
ABSTRACT

Due to its function as a key enabling technology for the
information society and to its compliance with open standards,
infrastructure software is quickly commoditized. Its market
therefore evolves to natural monopolies faster than markets for
tangible goods. The success of free/libre/open-source software,
originally created for ethical reasons, may be explained by
interpreting it as a new paradigm which provides effective
answers to the structural flaws of the market. Now that
mainstream industry players realize how much economical
sense this approach makes, they investigate new business and
innovation models.

In this context, business-neutral meta-organizations
federating vendors, customers and governmental agencies shall
target the sustainable development of business ecosystems
where stakeholders, widely spread across various geographic
and cultural environments, develop beneficial strategies in line
with their business and societal requirements. Real world
experience from new generation F/L/OSS communities confirm
this vision and suggest some balanced principles for their
management and governance.

Keywords: free/libre/open-source software, business
ecosystems, collective strategies, collaborative engineering,
open innovation, intellectual property

1. INTRODUCTION

Future software infrastructures promise to be orders of
magnitude more complex than today’s, so as to address
requirements such as interoperability, security, dependability,
usability, testability, reliability, safety, flexibility,
accountability – and ubiquity. Not only are these issues
complex by nature, but vast consensuses over technology
choices will have to be reached so to answer them in a socially
acceptable manner. Collaboration will be necessary to address
complexity; multilateral thinking will be required to reach
consensuses. Building tomorrow’s software infrastructures will
be a multiplayer game on the global scale.

Collaborative engineering based on the “hacker attitude”
and free access to source code have proved extremely effective
in building quality software and in building consensus.
However, not all companies today seem comfortable with
free/libre1/open-source (FLOSS) communities, for a full
spectrum of reasons ranging from cultural differences to legal
stumbling stones. In this paper, we explore the rationale for
1 In 2000, the European Commission introduced the term libre
software to avoid the ambiguity of the English word “free”. In this
paper, we use the expression Free/Libre/Open-Source Software
(FLOSS) to speak of software distributed under a license that
allows complete access to the source code and grants use,
modification and redistribution rights.

new generation organizations which aim at bridging the gap
between FLOSS software communities and the business world
while keeping best practices of both.

This paper is organized as follows: in section 2 we present
some characteristics of infrastructure software and explain why
such technologies tend to be quickly commoditized. Section 3
presents theoretical and observational justifications that, due to
commoditization, the market for infrastructure software suffers
from structural flaws that leave vendors and users unsatisfied.
Section 4 proposes to reconsider the virtues of the FLOSS
process on the basis of its economical effectiveness and
capacity to address market flaws with pragmatism. Section 5
argues that FLOSS business models can contribute to building a
robust business and innovation ecosystem where vendors and
customers can find their place. Section 6 concludes.

2. COMMODITIZATION OF INFRASTRUCTURE
SOFTWARE

2.1. Software as an Information Good

Software is a pure information artifact, distinct from
hardware layers and from the delivery of services. As a kind of
information good (or knowledge goods) it is aspatial, nonrival
and discrete by nature: its use by one agent does not degrade
its usefulness to a yet different agent; its extent is not localized
to a physical spatial neighborhood; when instantiated, [it is]
created to some fixed, discrete quantity usually taken to be 1,
as there is then one copy of the item. [2] Infrastructure software
enables and facilitates the development of complex distributed
systems designed to process information. Operating systems
and middleware typically fall into this category. Not targeted to
the desktop and virtually invisible to the final user,
infrastructure software is often described as hidden or “buried”.
Nevertheless, as computing becomes increasingly pervasive
and computer systems increasingly complex, infrastructure
software appears as a key enabling technology for the
development of the information society in the digital age.

2.2. Open Standards and Interoperability

Infrastructure software hides the physical heterogeneity of
hardware platforms and, to some extent, the distributed nature
of computation. In addition to the functional features (such as
communication capabilities), it provides uniform high-level
programming interfaces which facilitate software engineering.
In the current state of our technology, the above objectives are
met by designing shared encodings, formats, protocols,
interfaces and akin kinds of specifications - often referred to as
standards.

De jure standards are defined by independent
standardization bodies, such as public authorities or gatherings
of industry stakeholders. De facto standards are initially defined

Open Source Software:
the Role of Nonprofits in Federating
Business and Innovation Ecosystems

François LETELLIER
fl@flet.fr

January 2008

by an isolated industry player or by a small party and later on
vastly adopted by other actors. From a competitive viewpoint,
de facto standards are typically promoted by a market leader, or
a forerunner in an emerging market, and later on used by this
leader to retain its market domination.

Independently of their de jure or de facto status, open
standards are characterized by the following properties:

• They are explicitly documented. For this reason, they
enable the development of interchangeable software

• They are openly accessible and free to implement by
everyone. This enables free competition and
cooperation between technology vendors

• They are usually defined to accommodate both
providers and consumers needs, in a consensual
process involving a panel of potential vendors and
potential users

Open standards play a pivotal role in the development of
software infrastructures in the information society: two features
are essential to the deployment of the information
infrastructure needed by the information society: one is a
seamless interconnection of networks and the other that the
services and applications which build on them should be able
to work together (interoperability) [9].

2.3. Commoditization

A commodity is a good used as a building block for many
different purposes, sourced by more than one producer and
defined by uniform quality standards [13]. High tech
commodities are building blocks for more complex systems:
computer parts, RAM, microchips are sourced by many
different manufacturers, comply with very strict specifications
and are used by many different assemblers.

Strict compliance with standards tends to make solutions
interchangeable [52]. Making software a commodity by
developing an industry of reusable components was set as a
goal in the early days of software engineering. While
significant progress has been made, this still remains a long
term challenge [1]. Whenever implementation of these
standards is free, as allowed by open standards, several
providers are likely to develop standard-compliant products.
The very existence of an open standard promises that a
significant market exists for such products.

For these reasons, open-standard-compliant infrastructure
software has the characteristics of a commodity: several
providers, many uses, and interchangeability.

3. STRUCTURAL FLAWS OF
THE INFRASTRCUTURE SOFTWARE MARKET

3.1. Free Market, Perfect Competition

Perfect competition does not exist in the real world – and
the meaning of the word competition is subtly different in
traditional economics and in the neoclassical theory.
Neoclassicals rule out the assumptions of homogeneity across
products and of perfect information. They see competition as a
dynamic process aiming to gain advantages through product
differentiation. The ultimate goal for sellers is to monopolize
the market – and to eliminate competitors.

Still, the market for open-standard-compliant
infrastructure software in the digital age is fairly close to the
traditional vision of perfect competition (at this point, we must
make it clear that we are here speaking of the market for
software licenses – not intermediary markets for intellectual

property rights ownership – see 3.3). Publishing software is a
straightforward and painless process. Although complex and
powerful, software only requires little investment in terms of
production tools. Its distribution is easy and inexpensive; a
worldwide outreach can be targeted at virtually no cost through
the Internet, which at the same time ensures efficient and free
information.

3.2. Competition in Commodity Markets

Competition in quantity is an unrealistic model for
information goods such as software that can be duplicated ad
infinitum at no cost. In model of competition in price [30], each
competitor chooses its own output price, while assuming the
other competitors’ price constant. Products are homogeneous
across all competitors, who may deliver any quantity as
required to serve the customers. Information flows freely and
perfectly between sellers and buyers.

In such model, a Nash equilibrium [31] is reached when
no competitor makes any profit. Many economists believe that
this result (the “Bertrand paradox”) is descriptive of real, highly
competitive markets even though the conclusion that no
competitor makes any profit when the market reaches
equilibrium sounds against common sense. Authors have
proposed solutions to the paradox by introducing capacity
constraints (Edgeworth) or assuming differences between
products (other than price). None of these solutions seem to
apply well to standard-compliant software: there’s no limit in
the sellers’ production capacity, and standard compliance
significantly reduces differentiation between products.

3.3. Unlimited Supply and Drastic Economies of Scale

On the infrastructure software market, a product is not any
specific computer program, it is actually an instance (or copy)
of this program. According to the laws on intellectual property
rights (IPRs), the proprietor of the copyright grants a right to
use (the exact definition of use being variable) the software
[46]. Getting a copy of the software is a prerequisite to benefit
from the right to use it. In this paper, we don’t cover the issues
related to unlawful uses of software. For this reason, we assume
that any transfer of the right to use a computer program is
accompanied with the necessary transmission of a copy of the
software. Conversely, we assume that any transmission of a
copy of the software is accompanied with the transfer of some
rights to use it for some purposes, under some conditions. For
simplicity we call license the bundle of a copy of software with
the right to use it.

Software can be duplicated ad infinitum with no loss of
quality. Duplication costs are extremely low, actually negligible
when compared to development costs. The production of
licenses is therefore not limited due to any technical constraint.
A licenses shortage may only originate in a vendor’s
unwillingness to provide them.

3.4. Very Low Prices

Due to drastic economies of scale on software licenses,
whenever the market is big enough, the Bertrand-Nash
equilibrium is for a quantity close to market saturation and to a
very low price. For a worldwide software market of millions of
users, the theoretical equilibrium is for a price millions times
smaller than the software development cost (first unit). This
prediction based on the rather simplistic model is confirmed by
more sophisticated models (e.g. Arrow-Debreu): because of
zero marginal costs of reproduction, the present value of an

intellectual asset would, under perfect competition, turn out to
be zero [49].

Observations corroborate theoretical predictions: literally
hundred thousands programs are available gratis on the
Internet. We do not only speak here of “free software”, but also
of freeware (and to some extent of shareware too) and of “lite”
versions of commercial software. Such software often is of very
high quality and rivals with commercial offers: GNU/Linux,
OpenOffice, PostgreSQL, Internet Explorer, Acrobat Reader
are popular examples. Today, businesses can actually be
lawfully operated using only gratis software, and the biggest
part of the Internet infrastructure relies on free software [52].

The issue of very low software price at first only sounds
like a problem from the vendor’s perspective. However, low
prices come with side effects, including low perceived value
and high economical risk for the vendors. In the long run, low
prices, and subsequent limited margins, incite those vendors
who primarily derive revenues from licensing to put on the
market only good-enough products, hence sacrificing software
quality, long term support and actual innovation.

3.5. Natural Monopolies

Industries with strong economies of scale are known for
their proneness to natural monopolies. Once in a dominant
position, a vendor may keep the price low enough to deter
potential competitors and as high as possible to maximize its
profit. In the software industry, anti-competitive moves are
specially easy to perform, by cutting down the price when
necessary, as anyway the marginal production cost is virtually
zero [51].

The tendency of the market’s price to decrease quickly due
to almost perfect price competition tends to reduce the
perceived value of the good. As happens with other information
goods, positive per-item prices are inefficient because they
discourage consumption with value greater than marginal cost.
Further, very low per item prices will not recover first-copy
costs and thus firms will not have an incentive to create new
content [39].

3.6. Oversupply of Information Goods

The winner-takes-all effect is a powerful, even though
deceptive, incentive to produce information products, even
when financial profit is not the main motivation (notoriety, peer
recognition, etc. are common alternate rewards [43]). Even
individuals with very limited material resources can ambition to
be in the position of serving a worldwide market, at no cost, if
their work is compelling enough. At the individual level,
success is uncertain; at the global level, the bottom-line is an
oversupply of information products. As an example of
information goods where oversupply is documented, the
literature mentions new classical musical compositions, written
in greater numbers than can be performed.

The software oversupply is well exemplified by the
thriving of FLOSS projects (hundreds of thousands on
SourceForge.org only), and of free/sharewares.

3.7. An Unefficient Market

Unlike free markets for tangible goods, the market for
open-standard compliant infrastructure software appears
plagued by a vicious circle. Commoditization is a key enabler
of adoption, but economies of scale induce a rapid fall of
market prices, while creating a radical winner-takes-all effect
and consolidating natural monopolies. The perspective of being

the winner is a huge incentive for creating new software, hence
inducing oversupply.

Even though some companies may perform well during a
given period of time, the horse race effect in new markets and
the price fall in older markets make business models centered
on the commercial licensing of open-standard compliant
infrastructure software a predictable failure for the vast
majority of competitors. The bottom line is an ill-functioning
market which leaves a vast majority of vendors and customers
unsatisfied.

4. OPEN SOURCE AS A PARADIGM SHIFT

4.1. Ethical Motivations for Openness

In the early days of computing, access to the source code
of any piece of software was the common rule, as software was
most often provided as an adjuvant to hardware. This tendency
started to change as computers got more widely adopted in the
early 80’s, as mass storage and networks enabled easier
distribution of data and software, and as commodity computers
hit the market.

Nevertheless, ever since then, the Free Software
Foundation and proponents of free software advocated for
ethical principles [34] in software production, namely the
computer users' rights to use, study, copy, modify, and
redistribute computer programs [15]. In this vision, access to
the source code is little more than a technical means to achieve
the above stated goals.

Over time, the movement of open-source software
appeared with the more pragmatic rationale to set software
quality as a main goal, to promote access to the source code as
the preferred means to reach this goal and to explicitly target
commercial use of open-source software. As stated by the
Open-Source Initiative [33]: “The basic idea behind open
source is very simple: When programmers can read,
redistribute, and modify the source code for a piece of
software, the software evolves. […] We in the open source
community have learned that this rapid evolutionary process
produces better software than the traditional closed model, in
which only a very few programmers can see the source and
everybody else must blindly use an opaque block of bits. Open
Source Initiative exists to make this case to the commercial
world”.

4.2. FLOSS Thriving: an “Exaptation”?

Extensive intellectual property rights are frequently
considered as a way to overcome market inefficiency for
information goods, for the benefit of innovators and customers.

Without entering the debate about software patenting, it is
worth noticing that software oversupply, commoditization and
availability of gratis software products are a reality even in the
countries where software can be patented (e.g.: the USA).

In regions where software is patentable2, adverse effects of
software patents on innovation and their use for anti-
competitive purposes have been documented [48]. Some recent
studies suggest that for information goods, markets function
optimally and IPRs are either unnecessary or, if they affect
allocations, harmful to social efficiency. Creativity and
innovation are properly priced in competitive equilibrium, and
socially efficient outcomes obtain without the contrivance of
IPRs [2], [49], [50].

2at the time of writing, software as such is outside the scope of
patents in the European Union

From early programming languages to modern
component-oriented methods, software engineering is based on
modular design. Modularity makes it (fairly) easy to split a
product between a part that is protected by strong IPRs
(patents) and a part classically protected by copyright.
Commoditization occurs on this second part. Commodity,
standard compliant components are good enough for a majority
of uses, while strongly protected enhancements create a de
facto separate market. This interpretation is consistent with
Christensen’s conservation of modularity [36].

In a context where an over protective extension of
software IP fails to provide appropriate answers to structural
market flaws, the FLOSS approach may have spread and
gained momentum because it makes economical sense for
infrastructure software development. To use evolutionary
jargon, the rapid expansion of FLOSS in the ICT sector [11]
may be seen as a successful exaptation of free software, i.e. the
utilization of a structure or feature for a function other than
that for which it was developed [through natural selection]
[35]. Originally imagined to protect the user's freedom,
free/open source licensing introduced a mutation in copyright
practices which eventually proved economically sound.

This is corroborated by the observation that top motives
for adoption of FLOSS by companies are independence from
pricing and licensing policies of big software companies and
technical superiority [21] over proprietary software [17], [18].

4.3. Business Models

Because users ask for FLOSS, vendors learn to adapt their
offer so to answer the demand. New business models centered
on FLOSS appeared shortly after free and later on open-source
software flourished: as stated by A. J. Slywotzky, value
migration is the shifting of value creating forces. Value
migrates from outmoded business models to business designs
that are better able to satisfy customers' priorities [37].

At any given point in time, not the whole software stack is
commoditized. One reason is that there are missing, or not-yet-
defined, standards. Another reason is that some very specific
developments are only relevant to niche markets. The full
extent of this latter case is when tailor-made software is
specifically developed for one single customer. At the boundary
between commoditized and not yet commoditized parts of the
software stack lie opportunities to develop successful, yet
transient, business models: according to C. Christensen, when
attractive profits disappear at one stage in the value chain
because a product becomes modular and commoditized, the
opportunity to earn attractive profits with proprietary products
will usually emerge at an adjacent stage. [36]

B. Perens lists four paradigms for software development:
retail; in-house & contract; efforts at collaboration without
open source licensing; and open source [16]. This classification
emphasizes the fact that collaboration is a long known
production paradigm, but also that the open-source process
goes a step further thus becoming a distinct paradigm.

J. Koenig [4] proposes seven business models briefly
presented below:

• Patronage
Patronage is a strategy to use FLOSS to proactively
foster the commoditization of a given part of the
software stack. Motivations may be various:
accelerating the adoption of a standard; using open-
source as a channel to transfer research results to the
industry; balancing the domination of the leader in a
monopoly market; undercutting entrenched
competition. Revenue generation is not the main goal.

• Optimization
The core of this strategy is to leverage cost savings
achieved on commodity to sell added-value, fine-tuned
proprietary bricks for specific uses. This strategy is a
direct application of the law of conservation of
attractive profits.

• Dual licensing
Dual-licensing is a hybrid licensing scheme mixing
open-source and close-source options and targeting
direct license revenue. A software product is licensed
under a commercial license (that grants rights that may
include access to the source code and rights of
modification/redistribution). Another version of the
same product, typically coming with fewer features, is
made available to the community under an open-source
license. In this scheme, open-source is mainly used as a
promotional tactics. As the vendor of the commercial
version needs to detain IP rights over the software,
contributors to the open-source version need to agree
on assigning their copyright to the vendor, possibly in a
non exclusive manner.

• Consulting
This option is in no way specific to FLOSS. As the
FLOSS process is mainly technology-driven,
consultancies offer complementary professional
services that bridge the gap between the companies’
business expectations and the FLOSS communities:
training, architecture, certification, support,
customization, fine tuning, etc.

• Subscription
The subscription model intends to derive recurrent
revenues from packaging or bundling open-source
software along with recurrent services: selection of
best-of-breed technologies, integration, maintenance,
updates, support, etc. Software oversupply is a good
argument in favour of such offers, as complexity of the
IT world becomes overwhelming to non-IT companies
[40].

• Hosted
The hosted strategy consists in offering software as a
service(servitization of a product). This can be done in
a very straightforward way by application service
providers or in a more indirect way through infoware
[13], including all kinds of e-business applications. A
key competitive advantage is derived from the access
to the source code, that enables extreme agility to
applications that constantly evolve to meet and
anticipate customers needs.

• Embedded
This model directly derives value from the right to sell
commodity software. It consists in embedding FLOSS
either in hardware products or in more complex
software products: in the first case, the use of
commodity hardware is likely to be a prerequisite, as
commodity FLOSS is more likely to be available and
stable on widely adopted hardware. Access to the
source code enables the embedded provider to adapt
and fine tune FLOSS to the specificities of the target
hardware/software architecture.

It is worth noticing that at the time of writing, the
taxonomy of FLOSS business model is far from being
stabilized in the literature. Support seller, loss leader, widget
frosting, accessorizing, service enabler, sell it/free it, brand
licensing, community enabler is another classification which is

widely used. This diversity demonstrates that even though a
common misconception is that “there is no business model for
open-source”, there are actually many ways of doing business
with FLOSS, and vendors creativity has not yet reached its
limits.

Apart from the above models, more classical business
models such as industrialization of service, cutting out the
middleman, loyalty or network marketing may also be applied
to FLOSS. The classical bait and hook strategy also can be
adapted to FLOSS in a very straightforward way: a vendor uses
FLOSS to disseminate a technology and sells complements
(either proprietary software or service) over which it retains a
competitive advantage. To successfully run this model, the
vendor needs to avoid open-standards if selling proprietary
software complements, or needs to retain a control over IPRs
and/or the key developers of the FLOSS, so to claim an
unrivalled level of expertise if selling service. In this model, as
in dual licensing, source openness is little more than a
marketing strategy, although it may help increase software
quality.

The unidimensional customer-supplier relationship
appears outmoded in the world of FLOSS where various
business models play a complementary role throughout the
software supply and demand chains. Pure FLOSS players most
often follow business models that are a blend of two or more of
the models described above, and their success is highly
dependant on their ability to gain a keystone position in the
ecosystem. In all cases, the choice of the licensing scheme is
highly dependant on the business model.

4.4. Windows of Opportunities

As decribed in the theory of adoption expressed by the
Chasm group [38], adoption of a new high-tech technology
(disruptive innovation) follows a lifecycle roughly segmented
in three phases, separated by two “cracks”. The first crack (the
“chasm”) divides the early market (innovators and early
adopters) from the mainstream market. Making a new
technology cross this crack is key to its success and long lasting
adoption.

The second crack divides the mainstream market in two
parts: early majority on one side, late majority (conservatives)
and laggards on the other. We emphasize on this second crack
because it typically separate two groups of customers according
to the level of integration in the new technology: conservatives
like to buy preassembled packages, with everything bundled, at
a heavily discounted price [38]. In the specific case of software,
serving these expectations from conservatives requires the
availability of low cost, commodity components that can be
packaged as turnkey bundles.

We propose to characterize the three phases as follows:

• Emerging technology: immature standards; little
adoption; interest from the early market

• Being commoditized: maturing standards; adoption by
the early majority in the mainstream market; fast
evolution of the market state towards low-cost, highly
adopted offers

• Fully commoditized: critical mass of users;
generalization in the conservative part of the
mainstream market; market state close to the theoretical
equilibrium for fully commoditized information goods;
transfer of attractive profits to other parts of the stack

We propose three patterns of opportunities for the various
business models described above:

• Transient opportunity: patronage; optimization; dual
licensing; bait and hook
These business models are typically adversely affected
by a wide adoption of the technology. Patronage is
pointless once a technology reaches the state of a key
enabling technology. Both optimization and dual-
licensing bear the risk of finding big competitors or
very low cost alternates, most likely in open-source, in
their way. This risk is very well exemplified by the
emergence of totally free, open-source R/DBMS such
as PostgreSQL and Derby that start undercutting Oracle
(optimization [4]) and MySQL (dual license [4])
respectively. Bait and hook is likely to fail in the long
run, for two different reasons depending on whether the
FLOSS bait complies to open standards. If it does, the
scheme may fail for the same reasons as dual licensing.
If it does not, open standards are likely to prevail in the
long run.

• Early opportunity: consulting; subscription
The curve of opportunities is relatively flat. Business
opportunities increase as the technology becomes more
widely adopted. Lack of skills and support are the two
main reasons why companies reject open-source today
[22]. Service companies specialized in FLOSS
(consulting) and “distros” (subscription) typically turn
these lacks into business opportunities. Contributing to
the code typically is a competitive advantage for these
business models.

• Late opportunity: hosted; embedded
The successful development of these business models
depends on technology maturity, i.e. its stability, low
operating costs, wide adoption by customers and/or
wide availability on commodity hardware. Web hosting
providers (hosted) leverage the popularity of the
Apache web server and of various scripting languages
to propose low-cost web presence. The cost-effective
use of GNU/Linux in appliances such as routers
(embedded) is made possible by its stability and its
availability on commodity processors.

4.5. Usage Models

Open-source business models apply to entities acting on
the supply side of the software landscape. We propose another
classification, this time suited to users, of four levels of
involvement in the development of FLOSS:

• Reuse
FLOSS software is used as cost-effective and/or high-
quality alternative to proprietary, close-source
software. Access to the source code is anecdotic and is
not a major motive for choosing FLOSS [18]. Although
this model is the most passive, it contributes to the
overall sustainability of the FLOSS projects through
adoption and direct network effects.

• Double-sourcing
This option is a variant of reuse. FLOSS is used as a
partial substitute for proprietary software. Non mission-
critical applications are typically migrated to FLOSS
solutions with lightweight supporting services; or
migration of non critical systems pave the way to

gradual migration of more ccritical parts of the IT
infrastructure. Alternatively, scalability of information
systems is achieved by complementing a proprietary
core architecture with satellite FLOSS bricks. This is a
way to lower risks, as the user is no longer dependant
of a single technology/provider. This is also a powerful
way to negotiate with proprietary vendors.

• Percolation
The idea is there to consider the FLOSS community as
an partner in the development and maintenance of
software developed in house. The motive is here to
mitigate the burden to maintain or enhance software
[45]. Code donation is typically done to well-
established open-source projects. Code development
may be outsourced to a service company under the
condition that software be released in open-source.
Percolation can be applied to outdated technologies, by
software companies willing to remain on the bleeding-
edge of technology and to challenge competitors while
getting rid of what’s no longer a competitive advantage
to them [5], or as an entry strategy in an optimization
business model: the lower end of a proprietary suite is
open-sourced to drive adoption of the remaining
proprietary part through indirect network effects.

• Shared R&D
Collaborative development is a paradigm shift from the
traditional supplier customer relation that turns tables
and put the responsibility for software development on
the users themselves. In this model, there is simply no
supplier or, better said, the community of collaborating
producers of software is the supplier for each one of
them. This approach is often compared to communes,
commons or coops, and should be evaluated taking into
account that about half of internal developments don’t
work out [5].

5. THIRD GENERATION OPEN SOURCE
ORGANIZATIONS

5.1. Three Generations of Open Source Organizations

Open-source communities address technological issues in
a very efficient fashion. However, they leave companies
virtually alone when it comes to complementing software with
all it takes to make a product: positioning, packaging,
customization, training, services, communication, quality
assurance, certification of compliance with standards, etc.

Historically, free software first emerged from the efforts of
individuals following a form of “hacker ethics”. Over time, the
informal communities working on free/open source projects felt
the necessity to incept legal entities, made of individual
members. The Apache Software Foundation is very typical of
this second generation of FLOSS organizations: the
membership of the ASF is composed of individuals, not
companies [32].

Now that FLOSS reaches the mainstream, the software
industry is ready for a third generation of FLOSS organizations:
gatherings of legal entities. The Eclipse foundation, the
MMBase foundation, the ObjectWeb Consortium and the OW2
association, the Open-Source Development Lab (OSDL) appear
to be forerunners of this new generation. They differ from
organizations of an older generation in either of two ways:

• unlike standardization bodies, they target code
development instead of standards creation

• unlike FLOSS communities of individuals, they
directly and openly involve companies in a business
oriented fashion

Consequently, the profile of developers found in third-
generation organizations is significantly different from that of
the second generation. The typical FLOSS developer was
pictured [12] as a technology-enthusiastic, male bright kid in
his thirties working on his spare time for personal motives.
Communities members increasingly depart from this archetype,
with more involvement of professionals of all ages and both
genders appointed to contribute to projects on their working
hours, according to a corporate rationale.

5.2. Collective Strategies

Business models and usage models are patterns that link
economical and technical aspects of FLOSS. The conjunction
of several patterns involving various industry players
dramatically increases the sustainability of the projects, hence
that of the related business models.

Coopetition [24] appears to be a major modality of high
tech companies’ activity, which encompasses three notions:
complementarity between organizations; multiplicity of roles
played by a single organization; and governance rules that
enable to keep balance between competition and collective
strategies. Collective strategies often rely on formal relations,
embodied in contracts.

The FLOSS licenses provide a formal framework for the
technical part of collaboration: open source is partnership with
rules [5]. However, when collective strategies come to involve
business-oriented legal entities, this legal framework needs to
be extended so to address non-technical aspects of
collaboration.

Meta-organizations such as cooperatives [44], unions,
consortia, federations may provide a legal framework suitable
to formalize collective strategies, ensure proper governance and
promote coopetition between players from different
backgrounds, competitors included [26].

In closed structures such as coops where members share
efforts and only members share results [44], collaborative
development of domain-specific software makes sense.
However, for reasons exposed above, infrastructure software
offers far more value when shared than when used in isolation
[3]. In this context, the openness of FLOSS licenses is
fundamental in improving software quality, fighting the “not-
invented-here” syndrome [5], distributing technology for the
common good and eventually recruiting new members.

5.3. Proactively Building an Ecosystem

Although collaborative development is pivotal in the third
generation of FLOSS organizations, the potential of inter-
organizational collaboration goes beyond collective strategies
[23] to encompass the development of a full business
ecosystem [25], [42].

A business ecosystem is an economic community
supported by a foundation of interacting organizations and
individuals [25]. It is typically led by one or a small number of
entities. In a non-coercive structure, the leader draws its
legitimacy from shared values and beliefs, and from the
broadness and accuracy of its vision.

In the FLOSS world, a non-profit meta-organization
federating industry stakeholders is in a good position to play
this role of a leader. This is neither incompatible with nor
prejudicial to its members positioning. The crucial battle is not

between individual firms but between networks of firms.
Innovations and operations have become a collective activity
[41].

Although a meta-organization may play a leading role in
the development of a business ecosystem, the ecosystem
extends beyond the community of members. License openness
plays an instrumental role in expanding the fuzzy boundaries of
the ecosystem.

A healthy ecosystem is a scale-free network of industry
players characterised by its productivity, robustness and
efficiency in creating new niches [41]. These two last points are
valuable to customers, because when considered as a whole the
ecosystem is free of single points of failure. They are also
valuable to members of the ecosystem, because they ensure that
new business opportunities keep appearing.

In a healthy business ecosystem, a proportionally small
number of players are keystones, i.e. entities highly
interconnected with other entities in the ecosystem. Firms
following keystone strategies are often small players by
obvious measures, and have no presence at all in most niches
in their ecosystem. Their influence is exerted not by size, but
by the relationships that make them essential to the overall
health of the system [41].

A strong commitment to a meta-organization may be a
good way to position a firm as a keystone of the business
ecosystem. Agile keystone firms are in a privileged position to
tap on new niche opportunities or, in other words, provide
computing, software and/or services on demand.

5.4. From Value Proposition to Governance

The business model of meta-organizations such as coops,
consortia, etc, is collective. Leveraging collaboration to reach
various goals (e.g. an increased negotiation power or economies
of scale in production) is the core of their value proposition.
Networks effects [20] also apply to a meta-organization focused
on infrastructure software [3].

The collective facet brings together vendors that leverage
collaboration for the part of their business model which is
compatible with collaborative engineering. To some extent, the
organization plays the role of an innovation intermediary,
fostering open innovation [7] in its membership.

The network effects facet targets vendors and users
altogether, for the part of their usage model which benefits
from a wider technology adoption Network effects only make
FLOSS superior to proprietary flavours of collaborative
engineering for technologies with a significant potential for
adoption. Domain specific developments (e.g. those done by
the Avalanche cooperative) do not fall into this category.

Because not all business models benefit from collaborative
engineering to the same extent, the code base shepherd by a
FLOSS meta-organization is fragmented. Some projects are led
by companies running business models where leadership is
pivotal. Other are collaboratively developed for percolation,
shared R&D or patronage purposes. Although the number of
contributors to single projects may be low in average, the code
base grows as an assembly of complementary components and
is finally be the result of a large scale collaboration. The
dynamics of commons-based peer production [19] is here well
exemplified – in coherence with the FLOSS golden rule of
modular design.

As a whole, the meta-organization runs a patronage
strategy. Its overall value proposition increases with the number
of members: over its time of operation, the size of the
ObjectWeb consortium increased exponentially (doubling every

twelve months), which is a hint that the recruitment pattern was
enabled by network effects.

To the users, its value proposition derives from the growth
of a business ecosystem of technology suppliers, networks
effects and eventually better durability of software.

To the vendors, its value proposition is: a collective
strategy with opportunities to become keystones of the
ecosystem, an overall patronage strategy compatible with the
members’ business models, and the use of network effects to
proactively increase software adoption.

Such meta-organization needs to remain neutral with
regard to their members interests, which means, in the business
world, that it is most often positioned as not-for-profit and
transparent.

It faces the challenge of becoming a partner to all, and a
competitor to none, of its members. The organization cannot be
positioned as a software vendor without bearing the risk of
entering in direct competition with commercial ISVs in its
membership.

An option is to clearly identify a core platform distributed
by the meta-organization as pure software commodity. The
Eclipse Foundation chose this option: Eclipse is an open source
community whose projects are focused on building an open
development platform [10]. Once a technology (typically, an
open standard) is selected for the core platform, the meta-
organization becomes a competitor to all of its members, or
potential members, who promote an alternative option. The risk
in this case is that the prevalent influence of one or a few
members over the organizations become detrimental to the rest
of the community. Another difficulty comes from the licensing
scheme: only business models compatible with the core
platform license remain accessible to the members.

Another option is to make a clear distinction between each
member's offering, in terms of products and services, and that
of the meta-organization. While members are ICT players, the
organization is positioned as an innovation catalyst, the place
where collaboration happens. The benefit to the end users is the
increased likeliness that whole products that fit their needs be
collectively brought to the market by the ecosystem members
[6].

5.5. Societal Motives as a Retrospective Effect

The success of FLOSS brings externalities that may have
huge societal consequences. Apart from opportunities for cost
containment in public expenditures and intrinsic quality of
public FLOSS-based information systems, the transition
between an IPR-based to a service-based software economy
[43] is an opportunity for local economical development.

In sensitive contexts such as defence, unimpeded and
unconditional access to the source code of critical software is a
direct advantage of FLOSS over proprietary software. Such
technological independence is regarded as increasingly valuable
as computing becomes pervasive in the information society.
The idea that the extension of the sphere of influence of the
market impinges on societal choices, and that it should not be
allowed to develop blindly or in a uniform manner, is now
being expressed more clearly both among political leaders,
especially in the developing countries, and within civil society
[28].

Public software infrastructures have two good reasons to
be considered a (global) public good. The first one lies in their
status of public infrastructures per se. The second is twofold in
itself, and comes from the software nature of these
infrastructures. Software, considered in the source code form, is
little more that the expression of algorithms, i.e. ways to solve
problems, in a structured language akin to mathematical

notation. Some authors argue that for this reason, software
should be regarded as the formalized expression of some
knowledge, i.e. of a public good [27]. In addition, the source
code of any public infrastructure software also is the
description of the way this infrastructure works, and therefore,
of possibly hidden or unwanted regulations [29]. The
possibility of citizen scrutiny of public software infrastructures
used for e-government, and more generally, for all publicly
founded services, appears a must to ensure democratic control
over information society.

It is worth noticing that the tragedy of the commons [8],
i.e. the abuse of public infrastructure to serve private interests
to a point that jeopardizes the very existence of this
infrastructure, should be reconsidered in the case of software
infrastructures. Because it is aspatial, nonrival by nature and
distributable ad infinitum, infrastructure software can be used
to any extent without suffering any damage.

Ethical and societal motives for adopting FLOSS in
public, defence and e-government software infrastructures
become increasingly prevalent in many countries around the
world. Governmental action plays a critical role in the success
of FLOSS business models through direct economical incentive
and through exemplarity which reinforces ethical motivations.

6. CONCLUSION

In this paper, we presented theoretical and empirical
evidences that the market for infrastructure software is
structurally flawed. We proposed to consider the success of
free/libre/open-source software as an evidence that the FLOSS
paradigm is an efficient way to cope with structural market
flaws. This vision underlies an emerging rationale for the
production of open-standards compliant infrastructure software.

Finding an economically efficient way to produce such
software may be critical in the Information Society. The
rationale we analysed leverages open-standards and the open-
source collaborative process to foster the development of a
business ecosystem where each player could define its own
innovation strategy while contributing to the global
sustainability of FLOSS development.

As this vision is significantly different from the classical
vendor-supplier relationship, we reviewed business models and
usage models for FLOSS infrastructure software. We argued
that, altogether, vendors and users, from industry, academia and
government, may contribute to common projects and may
consolidate a business ecosystem exempt of single points of
failure. We briefly argued that this approach appears effective
in meeting the user requirements while complying with some
governmental and societal expectations.

Traditional FLOSS communities have so far been
successful in delivering technically superior software. But the
industry is now asking for a new generation of meta-
organizations that would help structure and rationalize FLOSS
investments by better taking business expectations into account.
Their success will depend on their capacity to define and
enforce governance principles to ensure fair coopetition
between corporate members without losing the creativity of
individuals.

BIBLIOGRAPHY

[1] Definition of middleware by the ObjectWeb Consortium,
http://middleware.objectweb.org
[2] Quah, Danny (April 2002) “Matching demand and supply in a
weightless economy: Market-driven creativity with and without IPRs”
[3] Carr, Nicholas – “IT Doesn’t Matter” in Harvard Business Review
[4] Koenig, John (May 14, 2004) IT Manager’s Journal
[5] Perens, Bruce –
http://reviews.infoworld.com/article/04/12/03/49FEopensourceinterview_1.
html
[6] CALIBRE – Co-ordination Action for Libre Software Engineering for
Open Development Platforms for Software and Services – Deliverable 3.2.
[7] Chesbrough H. (2006) “Open Business Models”
[8] Lloyd, W.F. (1833) “Two Lectures on the Checks to Population” Oxford
University Press
[9] “Europe and the global information society”, Bangemann report
recommendations to the European Council, (May 26, 1994) –
http://europa.eu.int/ISPO/infosoc/backg/bangeman.html
[10] www.eclipse.org
[11] Study on the economic impact of open source software on innovation
and the competitiveness of the ICT sector in the EU, November 20, 2006
– UNU-MERIT. http://www.ntu.edu.sg/nbs/sabre/working_papers/24-
96.pdf
[12] Lakhani K., Wolf B., Bates J. Boston Consulting Group (2002) “BCG
Hacker Survey”
[13] “Tim O’Reilly in a Nutshell” (2004) – O’Reilly
[14] Wall Street Journal (February 15, 1996)
[15] http://www.fsf.org (March 2005)
[16] Perens, Bruce “Economic Paradigms of Software Development” –
http://perens.com/Articles/Economic.html
[17] “Free/Libre Open Source Software: Survey and Study” –
http://www.berlecon.de/studien/downloads/200207FLOSS_Use.pdf
[18]
http://reviews.infoworld.com/article/04/12/03/49FEopensourcesurvey_1.ht
ml
[19] Benkler , Yochai (2002) “Coase's Penguin, or Linux and the Nature of
the Firm”
[20] http://www.dtc.umn.edu/~odlyzko/doc/metcalfe.pdf
[21] “Linux: Fewer Bugs than Rivals” (December 14, 2004) in Wired -
http://www.wired.com/news/linux/0,1411,66022,00.html
[22] “The Cost and Risks of Open Source” (April 2004) by Forrester
Research – http://download.microsoft.com/download/7/d/0/7d059de9-
1557-415c-8332-920db6f89e44/FRSTRossCosts0404.pdf
[23] Astley, W.G. and Fombrun, C.J (1983) “Collective strategy: social
ecology of organizational environments” in Academy of Management
Review
[24] Nalebuff, B. and Brandenburger, A. (1996), “Co-opetition”
[25] Moore J.F. (May-June 1993) “Predators and prey: a new ecology of
competition” in Harvard Business Review, May-June 1993, pp. 75-86
[26] Bresser, R.K. and Harl, J.E. (1986) “Collective strategy: vice or
virtue?” in Academy of Management Review, pp. 408-427
[27] “Knowledge as a Global Public Good”, the World Bank,
http://www.worldbank.org/knowledge/chiefecon/articles/undpk2/w2wtoc.ht
m
[28] “Global Public Goods”, Directorate-General for Development and
International Cooperation, Ministry of Foreign Affairs, February 2002 –
ISBN 2-11-092966-9-
http://www.diplomatie.gouv.fr/cooperation/dgcid/publications/partenariats/b
iens_gb/pdf/biens_publ_gb.pdf
[29] Lessig, L. (1999) “Code and other laws of the Cyberspace”
[30] Bertrand, J. (1883) “Theorie Mathematique de la Richesse Sociale” in
Journal des Savants, 67, 1883, p. 499-508
[31] Nash, J. F., Jr.(1950) “Equilibrium Points in n-Person Games” in
Proceeding of the National Academy of Science U.S.A., 36, 1950, p. 48-
49
[32] http://www.apache.org/foundation/faq.html as of January 2008.
[33] http://www.opensource.org
[34] Williams, Sam (2002) “Free as in Freedom, Richard Stallman’s
Crusade for Free Software”, O’Reilly, 2002 – ISBN 0-596-00287-4
[35] The American Heritage Dictionary of the English Language: Fourth
Edition. 2000.
[36] Christensen, C. (2003) “The Innovator’s Solution: Creating and
Sustaining Successful Growth”, Harvard Business School Press, 2003
[37] Slywotzky, A. J. (1996) “Value Migration, How to think several moves
ahead of the competition”
[38] Moore, G.A. (1991) “Chrossing the Chasm”
[39] Fay, S.A. and MacKie-Mason, J.K. (2003) “Competition Between
Firms that Bundle Information Goods” –
http://plaza.ufl.edu/faysa/bundle.pdf
[40] Andriole, S. (2002) “Improving Biz/IT Convergence: An Action Plan” in
CIO - http://cioupdate.com/reports/article.php/1468381
[41] Iansiti, Marco and Levien, Roy (2004) “The Keystone Advantage:
What the New Dynamics of Business Ecosystems Mean for Strategy,
Innovation, and Sustainability” Harvard Business School Press

[42] Gueguen G., Pellegrin-Boucher E. and Torrès O. (2004) "Des «
stratégies collectives » aux « écosystèmes d’affaires » : le secteur des
logiciels comme illustration" Atelier de Recherche AIMS "Stratégies
collectives : vers de nouvelles formes de concurrence", Mai 2004,
Montpellier
[43] Raymond, E.S. (1999) “The Cathedral and the Bazaar”
[44] Bray, Hiawatha (2004) “Group pushes software sharing” Boston.com,
July 2004
[45] Bac, Christian; Berger, Olivier; Desbordes, Véronique and Hamet,
Benoit “Why and how-to contribute to libre software when you integrate
them into an in-house application?” to appear.
[46] Berne Convention for the Protection of Literary and Artistic Works
(1886)
[47] UK Prime Minister's speech about the Millenium Bug, March 30, 1998
- http://www.number-10.gov.uk/output/Page1161.asp
[48] “To Promote Innovation: The Proper Balance of Competition and
Patent Law and Policy”, A Report by the Federal Trade Commission,
October 2003 – http://www.ftc.gov/os/2003/10/innovationrpt.pdf
[49] Quah, D. (May 2002) “24/7 Competitive Innovation” –
http://econ.lse.ac.uk/staff/dquah/p/0204-247.pdf
[50] Boldrin, M. and Levine, D.K. (January 2003) “Perfectly Competitive
Innovation”, January 2003 – http://www.dklevine.com/papers/pci23.pdf
[51] Fuller, T. (March 15, 2003) “For Microsoft, market dominance doesn't
seem enough” in The International Herald Tribune
[52] “Your Open Source Plan” in CIO, March 15, 2003 -
http://www.cio.com/archive/031503/opensource.html

