
4 CROSSTALK The Journal of Defense Software Engineering December 2007

Software Sustainment

As the 21st century advances, more
than 50 percent of the global soft-

ware population is engaged in modifying
existing applications rather than writing
new applications. This fact by itself
should not be a surprise because whenev-
er an industry has more than 50 years of
product experience, the personnel who
repair existing products tend to outnum-
ber the personnel who build new prod-
ucts. For example, there are more automo-
bile mechanics in the United States who
repair automobiles than there are person-
nel employed in building new automo-
biles.

The imbalance between software
development and maintenance is opening
up new business opportunities for soft-
ware outsourcing groups. It is also gener-
ating a significant burst of research into
tools and methods for improving software
maintenance performance.

What Is Software
Maintenance?
The word maintenance is surprisingly
ambiguous in a software context. In nor-
mal usage, it can span some 23 forms of
modification to existing applications. The
two most common meanings of the word
maintenance include the following: 1)
defect repairs, and 2) enhancements (or
adding new features to existing software
applications).

Although software enhancements and
software maintenance in the sense of
defect repairs are usually funded in differ-
ent ways and have quite different sets of
activity patterns associated with them,
many companies lump these disparate
software activities together for budgets
and cost estimates.

The author does not recommend the
practice of aggregating defect repairs and
enhancements, but this practice is very
common. Consider some of the basic dif-
ferences between enhancements or adding
new features to applications and mainte-
nance or defect repairs as shown in Table 1.

Because the general topic of mainte-
nance is so complicated and includes so
many different kinds of work, some com-
panies merely lump all forms of mainte-
nance together, using gross metrics such as
the overall percentage of annual software
budgets devoted to all forms of mainte-
nance summed together. This method is
crude, but can convey useful information.
An organization that is proactive in using
geriatric tools and services can spend less
than 30 percent of its annual software
budget on various forms of maintenance,
while an organization that has not used
any of the geriatric tools and services can
top 60 percent of its annual budget on var-
ious forms of maintenance.

The kinds of maintenance tools used
by lagging, average, and leading organiza-

tions are shown in Table 2. Table 2 is part
of a larger study that examined many dif-
ferent kinds of software engineering and
project management tools [1].

It is interesting that the leading com-
panies in terms of maintenance sophisti-
cation not only use more tools than the
laggards, but they use more of their fea-
tures as well. Again, the function point
values in Table 2 refer to the capabilities of
the tools that are used in day-to-day main-
tenance operations. The leaders not only
use more tools, but they do more with
them.

Before proceeding, let us consider 23
discrete topics that are often coupled
together under the generic term mainte-
nance in day-to-day discussions, but which
are actually quite different in many impor-
tant respects [2] (See Table 3 for the list of
23 topics).

Although the 23 maintenance topics
are different in many respects, they all
have one common feature that makes a
group discussion possible: They all
involve modifying an existing application
rather than starting from scratch with a
new application.

Each of the 23 forms of modifying
existing applications has a different rea-
sons for being carried out. However, it
often happens that several of them take
place concurrently. For example, enhance-
ments and defect repairs are very common
in the same release of an evolving applica-
tion. There are also common sequences or
patterns to these modification activities.
For example, reverse engineering often
precedes reengineering and the two occur
so often together as to almost comprise a
linked set. For releases of large applica-
tions and major systems, the author has
observed between six and 10 forms of
maintenance all leading up to the same
release.

Geriatric Issues of Aging Software
Capers Jones

Software Productivity Research, LLC.

Software has been a mainstay of business and government operations for more than 50 years. As a result, all large enter-
prises utilize aging software in significant amounts. Some companies exceed 5,000,000 function points in the total volume of
their corporate software portfolios. Much of this software is now more than 10 years old, and some applications are more
than 25 years old. Maintenance of aging software tends to become more difficult year by year since updates gradually destroy
the original structure of the applications and increase its entropy. Aging software may also contain troublesome regions with
very high error densities called error-prone modules. Repairs to aging software suffer from a phenomenon called bad fix injec-
tion, or new defects are accidentally introduced as a byproduct of fixing previous defects.

Table 1: Key Differences Between Maintenance and Enhancements

Enhancements
(New features)

Maintenance
(Defect repairs)

Funding source Clients Absorbed
Requirements Formal None
Specifications Formal None
Inspections Formal None
User documentation Formal None
New function testing Formal None
Regression testing Formal Minimal

Maintenance Engineering Lagging Average Leading

Table 1: Key Differences Between Maintenance and Enhancements

Geriatric Issues of Aging Software

Geriatric Problems of Aging
Software
Once software is put into production it
continues to change in three important
ways:
1. Latent defects still present at release

must be found and fixed after deploy-
ment.

2. Applications continue to grow and add
new features at a rate of between 5
percent and 10 percent per calendar
year, due either to changes in business
needs or to new laws and regulations,
or both.

3. The combination of defect repairs and
enhancements tends to gradually
degrade the structure and increase the
complexity of the application. The
term for this increase in complexity
over time is called entropy. The average
rate at which software entropy increas-
es is about 1 percent to 3 percent per
calendar year.
Because software defect removal and

quality control are imperfect, there will
always be bugs or defects to repair in
delivered software applications. The cur-
rent U.S. average for defect removal effi-
ciency is only about 85 percent of the
bugs or defects introduced during devel-
opment [3] and has stayed almost the
same for more than 10 years. The actual
values are about five bugs per function
point created during development. If 85
percent of these are found before release,
about 0.75 bugs per function point will be
released to customers. For a typical appli-
cation of 1,000 function points or 100,000
source code statements, that implies about
750 defects present at delivery. About
one-third – or 250 defects – will be serious
enough to stop the application from run-
ning or create erroneous outputs.

Since defect potentials tend to rise
with the overall size of the application,
and since defect removal efficiency levels
tend to decline with the overall size of the
application, the overall volume of latent
defects delivered with the application rises
with size. This explains why super-large
applications in the range of 100,000 func-
tion points, such as Microsoft Windows
and many enterprise resource planning
(ERP) applications, may require years to
reach a point of relative stability. These
large systems are delivered with thousands
of latent bugs or defects.

Not only is software deployed with a
significant volume of latent defects, but a
phenomenon called bad fix injection has
been observed for more than 50 years.
Roughly 7 percent of all defect repairs will
contain a new defect that was not there

before. For very complex and poorly
structured applications, these bad-fix
injections have topped 20 percent [3].

In the 1970s, IBM did a distribution
analysis of customer-reported defects
against their main commercial software
applications. The IBM personnel involved
in the study, including the author, were
surprised to find that defects were not
randomly distributed through all of the
modules of large applications [4].

In the case of IBM’s main operating
system, about 5 percent of the modules
contained just over 50 percent of all
reported defects. The most extreme exam-
ple was a large database application, where
31 modules out of 425 contained more
than 60 percent of all customer-reported
bugs. These troublesome areas were
known as error-prone modules.

Similar studies by other corporations

such as AT&T and ITT found that error-
prone modules were endemic in the soft-
ware domain. More than 90 percent of
applications larger than 5,000 function
points were found to contain error-prone
modules in the 1980s and early 1990s.
Summaries of the error-prone module
data from a number of companies was
published in [3].

Fortunately, it is possible to surgically
remove error-prone modules once they
are identified. It is also possible to prevent
them from occurring. A combination of
defect measurements, formal design
inspections, formal code inspections, and
formal testing and test-coverage analysis
have proven to be effective in preventing
error-prone modules from coming into
existence [5].

Today in 2007, error-prone modules
are almost nonexistent in organizations

December 2007 www.stsc.hill.af.mil 5

g
Regression testing Formal Minimal

Maintenance Engineering Lagging Average Leading

Reverse engineering 1,000 3,000

Reengineering 1,250 3,000

Code restructuring 1,500

Configuration control 500 1,000 2,000

Test support 500 1,500

Customer support 750 1,250

Debugging tools 750 750 1,250

Defect tracking 500 750 1,000

Complexity analysis 1,000

Mass update search engines 500 1,000

Function point subtotal 1,750 6,500 16,500

Number of tools 3 8 10

Table 3:

Major Kinds of Work Performed Under the Generic Term Maintenance
1. Major enhancements (new features of > 20 function points).
2. Minor enhancements (new features of < 5 function points).
3. Maintenance (repairing defects for good will).
4. Warranty repairs (repairing defects under formal contract).
5. Customer support (responding to client phone calls or problem reports).
6. Error-prone module removal (eliminating very troublesome code segments).
7. Mandatory changes (required or statutory changes).
8. Complexity or structural analysis (charting control flow plus complexity metrics).
9. Code restructuring (reducing cyclomatic and essential complexity).
10. Optimization (increasing performance or throughput).
11. Migration (moving software from one platform to another).
12. Conversion (changing the interface or file structure).
13. Reverse engineering (extracting latent design information from code).
14. Reengineering (transforming legacy application to modern forms).
15. Dead code removal (removing segments no longer utilized).
16. Dormant application elimination (archiving unused software).
17. Nationalization (modifying software for international use).
18. Mass updates such as the Euro or Year 2000 (Y2K) repairs.
19. Refactoring, or reprogramming, applications to improve clarity.
20. Retirement (withdrawing an application from active service).
21. Field service (sending maintenance members to client locations).
22. Reporting bugs or defects to software vendors.
23. Installing updates received from software vendors.

Table 2: Numbers and Size Ranges of Maintenance Engineering Tools (Size data expressed in terms
of function point metrics)

Table 1: Key Differences Between Maintenance and Enhancements

Enhancements
(New features)

Maintenance
(Defect repairs)

Funding source Clients Absorbed
Requirements Formal None
Specifications Formal None
Inspections Formal None
User documentation Formal None
New function testing Formal None
Regression testing Formal Minimal

Maintenance Engineering Lagging Average Leading

Reverse engineering 1,000 3,000

Reengineering 1,250 3,000

Code restructuring 1,500

Configuration control 500 1,000 2,000

Test support 500 1,500

Customer support 750 1,250

Debugging tools 750 750 1,250

Defect tracking 500 750 1,000

Complexity analysis 1,000

Mass update search engines 500 1,000

Function point subtotal 1,750 6,500 16,500

Number of tools 3 8 10

Table 3:

Major Kinds of Work Performed Under the Generic Term Maintenance
1. Major enhancements (new features of > 20 function points).
2. Minor enhancements (new features of < 5 function points).
3. Maintenance (repairing defects for good will).
4. Warranty repairs (repairing defects under formal contract).
5. Customer support (responding to client phone calls or problem reports).
6. Error-prone module removal (eliminating very troublesome code segments).
7. Mandatory changes (required or statutory changes).
8. Complexity or structural analysis (charting control flow plus complexity metrics).
9. Code restructuring (reducing cyclomatic and essential complexity).
10. Optimization (increasing performance or throughput).
11. Migration (moving software from one platform to another).
12. Conversion (changing the interface or file structure).
13. Reverse engineering (extracting latent design information from code).
14. Reengineering (transforming legacy application to modern forms).
15. Dead code removal (removing segments no longer utilized).
16. Dormant application elimination (archiving unused software).
17. Nationalization (modifying software for international use).
18. Mass updates such as the Euro or Year 2000 (Y2K) repairs.
19. Refactoring, or reprogramming, applications to improve clarity.
20. Retirement (withdrawing an application from active service).
21. Field service (sending maintenance members to client locations).
22. Reporting bugs or defects to software vendors.
23. Installing updates received from software vendors.

Table 3: Major Kinds of Work Performed Under the Generic Term Maintenance

Software Sustainment

that are higher than Level 3 on the
Software Engineering Institute’s Capabil-
ity Maturity Model® (CMM®). However,
they remain common and troublesome for
Level 1 organizations and for organiza-
tions that lack sophisticated quality mea-
surements and quality control.

If the author’s clients are representa-
tive of the United States as a whole, more
than 50 percent of U.S. companies still do
not utilize the CMM at all. Of those who
do use the CMM, less than 15 percent are
at Level 3 or higher. That implies that
error-prone modules may exist in more
than half of all large corporations and in
a majority of state government software
applications as well.

Once deployed, most software applica-
tions continue to grow at annual rates of
between 5 percent and 10 percent of their
original functionality. Some applications,
such as Microsoft Windows, have
increased in size by several hundred per-
cent over a 10-year period.

The combination of continuous
growth of new features coupled with con-
tinuous defect repairs tends to drive up
the complexity levels of aging software
applications. Structural complexity can be

measured via metrics such as cyclomatic
and essential complexity using a number
of commercial tools. If complexity is
measured on an annual basis and there is
no deliberate attempt to keep complexity
low, the rate of increase is between 1 per-
cent and 3 percent per calendar year.

However – and this is an important
fact – the rate at which entropy or com-
plexity increases is directly proportional to
the initial complexity of the application.
For example, if an application is released
with an average cyclomatic complexity
level of less than 10, it will tend to stay
well structured for at least five years of
normal maintenance and enhancement
changes.

But if an application is released with
an average cyclomatic complexity level of
more than 20, its structure will degrade
rapidly and its complexity levels might
increase by more than 2 percent per year.
The rate of entropy and complexity will
even accelerate after a few years.

As it happens, both bad-fix injections
and error-prone modules tend to correlate
strongly (although not perfectly) with high
levels of complexity. A majority of error-
prone modules have cyclomatic complexity
levels of 10 or higher. Bad-fix injection lev-
els for modifying high-complexity applica-
tions are often higher than 10 percent.

In the late 1990s, a special kind of
geriatric issue occurred which involved
making simultaneous changes to thou-
sands of software applications. The first
of these mass update geriatric issues was the
deployment of the Euro currency, which
required changes to currency conversion
routines in thousands of applications. The
Euro was followed almost immediately by
the dreaded Y2K (Year 2000) problem [6],
which also involved mass updates of
thousands of applications. More recently
in March of 2007, another such issue
occurred when the starting date of day-
light savings time was changed.

Future mass updates will occur later in
the century when it may be necessary to
add another digit to telephone numbers or
area codes. Yet another and very serious
mass update will occur if it becomes nec-
essary to add digits to social security num-
bers in the second half of the 21st centu-
ry. There is also the potential problem of
the Unix time clock expiration in 2038.

Metrics Problems With Small
Maintenance Projects
There are several difficulties in exploring

software maintenance costs with accuracy.
One of these difficulties is the fact that
maintenance tasks are often assigned to
development personnel who interweave
both development and maintenance as the
need arises. This practice makes it difficult
to distinguish maintenance costs from
development costs because the program-
mers are often rather careless in recording
how time is spent.

Another and very significant problem
is the fact that a great deal of software
maintenance consists of making very
small changes to software applications.
Quite a few bug repairs may involve fixing
only a single line of code. Adding minor
new features, such as a new line-item on a
screen, may require less than 50 source
code statements.

These small changes are below the
effective lower limit for counting function
point metrics. The function point metric
includes weighting factors for complexity,
and even if the complexity adjustments
are set to the lowest possible point on the
scale, it is still difficult to count function
points below a level of perhaps 15 func-
tion points [7].

Quite a few maintenance tasks involve
changes that are either a fraction of a
function point, or may at most be less
than 10 function points or about 1,000
COBOL source code statements.
Although normal counting of function
points is not feasible for small updates, it
is possible to use the backfiring method or
converting counts of logical source code
statements into equivalent function points.
For example, suppose an update requires
adding 100 COBOL statements to an
existing application. Since it usually takes
about 105 COBOL statements in the pro-
cedure and data divisions to encode one
function point, it can be stated that this
small maintenance project is about one func-
tion point in size.

If the project takes one work day con-
sisting of six hours, then at least the
results can be expressed using common
metrics. In this case, the results would be
roughly six staff hours per function point.
If the reciprocal metric function points per
staff month is used, and there are 20 work-
ing days in the month, then the results
would be 20 function points per staff month.

Best and Worst Practices in
Software Maintenance
Because maintenance of aging legacy soft-
ware is labor intensive, it is quite impor-
tant to explore the best and most cost
effective methods available for dealing
with the millions of applications that cur-

6 CROSSTALK The Journal of Defense Software Engineering December 2007

Maintenance Factors Plus
Range

Maintenance specialists 35%
High staff experience 34%
Table-driven variables and data 33%
Low complexity of base code 32%
Test coverage tools and
analysis

30%

Code restructuring tools 29%
Reengineering tools 27%
High-level programming
languages

25%

Reverse engineering tools 23%
Complexity analysis tools 20%
Defect tracking tools 20%
Mass update specialists 20%
Automated change control tools 18%
Unpaid overtime 18%
Quality measurements 16%
Formal base code inspections 15%
Regression test libraries 15%
Excellent response time 12%
Annual training of > 10 days 12%
High management experience 12%
Help-desk automation 12%
No error prone modules 10%
Online defect reporting 10%
Productivity measurements 8%
Excellent ease of use 7%
User satisfaction measurements 5%
High team morale 5%
Sum 503%

Software Maintenance Courses Days Sequence

Error Prone Module Removal 2 00 1

Table 4: Impact of Key Adjustment Factors on
Maintenance (sorted in order of maximum posi-
tive impact)

® Capability Maturity Model and CMM are registered in the
U.S. Patent and Trademark Office by Carnegie Mellon
University.

Geriatric Issues of Aging Software

rently exist. The sets of best and worst
practices are not symmetrical. For exam-
ple, the practice that has the most positive
impact on maintenance productivity is
the use of trained maintenance experts.
However, the factor that has the greatest
negative impact is the presence of error-
prone modules in the application that is
being maintained.

Table 4 illustrates a number of factors
which have been found to exert a benefi-
cial positive impact on the work of updat-
ing aging applications and shows the per-
centage of improvement compared to
average results.

At the top of the list of maintenance
best practices is the utilization of full-time,
trained maintenance specialists rather
than turning over maintenance tasks to
the untrained generalists. Trained mainte-
nance specialists are found most often in
two kinds of companies: 1) large systems
software producers such as IBM, and 2)
large maintenance outsource vendors.
The curricula for training maintenance
personnel can include more than a dozen
topics and the training periods range
from two weeks to a maximum of about
four weeks.

Since training of maintenance special-
ists is the top factor, Table 5 shows a
modern maintenance curriculum such as
those found in large maintenance out-
source companies.

The positive impact from utilizing
maintenance specialists is one of the rea-
sons why maintenance outsourcing has
been growing so rapidly. The mainte-
nance productivity rates of some of the
better maintenance outsource companies
is roughly twice that of their clients prior
to the completion of the outsource agree-
ment. Thus, even if the outsource vendor
costs are somewhat higher, there can still
be useful economic gains.

Let us now consider some of the fac-
tors that exert a negative impact on the
work of updating or modifying existing
software applications. Note that the top-
ranked factor that reduces maintenance
productivity, the presence of error-prone
modules, is very asymmetrical. The
absence of error-prone modules does not
speed up maintenance work, but their
presence definitely slows down mainte-
nance work.

In general, more than 80 percent of
latent bugs found by users in software
applications are reported against less than
20 percent of the modules. Once these
modules are identified then they can be
inspected, analyzed, and restructured to
reduce their error content down to safe
levels.

Table 6 summarizes the major factors
that degrade software maintenance per-
formance. Not only are error-prone mod-
ules troublesome, but many other factors
can degrade performance too. For exam-
ple, very complex spaghetti code is quite dif-
ficult to maintain safely. It is also trouble-
some to have maintenance tasks assigned
to generalists rather than to trained main-
tenance specialists.

A common situation that often
degrades performance is lack of suitable
maintenance tools, such as defect tracking
software, change management software,
test library software, and so forth. In gen-
eral, it is easy to botch-up maintenance
and make it such a labor-intensive activity
that few resources are left over for devel-
opment work.

The last factor in Table 6, no unpaid
overtime, deserves a comment. Unpaid
overtime is common among software
maintenance and development personnel.
In some companies it amounts to about
15 percent of the total work time.
Because it is unpaid it is usually unmea-
sured. That means side-by-side compar-
isons of productivity rates or costs
between groups with unpaid overtime
and groups without will favor the group
with unpaid overtime because so much of
their work is uncompensated and, hence,
invisible. This is a benchmarking trap for

December 2007 www.stsc.hill.af.mil 7

High team morale 5%
Sum 503%

Software Maintenance Courses Days Sequence

Error-Prone Module Removal 2.00 1

Complexity Analysis and Reduction 1.00 2

Reducing Bad Fix Injections 1.00 3

Defect Reporting and Analysis 0.50 4

Change Control 1.00 5

Configuration Control 1.00 6

Software Maintenance Workflows 1.00 7

Mass Updates to Multiple Applications 1.00 8

Maintenance of Commercial Off-The-Shelf Packages 1.00 9

Maintenance of ERP Applications 1.00 10

Regression Testing 2.00 11

Test Library Control 2.00 12

Test Case Conflicts and Errors 2.00 13

Dead Code Isolation 1.00 14

Function Points for Maintenance 0.50 15

Reverse Engineering 1.00 16

Reengineering 1.00 17

Refactoring 0.50 18

Maintenance of Reusable Code 1.00 19

Object-Oriented Maintenance 1.00 20

Maintenance of Agile and Extreme Code 1.00 21

TOTAL 23.50

Table 5: Sample Maintenance Curricula for Companies Using Maintenance Specialists

Maintenance Factors Minus
Range

Error-prone modules -50%
Embedded variables and data -45%
Staff inexperience -40%
High complexity of base code -30%
Lack of test coverage analysis -28%
Manual change control methods -27%
Low-level programming
languages

-25%

No defect tracking tools -24%
No mass update specialists -22%
Poor ease of use -18%
No quality measurements -18%
No maintenance specialists -18%
Poor response time -16%
Management inexperience -15%
No base code inspections -15%
No regression test libraries -15%
No help-desk automation -15%
No on-line defect reporting -12%
No annual training -10%
No code restructuring tools -10%
No reengineering tools -10%
No reverse engineering tools -10%
No complexity analysis tools -10%
No productivity measurements -7%
Poor team morale -6%
No user satisfaction
measurements

-4%

No unpaid overtime 0%
Sum -500%

Table 6: Impact of Key Adjustment Factors on
Maintenance (sorted in order of maximum nega-
tive impact)

Software Sustainment

the unwary. Because excessive overtime is
psychologically harmful if continued over
long periods, it is unfortunate that unpaid
overtime tends to be ignored when
benchmark studies are performed.

Given the enormous amount of
effort that is now being applied to soft-
ware maintenance, and which will be
applied in the future, it is obvious that
every corporation should attempt to
adopt maintenance best practices and avoid
maintenance worst practices as rapidly as
possible.

Software Entropy and Total
Cost of Ownership
The word entropy means the tendency of
systems to destabilize and become more
chaotic over time. Entropy is a term from
physics and is not a software-related
word. However, entropy is true of all
complex systems, including software. All
known compound objects decay and
become more complex with the passage
of time unless effort is exerted to keep
them repaired and updated. Software is
no exception. The accumulation of small
updates over time tends to gradually
degrade the initial structure of applica-
tions and makes changes grow more dif-
ficult over time.

For software applications, entropy has
long been a fact of life. If applications are
developed with marginal initial quality
control they will probably be poorly
structured and contain error-prone mod-
ules. This means that every year, the accu-
mulation of defect repairs and mainte-
nance updates will degrade the original
structure and make each change slightly
more difficult. Over time, the application
will destabilize and bad fixes will increase
in number and severity. Unless the appli-
cation is restructured or fully refurbished,
it eventually will become so complex that
maintenance can only be performed by a
few experts who are more or less locked
into the application.

By contrast, leading applications that
are well structured initially can delay the
onset of entropy. Indeed, well-structured
applications can achieve declining mainte-
nance costs over time. This is because
updates do not degrade the original struc-
ture, as happens in the case of spaghetti
bowl applications where the structure is
almost unintelligible when maintenance
begins.

The total cost of ownership of a soft-
ware application is the sum of six major
expense elements: 1) the initial cost of
building an application, 2) the cost of
enhancing the application with new fea-

tures over its lifetime, 3) the cost of
repairing defects and bugs over the appli-
cation’s lifetime, 4) the cost of customer
support for fielding and responding to
queries and customer-reported defects, 5)
the cost of periodic restructuring or refac-
toring of aging applications to reduce
entropy and thereby reduce bad-fix injec-
tion rates, and 6) removal of error-prone
modules via surgical removal and redevel-
opment. This last expense element will
only occur for legacy applications that
contain error-prone modules.

Similar phenomena can be observed
outside of software. Hypothetically, if
you buy an automobile that has a high
frequency of repair as shown in
Consumer Reports and you skimp on
lubrication and routine maintenance, you
will fairly soon face some major repair
problems – usually well before 50,000
miles. By contrast, if you buy an automo-
bile with a low frequency of repair as
shown in Consumer Reports and you are
scrupulous in maintenance, you should be
able to drive the car more than 100,000
miles without major repair problems.

Summary and Conclusions
In every industry, maintenance tends to
require more personnel than building new
products. For the software industry, the
number of personnel required to per-
form maintenance is unusually large and
may soon top 70 percent of all technical
software workers. The main reasons for
the high maintenance efforts in the soft-
ware industry are the intrinsic difficulties
of working with aging software. Special
factors such as mass updates that began
with the roll-out of the Euro and the
Y2K problem are also geriatric issues.

Given the enormous efforts and costs
devoted to software maintenance, every
company should evaluate and consider
best practices for maintenance and
should avoid worst practices if at all pos-
sible.u

References
1. Jones, Capers. “Analyzing the Tools of

Software Engineering.” Software
Productivity Research (SPR) Technical
Report. Burlington, MA: 1999.

2. Jones, Capers. Estimating Software
Costs. 2nd ed. McGraw Hill, 1998.

3. Jones, Capers. Software Quality –
Analysis and Guidelines for Success.
Boston, MA: International Thomson
Computer Press, 1997.

4. Jones, Capers. “Program Quality and
Programmer Productivity.” IBM
Technical Report. TR 02.764. San Jose,
CA: IBM, 1977.

5. Jones, Capers. Software Assessments,
Benchmarks, and Best Practices.
Boston, MA: Addison Wesley Longman,
2000.

6. Jones, Capers. The Year 2000 Software
Problem – Quantifying the Costs and
Assessing the Consequences. Reading,
MA: Addison Wesley, 1998.

7. Jones, Capers. Applied Software
Measurement. 2nd ed. McGraw Hill,
1996.

Additional Reading
1. Arnold, Robert S. Software Reengi-

neering. IEEE. Los Alamitos, CA:
Computer Society Press, 1993.

2. Arthur, Lowell Jay. Software Evolution
– The Software Maintenance
Challenge. New York: John Wiley &
Sons, 1988.

3. Gallagher, R.S. Effective Customer
Support. Boston, MA: International
Thomspon Computer Press, 1997.

4. Kan, Stephen H. Metrics and Models
in Software Quality Engineering.
Reading, MA: Addison Wesley, 2003.

8 CROSSTALK The Journal of Defense Software Engineering December 2007

About the Author

Capers Jones is cur-
rently the chairman of
Capers Jones and Asso-
ciates, LLC. He is also
the founder and former
chairman of SPR, where

he holds the title of Chief Scientist
Emeritus. He is a well-known author and
international public speaker, and has
authored the books “Patterns of
Software Systems Failure and Success,”
“Applied Software Measurement,” “Soft-
ware Quality: Analysis and Guidelines
for Success,” “Software Cost Esti-
mation,” and “Software Assessments,
Benchmarks, and Best Practices.” Jones
and his colleagues from SPR have col-
lected historical data from more than 600
corporations and more than 30 govern-
ment organizations. This historical data is
a key resource for judging the effective-
ness of software process improvement
methods. The total volume of projects
studied now exceeds 12,000.

Software Productivity
Research, LLC
Phone: (877) 570-5459
Fax: (781) 273-5176
E-mail: capers.jones@spr.com,

info@spr.com

