different kinds of dynamic malware analysis. Three of them will be described in
this paper.

1

The process of dynamic malware analysis should give insight in the action performed by a
given malware, mostly without manual reverse engineering, even if a reverse engineer would
be desired in some cases to gain further information about the malware once the automated test
revealed that it is an interesting piece of malicious code.

For this, automated tools that give an overview of the behaviour of the malware have to be
created, and should follow different guidelines in order to give the best possible results and avoid
false positives. Such tools should be able to log the security relevant behaviour of the malware
and it should create a human readable report for further analysis by humans. Machine readable
reports are a requirement too, they could be used as Intrusion Detection System signature.

1.3 Different Dynamic Malware Analysis Methods

1.3.1 Behavior-based Malware Analysis

Combining some well known techniques, that will be presented in Section 2.2 it is possible to
trace the behaviour of a given malware in a quite accurate way. It allows one to know exactly
what actions the malware performed:

• Modified or created files

• Registry modification

• Which DLLs were loaded before execution

• Accessed virtual memory

• Created processes

• Network connections opened and the packets transmitted

• What storage areas the malware accessed, installed services and kernel drivers as well as
other information.

As you can imagine, this allows a very accurate tracing of the actions performed by the malware.
Unfortunately, frameworks using this technique face some limits too, so for example it is not

giving any information on how the malware is programmed as you are working on a sort of
blackbox. All you can do is monitor API calls to find out what the malware is up to.

In general, information gathered this way are sufficient to rank how dangerous the malware
is.

1.3.2 Different Kinds of Dynamic Analysis

Using dynamic malware analysis, malware is executed in a simulated environment and it’s be-
haviour gets analyzed after. There are mainly two methods to perform this:

• Analysis the difference between two snapshots of the system, one taken before the mal-
ware execution, the other after.

2

• Monitor the actions performed by the malware during its execution, this is realized by the
usage of a debugger, for example.

Both methods have advantages and drawbacks.

The analysis of malware by comparing the state of the system before and after the execution
of the malicious code is surely easier to implement and therefore less prone to implementing
errors, but the results gained out of such an analysis is coarse-grained. For example it is im-
possible to know if a file has been created and deleted afterwards as it is not on the snapshot
performed after the execution of the malware. So, this method might be good enough to assess
the danger originating from the malware, but not for a detailed analysis.

One drawback of the dynamic malware analysis is that it is not able to run and analysis mul-
tiple malware samples at one time. So, you will only know one behaviour of the malware, for
one special environment/moment. One can only trace one control flow at a time. Static malware
analysis gives you an general overview over the malware. The code can be analyzed in a very
detailed way and through this process researchers are able to know exactly how the malware is
behaving.

1.4 Challenges in Malware Analysis Taken From the Wild

Of course, analysing malware seems a simple task, security researchers have done it for years.
Why should it change now? What is the difference between the lab malware and the real malware
picked from the wild? The most interesting part in malware analysis is that you are playing
against a real person, a hacker, a person that may have very high skills and that will do everything
to prevent you to break his malware. He will use evasion, obfuscation, cryptography, and many
more techniques to defeat the malware researcher and anti-virus companies.

1.4.1 Complexity

The first challenge we will introduce is the complexity of the task. When reverse engineering a
piece of malware you get confronted to the assembly code of the binary, and with the modern
sets of instructions an x86 (hundreds of different instructions) or similar architecture provides,
this can be a very complex task to understand. Each instruction can have complex semantics,
like instructions that behave differently depending on the amount of operants they get, or single
instructions loops or side effects like setting processor flags.

1.4.2 Lack of High Level Semantics

Working in the assembly language has other drawbacks, that are not comfortable for long code
analysis. Researchers are mostly not very familiar with this level of abstraction as they are used
to proper source code.

3

There are no functions, binary level does not allow that level of abstraction. Instead of func-
tions jumps are used, which fast makes the code complex and far from easy to understand and
follow.

Binary code does not contain buffers it has memory. There are no user-specified type and size
in memory. If there are violations of some high-level semantics given by the source-code this is
a problem of the high-level semantics, not of the binary code.

In binary there are no types so no new types can be created or used as there is no type con-
structor. The only available types are registers and memory.

So, this makes the drawback of binary code analysis pretty clear. It is not a very attractive part
of work. In addition to this, there are several other parts that make the job even harder.

1.4.3 Whole System View

For many security application a whole system view is needed, this is the case for malware
analysis on binary base. This concept consists of the analysis of operations on the system kernel
and how the different processes interact. Monitoring a whole system is clearly a higher challenge
than traditional analysis where only a single program needs to be analyzed.

4

2 State of the Art

2.1 Current Dynamic Analysis Tools

Dynamic malware analysis is a very current research topic. A lot of work is currently done
in this field, new techniques and ideas pop up from all over the world at every conference.
This paper will mainly put the focus on three of them: the Bitblaze project, TTAnalyze and
CWSandbox. Anyhow the reader should be aware that there are a lot of other frameworks out
there, for example dirtbox from Georg Wicherski from Kaspersky, or the ANNE framework of
Gerard Wagener of SES ASTRA, and plenty more. Some are better known than others, this
might be related to the results or the techniques used, but what are the important techniques
related to the dynamic analysis of malware? This section will try to answer this question.

2.2 Useful Techniques for Malware Analysis

In the following section we will introduce three important techniques often used for automated
malware analysis.

2.2.1 API Hooking

API stands for Application Programming Interface it is used by programmers to access system
resources (files, network information, process or the registry as well as other resources.) The
API is mostly used by applications to access the system resources rather than performing direct
system calls. This allows us to hook the API in order to monitor the behaviour of the malware
during its execution. The API is located in the windows system directory. The most important
files are kernel32.dll, ntdll.dll,ws2_32.dll and user32.dll.

Intercepting a call to a function is called hooking, this is the task we want to perform in order
to trace the behaviour of the malware and through this we are able to get a control flow of the
malware. The concept of hooking is simple, each time an application accesses an API function
it gets sent to a different location, where the modified code is located. That code performs some
tasks, like for example storing what has been done and which parameters have been attached to
the API call. Once the code has been executed the hook gives the control back to the unmodified
API function. Depending on what action should be performed it is even imaginable that the hook
refuses to give back control to the API function in order to prevent the system to take damage
through actions performed by the malware, or to analyse the behaviour of the malware if a call
fails.

5

API hooking has to be done in a careful way in order to be transparent and undetectable for
the malware. It is never good if a malware detects that it is running in a simulated environment
as then it is modifying its behaviour. This has been shown in several papers. Some malware
even tries to exploit vulnerabilities in the emulators and attack the host system. [Fer07]

Now getting into the practical part of API hooking, there are several different methods known
to intercept system calls mainly you can:

• Intercept execution chains inside user process,

• intercept execution chains inside kernel.

There are also other methods to perform hooking, but we will not focus on them in this paper,
and only present the method used by CWSandbox, in-line code overwriting.

In-line code overwriting uses a method to directly overwrite the DLL’s API function code
loaded in the process memory. Due to this any call to the API, independent if it is linked im-
plicitly or explicitly gets rerouted to the new code. Implicit linking occurs when an application
loads a DLL before its own execution. There are 5 steps to overwrite the functions code:

• Create a target application in suspend mode. Windows will load and initialize the appli-
cation and all implicitly linked DLLs. As the application is suspended Windows will not
start the main thread so no code will be executed.

• Once the initialization is done an analysis on what functions have to be hooked (lookup in
the DLLs export table) has to be done and the entry points of the code written down.

• Store the original code, in order to be able to reuse it later, for the reconstruction of the
original API function.

• The first instructions of every API call functions have to be overwritten with a JMP or a
call (Subroutine) to the location of our code.

• In order to have a fully operational API hooking a hooking of LoadLibrary and LoadLi-
braryEx API function has to be done, this allows explicit binding of DLLs.

The same idea can be used if the malware loads DLLs dynamically during it’s execution.
See Figure 1 for more details.

6

Figure 1: Example of a kernel32.dll hooked function

There are plenty of other API hooking methods, like for example system service hook-
ing that operate at a lower level, anyway as none of the presented tools will use those
techniques we will not focus on them. Anyway API hooking like described in detail in
this section seems to be quite reliable and most malware is not noticing it. Tools like
CWsandbox use this technique in order to get a good insight of the actions performed by
the malware. The tool is placing a JMP to the custom code at the beginning of the API call.

A way to bypass the API hooking trap would be to call the kernel functions directly and
avoid the usage of the API, anyhow this is uncommon as for this the programmer has to
know exactly what version of operating system the victim is running and on what service
pack patch level. As the goal of most malware is to infect a huge user base and not only
targeted persons, direct kernel function calling is not easy to realise.

2.2.2 DLL Injection

A reusable and modular way to implement API hooking is without any doubt DLL code in-
jection. This can be realized through API hooking with inline code overwriting. Therefore the
applications has to be patched once it has been loaded into the memory. The address space of the
malware has to contain our hooked function in order to be able to call the hook from inside the
malware’s address space. Therefore we use a technique called DLL injection. This is realised
by a specialized thread located into the malware’s memory allocation.

7

Windows allows us to implant and install API hook functions when we access other process’s
virtual memory and finally execute the code in a different process’s context.

Two methods how this could be realised will be presented now:

• suspend a threat of the application that is running. Copy your code to the address space
of that application, resume the execution of the application after changing the instruction
pointer to the location of the copied code.

• Copy the code you want to execute in the application’s address space and create a new
threat in the target’s process. The threat will hold the code location as a start address.

Through this methods we are able to inject and execute code in other processes. It makes
sense to inject a DLL in the target’s address space, and this is also the most used technique in
praxis. Frameworks like CWSandbox use this techniques to make the malicious code load their
DLL in their address space. The API hooks are installed into the target’s address space and the
API hooks are installed in the DLLs initialization routines, which are automatically called by
Windows. Explicit linking is performed by LoadLibrary or LoadLibrary-Ex.

Finally all that has to be done is to create a new threat in the malicious application using
CreateRemoteThreat function and setting the code address of the API function LoadLibrary
as the new thread’s starting address. When the malware executes the new threat it is calling
LoadLibrary function automatically inside the target’s context. As we know where kernel32.dll
is located, as it is always on the same place, and also know where LoadLibrary is located, we
can use these values for the target application.

2.2.3 Virtual Machine Introspection

A further technique that is widely used is Virtual Machine Introspection (VMI). This technique
allows a monitoring of a virtual machine without risk. In fact, the machine gets monitored from
outside. This has big advantages in comparison to standard Intrusion Detection Systems (IDS).
The limits of IDS are, either you use a host based IDS, this can easily be attacked or evaded
by malware that detects it. In general one could write down that an network based IDS is more
resistant against attacks, as there is no direct connection to the host, but has a poorer view of
the events in the host. Host-based IDS, on the contrary, have a very good view of what happens
inside the host, but are more vulnerable to attacks, that get more and more popular with the
increasing deployment of IDSes.

Virtual Machine Introspection allows us to have both advantages, a good resistance against
attacks on the one hand, and full control of what is happening in the host on the other hand.
Therefore the VMI uses access to the hardware-level state, for example the state of the physical
memory pages and registers and also events like memory accesses and interrupts. The knowl-
edge of these events and states allows us to map the events to OS-level semantics. Through
this it is possible to monitor the host from outside, as if there was an host-based IDS. There are
whole architectures based on this idea, like for example Livewire [GR03]. So we know that VMI

8

allows us to monitor the state of the hardware and from this we can deduce the software state,
but what other advantages do we have?

An VMI allows us to have insight of an host even if it is completely compromised, this is not
given with host based IDS. Furthermore, we have the ability to suspend the host at any moment
to reset the state of it or change some settings. We can even disallow the access to resources
dynamically, for example disallowing that the malware puts a network interface to promiscuous
mode.

On the other hand, there has to be said that malware can implement some functionalities
to detect if it is running on an virtual machine. If this is the case the malware can adapt its
behaviour. One famous project implementing this detection functionality is the Red Pill project
of Joanna Rutkowska.1

2.3 Presentation of Different Malware Analysis Frameworks

In the following section we will briefly introduce three different malware analysis frameworks
that are well known in the actual research field of dynamic malware analysis.

2.3.1 General Overview of the Frameworks

The most frameworks the author of the paper crossed during his research on the topic as well
as the three frameworks that will be described later on have the same architecture, at least, at a
high level as presented in Figure 2:

1Joanna Rutkowska | http://invisiblethings.org/papers/redpill.html | November 2004

9

Figure 2: Life cycle of a malware in a framework

2.3.2 BitBlaze Project

The first framework we will introduce is the BitBlaze project. This framework, developed by
the university of Berkley, is partly available as opensource download.

Fusion of Static and Dynamic Analysis

The Bitblaze project is a composition of different points of view in binary analysis. In opposition
to lots of malware analysis frameworks it is not only relying on dynamic analysis but sets the
focus on both, a full static analysis and a full dynamic analysis. This fusion of both concepts
should provide a wide overview of the behaviour of the analyzed malware. In fact as we have
discussed before, static analysis has advantages and drawbacks, like dynamic analysis. The
static analysis covers more execution paths, but the complexity is often very high, as described
in Section 1.4. Dynamic analysis hits its limits when you want to extract the whole code of the

10

malware. Therefore the Bitblaze project relies on the two analysis methods, the static performed
by Vine and TEMU performing the dynamic analysis.

Architecture

The Bitblaze project is split into three parts:

• Vine for the static analysis, this part introduces an intermediate language, a front- and
back-end.

• TEMU is responsible for the dynamic analysis

• Rudder mixes concrete and symbolic execution component

Vine consists of a platform dependent front-end and a platform independent back-end. The
assembly code gets loaded into the front-end, translated to an intermediate language and send to
the back-end, where different data is prepared and generate control flow graphs, optimisation,
program verification, compute weakest preconditions and interfacing with decision procedures.
Through the code generator even valid C code can be generated.

TEMU is the dynamic analysis part of the Bitblaze project. It is able to extract OS-level
semantics, dynamic taint analysis of the whole system and has the ability to include plugins.
TEMU is build on top of QEMU, a fast and portable dynamic translator [Bel05]. TEMU pro-
vides an API to be able to query the framework on its state, memory, registers, OS-Level seman-
tics. Further more you can save and load the state of the machine at any moment. This allows
multiple path examination in an eased way.

Rudder performs mixed execution and exploring of programs execution space. Rudder runs
at the binary level. You can give several symbolic inputs for a binary program and Rudder will
be able to perform a kind of fuzzing on the binary. This means it will detect multiple paths,
assumed the paths are dependent on symbolic inputs, through its mix of concrete and symbolic
execution feature. Through this, hidden paths that only get reached when certain condition occur
could be detected. [PS08]

2.3.3 TTAnalyze

The second analysis framework we will present is TTAnalyze, it records native Windows sys-
tem calls and Windows API functions that get invoked by the malicious program. TTAnalyze
contains the following key functions:

• Complete operating system emulation build in software. This way the malware cannot
easily detect the trap.

• Calls to native kernel functions and API functions are monitored.

• Function call injection, they allow an alternation of the execution on runtime, or inject
own code in the running process, this technique has been described in Section 2.2.

11

Dynamic Analysis Techniques

Using dynamic analysis techniques TTAnalyze is able to analyse the code on run time. As the
malware gets executed and only commands that really get executed are monitored things like
obfuscation or code encryption play absolutely no role. In order to be efficient and safe, the
malware gets analyzed on a virtual machine that is not connected to the network, in order to
prevent it from spreading. Virtual machine have also the advantage that you can easily erase
them and set them up, in opposition to a real PC where this would last a while. TTAnalyze
uses QEMU [Bel05] as a virtualisation software, which brings us to the architecture part of this
section.

Architecture

The architecture of TTAnalyze has been designed in a way to be easily able to distinguish be-
tween malicious and normal instructions of the processes. As TTAnalyze runs on an emulated
PC with a normal operating system, the framework has to be able to track exactly what com-
mands have been called by the malware and which are usual commands called by normal pro-
cesses. The technique used by the TTAnalyze team relies on the CR3 register of the processor.
This register, which is also known as page-directory base register, contains the physical address
of the base of the page directory for the executed process. Knowing that the virtual address
space is computed from the physical page directory it seems obvious that TTAnalyze can find
out when the malware is executed: It simply has to monitor the CR3 registry after each context
switch, if the CR3 registry points to the physical address space of the malware, we can be sure
that the currently executed instructions have a relation to the malware. Now this is for the con-
cept, the realisation of this is a little bit harder, as you have to find out the physical address space
of the malware, start the malware in suspend mode and somehow communicate the address to
the TTAnalyze framework. This will not be covered in this paper, but closer information can be
found in [Kir06].

Another technique used by TTAnalyze on order to monitor the access to operating system
services in an inconspicuous way is to compare the value of the instruction pointer of the pro-
cessor running inside the virtual machine with the start address of the known operating system
functions. TTAnalyze uses a callback function to realize that. Windows application access oper-
ating system functions through dynamic linking, and calling their export functions. We can now
access the dll’s export table in order to gain back the start address of the function that is called
(CreateFile for example is located in kernel32.dll)

Now that TTAnalyze is able to retrieve operating system function calls it would be nice to
know what parameters have been passed to the functions. This has also been realised in TTAna-
lyze, the technique used to make this possible relies on callback functions. Assume an analyzed
malware sample tries to create a file by invoking the CreateFile function, TTAnalyze is then able
to use a callback function that accesses and logs the parameter given to the function, and through
this it is able to know the name of the created file. Details on this techniques are described in
[Kir06].

12

Another concept that is extensively used in TTAnalyze is the, already presented in Section
2.2.2, code injection. This is used to change the flow of execution of the malware. Using this
technique the malware can be forced to perform different actions that allow a more accurate
analysis of the sample. For example there is no possibility to know if CreateFile is really creat-
ing a file or just reading an existent. The real behaviour of the call can be detected by a smart
injection of code. Similar problem is the fact that it is hard to detect if the malware works on a
folder or a file, or if TTAnalyze is confronted with unknown handlers.

All the techniques described here are implementable in the testing environment, as a virtual-
ized CPU is used. Simply inserting additional instructions into QEMU’s translation blocks does
the trick.

Analysis Report

The analysis report generated by a tool like TTAnalyze is a very important part of the tool, as it
provides a lot of information to the user or researcher and allows him to gain an overview over
the analyzed malware. It is crucial to have good and reliable reports if you want to generate sig-
natures for IDS or similar intrusion detection technologies. Therefore we’ll present the analysis
report provided by TTAnalyze.

The report is generated by a set of callback routines that log security related actions linked to
the execution of the malware in the emulated environment. The report generated by TTAnalyze
contains the following information:

• General information about the malware sample but also about the invocation of the tool,
including command line parameters.

• File activity. Monitors the activity on files, creation, modification, deletion, etc.

• Activity performed by the registry: Monitoring of the Windows registry.

• Service activity: What services have been touched, stopped or started.

• Activity by the processes: Monitoring of the process activity.

• Network activity: Contains a dump of the packets send and received by the malware.

This provides a lot of information about a malware sample that has been executed in the envi-
ronment, it provides us with a lot of information regarding the activity of the malware.

2.3.4 CWSandbox

Finally, we will introduce CWSandbox, a framework known for:

• executing malware in a simulated environment,

13

• monitoring all system calls,

• automatically generating detailed reports.

Architecture

The architecture of CWSandbox has been conceived in a smart way, it allows a good balance
between different known techniques and generates a detailed report of the analyzed malware
samples.

First of all we will describe the setup used: CWSandbox executes a malware in order to anal-
yse it, it is a behaviour based malware analysis. The environment used to analyse and execute
the malware is a controlled environment which is not virtualized. The security related actions
performed by the malware are monitored using well known techniques described earlier in this
paper. CWSandbox makes extensive use of network traffic data to get a more accurate overview
over the behaviour of the malware.

To be able to use CWSandbox different task have to be performed before starting. cwsand-
box.exe as well ass cwmonitor.dll have to be integrated in the virtualized environment in order
to be able to analyse the malware. API hooks are installed by the .ddl file as well as exchanging
information with the sandbox itself. Through API hooking a lot of information can be gained
over the malware. In the best case the malware will not notice anything about the modified
environment it is running on, and behave normally. In order to increase the invisibility of the
framework cwmonitor.dll comes with some rootkit functionalities. While a malware gets ex-
ecuted a huge amount of communication happens between cwmonitor.dll and cwsandbox.exe,
this is realized using IPC. Through this the sandbox is able to log a huge amount of information
(API calls) provided by cwsandbox.dll. A high-level overview will be bresentet in Figure 3.

14

Figure 3: Overview of cwsandbox. [HF07]

At the end, once the execution is ended by the malware itself or the sandbox, the data collected is
analyzed and an XML report is generated. In the next part details of the report will be described.

Analysis Report

The analysis report generated by CWSandbox is very complete, as CWSandbox performs its
analysis on live systems it knows exactly what interactions with systems, network, registry or
files is performed. CWSandbox is quite accurate in its analysis but of course it is only able to
monitors the processes that are hooked, so minor changes might not be detected by the frame-
work, if there has no hooking been created for those functions. Running the malware for a period
of 2 minutes seems to be the best to gain accurate results.

The XML report contains a lot of details which will not be described in detail here but can be
found in [HF07]. Reports include, beside other information, what protocol was accessed (IRC,
HTTP,...) passwords for channels, ... what the malware tried to do, click fraud for example, or
how it tried to spread. Bodies as well as destination email addresses were logged in case SMTP
was used to spread.

All in all, the report should help the analyst to classify the analyzed malware in an fast, auto-
mated and reliable way. Further analysis can then be performed by the researcher on interesting
or new threats. This allows a fast classification and the researcher can mask the background
noise produced by the huge amount of already known malware. Through this the analyst wins
huge amounts of time that he can invest in the analysis of the new malware.

15

Figure 4: Extract of an analyse report. [cw]

16

3 Conclusion

3.1 Security Application

When confronted with new malware every day, researchers have to be smart and find ways to
analyse and protect infrastructures against unknown threats. This section will introduce the
reader to some of those security applications that help protect against unknown exploits. The
details of each techniques is way to wide to be explained in detail here, so we just touch on the
subjects.

Dynamic taint analysis is used to detect and prevent exploitations of previously unknown at-
tacks or exploits. A framework called Sting is able to produce filters to protect against those
attacks in an automated way. This should protect hosts and networks against attacks of fast
spreading worms, like, in the past for example CodeRed.

Input-based filters are very important. They prevent hosts from being compromised before
they can be patched. It is self explaining that a good, reliable input-based filter would help best
if it was working fully automated. The BitBlaze project team developed a tool able to do exactly
this. Their tool is even able to do this with zero false positives. This kind of protection helps
against several kind of exploits.

Another threat is the patch of the vulnerability itself. Attackers are able to use the information
in the patch to produce exploits and attack hosts that are not yet patched. Researcher demon-
strated ways to write patched in a secure way, these patches are not revealing any sensitive
information an attacker could use to exploit vulnerable hosts.

3.2 Malware Analysis and Defense

Tools developed in the goal to protect users and retrieve information related to the malware are
widely spread in the research field, we will introduce some of them here:

Panorama is a tool that is able to detect privacy-breaching malware by using whole-system
dynamic taint analysis. This techniques allows researchers to detect overwrite attacks. This in-
cludes the techniques used by most of the exploits. As dynamic taint analysis works on software
without the need of its source code nor special compilation flags basically every software could
use this technique. [PS08]
Renovo is a tool designed and developed to have a complete dynamic approach of extraction of
hidden code. It claims to be able to handle novel packers and to be resistant to various evasion

17

techniques. This tool can be tested and used by everyone as it is publicly reachable through the
Internet. [PS08]
Hookfinder is a tool that is able to detect hooks placed by malware in an automated way. It
should also be able to identify and analyse new hooking techniques. These is very important in-
formation for anti-virus companies and researchers as this allows them the react to new hooking
trends and to protect users. [PS08]
BitScope is an automated malware dissector. It is uncovering hidden functionality of malicious
binaries. Extracting hidden functionalities of malware is a very important task. Nowadays mal-
ware is getting smarter and smarter, developers know about the techniques used by malware
fighters and they try to hide functionalities of their code from those researchers. [PS08]
Since some time the presented tools are available for everybody. The tools can be accessed over
the Internet and samples of malware cane be uploaded to the platform, the platform is generating
reports and provides it to the user. Different parts of the BitBlaze project are open-source.

3.3 Personal Conclusion

The following section will reflect the author’s personal point of view regarding dynamic mal-
ware analysis.

The turnover from manual malware analysis to dynamic malware analysis seems to be a need
for the future. Huge amounts of malware are discovered every day. This can be very low skilled
kit-based malware distributed in mass by script kiddies, or malware build by professionals fol-
lowing one goal, earning money. Cyberwar has started to be a real threat to everyone, and the
proportions it takes are increasing with every year. The need to have a method to identify mal-
ware in a fast and reliable way, and generate signature faster than nowadays seems to be a real
need.

A lot of progress has been performed in the last years in the domain of automated malware
analysis. Many new ideas have emerged, but also new tactics by the other side, to evade or
exploit the new tools of the good guys. Many attacks on virtual machine have been noticed,
intelligent malware has been released, noticing whether it is running on an emulated or native
machine. It is like it has always been in the past, the cat and mouse game is still going on,
and should not end here. As hacking starts to be more and more mainstream, it is sure that the
amount of good and evil guys will increase and the battle will go on. Nevertheless, it seems to be
an equal war, both camps have very high skilled engineers and researchers, so they are fighting
with equal arms.

It is with much suspense for the future, that we will see if the approach of dynamic malware
analysis will give a significant advantage to the good guys, or if the bad guys will win this battle,
or give it up and turn to other methods to reach their goal.

18

Bibliography

[Bel05] Fabrice Bellard. Qemu, a fast and portable dynamic translator. 2005.

[cw] http://www.sunbeltsecurity.com/partnerresources/
cwsandbox.

[Fer07] Peter Ferrie. Attacks on more virtual machine emulators. 2007.

[GR03] Tal Garfinkel and Mendel Rosenblum. A virtual machine introspection based archi-
tecture for intrusion detection. 2003.

[HF07] Carsten Willems Thorsten Holz and Felix Freiling. Toward automated dynamic mal-
ware analysis using cwsandbox. 2007.

[Kir06] Ulrich Bayer Andreas Moser Christopher Kruegel Engin Kirda. Dynamic analysis of
malicious code. 2006.

[KK07] Andreas Moser Christopher Kruegel and Engin Kirda. Limits of static analysis for
malware detection. 2007.

[PS08] Dawn Song David Brumley Heng Yin Juan Caballero Ivan Jager Min Gyung Kang
Zhenkai Liang James Newsome Pongsin Poosankam and Prateek Saxena. Bitblaze: A
new approach to computer security via binary analysis. 2008.

[Sym10] Symantec. Internet security threat report: Volume xv: April 2010. 2010.

[WS07] Alexandre Dulaunoy Gerard Wagener and Radu State. Automated malware analysis.
2007.

19

