
Eliminating Fine Grained Timers in Xen

Bhanu C. Vattikonda Sambit Das Hovav Shacham
Department of Computer Science and Engineering

University of California, San Diego
La Jolla, California, USA

{bvattikonda, skdas, hovav}@cs.ucsd.edu

ABSTRACT
The move to “infrastructure-as-a-service” cloud computing
brings with it a new risk: cross-virtual machine side chan-
nels through shared physical resources such as the L2 cache.
One approach to this risk is to rewrite sensitive code to elim-
inate the signal. In this paper we consider another approach:
weakening malicious virtual machines’ ability to receive the
signal by eliminating fine-grained timers. Such “fuzzy time”
was implemented in 1991 in the VAX security kernel, but it
was not clearly applicabile to modern virtual machine man-
agers such as Xen on platforms such as the x86, which ex-
ports a cycle counter through the RDTSC instruction.

In this paper, we demonstrate that it is possible to modify
the RDTSC instruction on Xen-virtualized x86 machines,
making the timer provided by this instruction substantially
more coarse. We perform a thorough evaluation of the im-
pact of modifying this timer on the usability of the system,
and we evaluate the limiting point of the timer coarseness.

Our findings open the way to a specific research pro-
gram for mitigating cloud computing side channels through
fuzzy time: (1) What other sources of fine-grained time are
available to a malicious VM, and is it possible to degrade
them? (2) What distribution of noise should be introduced
to RDTSC and other timing signals to maximize the effect
on malicious VMs while minimizing the effect on legitimate
ones? (3) What timing resolution is actually needed to make
use of L2 cache side channels?

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Unauthorized Access

General Terms
Security, Measurement, Experimentation

Keywords
Xen, Side Channels, RDTSC, Cloud Computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCSW’11, October 21, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-1004-8/11/10 ...$10.00.

1. INTRODUCTION
The move to “infrastructure as a service” cloud comput-

ing platforms, such as Amazon’s EC2 and Microsoft Win-
dows Azure, brings with it the promise of a computing util-
ity: flexible computing that reaps economies of scale. Cloud
computing also brings with it new security challenges [4].

Notable among the new security challenges raised by cloud
computing is the risk of information disclosure through side
channels [12]. To make better use of resources, cloud com-
puting providers multiplex several virtual machines — from
different, mutually distrusting clients — on a single physical
machine. As Ristenpart et al. showed, an attacker might ex-
ploit placement vulnerabilities to achieve coresidence of his
VM with a victim VM. With the two VMs sharing physical
resources and imperfectly isolated by the virtual machine
monitor, the attacker can take advantage of the available
side channels to steal private information about computa-
tion performed by the victim.

The highest bandwidth — and therefore most dangerous —
side channel identified in virtualized environments is the L2
cache. Between processes on the same OS, cache side chan-
nels have been shown to allow the exfiltration of crypto-
graphic keys [2, 11, 13]. Virtualization introduces additional
noise, but Ristenpart et al. were able to use the L2 cache to
measure instantaneous load between coresident VMs.

There are several possible approaches to countering the
threat of cache side channels in cloud computing. First,
one could reimplement specific routines using algorithms
whose memory access patterns do not vary according to se-
cret information like cryptographic key, or introduce noise
that would make measurement harder. Tromer, Osvik, and
Shamir give a comprehensive discussion of such countermea-
sures [13]; see also Brickell et al. [3]. Second, one could
redesign the cloud computing infrastructure around deter-
ministic execution [1], eliminating timing-based side chan-
nels altogether.

1.1 Fuzzy time
In this paper we explore a third approach: limiting the

ability of malicious VMs to obtain timing measurements.
This approach would leave the side channel in place, but
make it hard for the adversary to make use of it. The intu-
ition is that distinguishing between L2 cache hits and misses
requires time resolution on the order of tens of nanoseconds
(see, e.g., [5]). If high resolution clocks can be eliminated
without breaking legacy applications or degrading their per-
formance, and if attackers do not have access to other high
quality timing sources, then cache side channels would be

mitigated without rewriting vulnerable programs or con-
straining attacker behavior.

The idea of making time fuzzier to weaken timing-based
channels is not new. Indeed, in 1991 Hu [9] presented just
such an approach for the VAX security kernel, which multi-
plexed several virtual machines running at different classifi-
cations. (Hu’s goal was to defeat covert channels, not side
channels, but an approach that prevents communication of
information from a willing transmitter will also prevent the
communication from an unwilling one). VAX fuzzy timing
randomizes the clock interrupts delivered to VMs. These
interrupts, ordinarily delivered every 10 ms, are instead de-
livered at random intervals sampled from a distribution with
mean of 20 ms. In addition, VAX fuzzy time increases the
granularity of system time seen by VMs to 100 ms, and syn-
chronizes VM I/O operations with ticks of the fuzzy clock.
(For more on fuzzy time, see Gray [7, 8].)

However, it is not clear that this approach translates to
current hardware architectures such as the x86 and current
virtual machine monitors such as Xen. The x86 exposes a
very high resolution clock using the unprivileged RDTSC
(“read timestamp”) instruction. Percival, considering miti-
gations to AES, is skeptical that fuzzy time is a viable ap-
proach on the x86, because applications rely on RDTSC for
precise time:

Finally, the traditional method of closing covert
timing channels is available: Access to the clock —
in this case, the time stamp counter — can be re-
moved. However, this is only an option on single-
processor systems: On multi-processor systems,
a “virtual” time stamp counter with sufficient
precision could be obtained by utilizing a second
thread which repeatedly increments a memory
location. Even on uniprocessor systems, this ap-
proach should not be taken lightly, since many
applications expect the time stamp counter to
be available, either for profiling purposes, or to
be used in combination with a random stream of
events (e.g., key presses) as a source of entropy.
A somewhat more tolerable approach would limit
the frequency with which the time stamp counter
could be read — say, to a maximum of four times
within any 10000 cycle window — which would
be very unlikely to affect any “real” software; but
this could only be performed via modifications
in the microcode, and it is not clear if the neces-
sary modifications would even be possible given
existing architectural limitations. [11]

(We will consider Percival’s other objection, that timing
sources besides RDTSC are available to the attacker, in Sec-
tion 4.)

1.2 Our findings
In this paper, we show that it is possible, on x86 platforms,

to modify the Xen hypervisor to degrade the resolution of
RDTSC . Based on our modified Xen, we measure the effects
of RDTSC degradation on real-world workloads using micro-
and macro-benchmarks. We find that the system remains
stable for RDTSC perturbations to a granularity of 2µs or
4096 cycles.

Beyond this granularity, our paravirtualized testbed sys-
tem becomes unstable. But, as we discuss in Section 5.2 it

is possible to achieve greater degradation in the case of fully
virtualized VMs (upto 10M cycles).

Our findings suggest a practical modification to the Xen
hypervisor that reduces the quality of timing signal from
the x86 cycle counter with a minimal effect on legitimate
workloads.

Our findings point the way to a specific research program
for mitigating cloud computing side channels:

1. What other sources of fine-grained time are available
to a malicious VM, and is it possible to degrade them?
(We consider this question briefly in Section 4.)

2. What distribution of noise should be introduced to
RDTSC and other timing signals to maximize the ef-
fect on malicious VMs while minimizing the effect on
legitimate ones? (Section 5.1)

3. What timing resolution is actually needed to make use
of L2 cache side channels?

Answers to these questions will allow researchers to de-
termine whether fuzzy time is an effective solution to cache
side channels in modern cloud computing environments.

We stress that it is our findings in this paper that make
possible the research program above. A contrary finding —
that perturbations to RDTSC on the order of nanoseconds
have an effect on legitimate workloads — would have ruled
out the entire approach. Whatever other mitigations hyper-
visors put in place, they would always have to supply fine-
grained time to benign and malicious VMs through RDTSC .

Though much remains to be done, this paper makes some
concrete contributions. We give a demonstration of the pos-
sibility of modifying RDTSC on Xen-virtualized x86 ma-
chines. We perform a thorough evaluation of the impact of
modifying this timer on the usability of the system. And we
evaluate the limiting point of the coarseness of the timer.

2. EXPERIMENT DESCRIPTION
Our goal was to fuzz the timers available to the guest OS

and the applications running in the VM. Once the guest
OS does not have access to fine grained timers, we observe
the impact fuzzy timers have on applications running in the
guest OS.

To modify the granularity of the timers in guest operating
system we focus on modifying the value of the RDTSC regis-
ter as seen by the guest operating systems and applications
running in the userland of those guest operating systems.
This appears to be a reasonable choice because most of the
fine grained measurements are done using RDTSC instruc-
tions. Also, Linux updates the xtime variable which main-
tains the system time using the value of RDTSC register.
Thus, modifying it is enough to affect the timing related calls
in the guest operating systems. We discuss the limitations
of this choice in Section 5.

The task of modifying the value of the RDTSC register
seen by the guest operating system was greatly simplified
by the presence of the softtsc kernel option in Xen. This
kernel option makes the hypervisor trap and emulate the
RDTSC instruction issued by guest operating system and
applications running in the guest VM.

Starting with Xen 4.0 using the softtsc option the RDTSC
instruction can be emulated for both fully virtualized and

0 200 400 600 800 1000
Run number

0

10

20

30

40

50
Ti

m
e

(1
00

's
 c

yc
le

s)

Unmodified
Modified

Figure 1: Difference between consecutive RDTSC
values on unmodified system and a system in which
RDTSC value follows a step (4096) function

para-virtualized systems. Earlier versions of Xen did not al-
low emulation of the RDTSC instruction for para-virtualized
guest operating systems. Since most cloud service providers
like EC2 use para-virtualization, we perform our experi-
ments on para-virtualized guest operating systems. We note
that we have performed experiments on fully virtualized
guest operating systems with similar results but omit these
results due to space constraints.

On using the sofftsc option, Xen traps the RDTSC in-
struction to the textttpv soft rdtsc() function. In this func-
tion, it stores the value of rdtscll into the registers main-
tained for the guest VM. We modify the EAX register,
thereby modifying the lower bits of the RDTSC counter.
We implement the modifications to timer by modifying the
value of the RDTSC instruction returned by the hypervisor.

The values of RDTSC as seen by applications running in
the guest operating system running on top of a modified
hypervisor show that the changes do in fact influence the
timers seen by the guest operating system.

In Figure 1, we show the difference between two consecu-
tive RDTSC instructions on the modified and the unmod-
ified Xen system. In the case of unmodified system we see
that the time difference between two consecutive RDTSC
instructions is nearly constant. We then modify the under-
lying Xen to return RDTSC value which is rounded off by
4096 cycles and then plot the difference between consecutive
RDTSC instructions. As we see in the figure, the difference
between consecutive RDTSC instructions is mostly 0 and
occasionally it is around 4096. This can only be because
some times we cross the edge of the step function between
to consecutive RDTSC instructions.

While we do not present the results here due to lack of
space, we note that the changes to the value of the Xen
RDTSC register also affect the time as seen by typical tim-
ing related system calls like gettimeofday or clock gettime.
Thus, not only RDTSC , but other fine grained timers have
been affected by modifying the emulated value of RDTSC
register.

3. PERFORMANCE EVALUATION
We evaluate the performance of typical cloud based appli-

cations running in the guest operating system while chang-
ing the fuzziness of the timers. Since TCP makes two timing
measurements for each packet being sent, it is also ensured
that the applications make frequent RDTSC measurements.
We conducted our experiments on a modest testbed of two

64 128 256 512 1024 2048 4096
Clock fuzziness (cycles)

0.0

0.1

0.2

0.3

0.4

0.5

Re
la

tiv
e

de
vi

at
io

n
(%

)

Figure 2: Executing time of FFTW

machines connected through a 1Gbps Linksys switch. Each
machine has a 2.5GHz quad-core processor with 6GB mem-
ory running Linux version 2.6.32 and Xen 4.0.1. The guest
operating system is para-virtualized in order to achieve the
best performance. The guest operating system is configured
to use 2GB of RAM and a disk image of 20GB with two
dedicated cores.

As discussed in Section 2, we modify the granularity of the
clock by modifying the value of the RDTSC register read by
the guest operating system and the guest applications. The
modifications we introduce to the value of this register were
all based on step functions. Instead of allowing the guest
OS and applications to read the value of RDTSC register,
the modified Xen would trap and emulate the RDTSC in-
struction and return a value that is rounded off to make
the timer coarse. This means that the value of the RDTSC
register observed by the guest operating system and appli-
cations follows a step function. In the following sections we
discuss the impact of fuzzy timers on various applications
running in the guest operating system.

In all the graphs in this section, the fuzziness introduced
in the clock is indicated by the number of cycles the value
of the RDTSC register is rounded off to. On the machines
that we have, a clock fuzz of 4096 cycles is about 2 µs.

3.1 Micro-benchmarks
We begin by evaluating the impact fuzzy timers could have

on individual components of the system. In the following
sections we show that the performance of CPU, network and
disk, all remain unaffected by changes to the granularity of
the underlying clock.

3.1.1 Compute intensive tasks
The time to complete CPU intensive tasks should not be

affected by the granularity of the clock seen by the guest
operating system. We see that this is indeed the case by
running an out of place forward complex 2D transform of
2048 rows and 4096 columns using a standard C library ([6]).
In Figure 2 we show the deviation in time taken for this
computation with respect to an unmodified hypervisor.

As expected the granularity of the clock has little impact
on the time it takes for a compute intensive job to finish.

3.1.2 Network throughput
To evaluate the effect of coarse grain timers on kernel

mechanics (TCP engine, scheduling, etc), we ran throughput
measurement tests to test any impact the changes to the
timers could have on the functioning of the TCP engine. For
this experiment, we have a TCP source running on VM1

64 128 256 512 1024 2048 4096
Clock fuzziness (cycles)

0.0

0.5

1.0

1.5

2.0
Re

la
tiv

e
de

vi
at

io
n

(%
) Throughput

RTT

Figure 3: Effect on Throughput and RTT

64 128 256 512 1024 2048 4096
Clock fuzziness (cycles)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Re
la

tiv
e

de
vi

at
io

n
(%

)

Figure 4: Disk latency observed by the guest VM

sending 1GB data to a sink running on VM2. We then
measure the time it takes for the transfer and calculate the
throughput achieved by the flow.

We ran the above experiment twice for each clock gran-
ularity. In Figure 3 we show the deviation observed in
throughput of the TCP flow relative to the throughput seen
in the case of unmodified hypervisor. We can see that the
throughput of the flow does not change with increasing clock
coarseness (up to a fuzziness of 4096). Thus, applications
which are network intensive and make frequent timer calls
are unaffected by changes to the clock granularity.

We believe that the throughput of the TCP flows degrades
if the fuzziness in the clock is increased. Unfortunately, in
the case of para-virtualized VMs we have not been able to
fuzz the clock by more than 10000 and hence we do not see
the performance degradation in Figure 3. The degradation
can however be seen in the case of fully virtualized VMs
where the clock can be modified to a greater extent. We
discuss this in Section 5.2.

3.1.3 Network latency
Next, we measure the impact of the changes on the latency

between the VMs. For this, we use a UDP based ping with
VM1 sending a ping and VM2 responding immediately to
the ping. We then measure the round trip time as seen
at VM1. In Figure 3 we show the deviation in the RTT
averaged over 1000 measurements for each clock granularity.

We observe that the latency between the VMs remains
unaffected by the changes to the underlying clock. Thus, two
important aspects of the network, latency and throughput
appear to be unaffected by the changes to the granularity of
the clock.

3.1.4 Disk Intensive Workload
We use IOLAT [10] to measure the latency of a disk oper-

ation. IOLAT performs a random read from the userspace

64 128 256 512 1024 2048 4096
Clock fuzziness (cycles)

0.0

0.5

1.0

1.5

2.0

Re
la

tiv
e

de
vi

at
io

n
(%

)

Requests per second
Throughput

Figure 5: Request/sec handled by apache web server

and measures the time taken for the operation. In Figure 4
we show the deviation in average latency for such a random
read operation performed in the guest operating system.

Again, the fuzziness of the timers in the guest operating
system does not influence the performance.

3.2 Macro-benchmarks
While the above benchmarks illustrated that the individ-

ual components of the system perform normally with clocks
operating at coarse granularity, the workloads observed in
a cloud based application are very different. In this section
we evaluate the performance of the system under workloads
which are typically observed in a cloud based application.

3.2.1 Web server performance
Web server is one of the most common applications to

be hosted on the cloud platform. We benchmark the per-
formance of an Apache web server running in a VM over
the modified hypervisor. We evaluate the number of re-
quests per second that can be handled by the web server
for small sized requests and the throughput achieved by the
web server when transferring large files.

For these tests, we run the Apache web server on VM1

and the Apache benchmark suite on VM2 to observe the
performance of the system.

For measuring the requests per second we request a static
10KB html file from the web server using the benchmark
suite. Figure 5 shows the deviation in the average requests
per second handled by the web server when the benchmark
is run with a concurrency of 25, 50 and 75.

The throughput achieved by the server is measured by
downloading a 15MB file from the web server using the
Apache benchmark suite. In Figure 5 we show the devia-
tion in throughput for different clock granularities. As can
be seen in the figure, the throughput achieved by the system
remains unaffected by the underlying clock granularity.

3.2.2 All-to-all transfer
Systems like Map-Reduce and Hadoop have a shuffle phase

in which state has to be transferred between all the partic-
ipating nodes. In this phase each node sends data to every
other node. We perform a similar shuffle on our testbed be-
tween the VMs and measure the time taken for the transfer.

Each VM transfers 1GB of data from it’s memory to the
other VM. We are interested in the finish times of such a
shuffle and show them in Figure 6 and observe that the finish
times remain largely unaffected by the granularity of the
clock.

64 128 256 512 1024 2048 4096
Clock fuzziness (cycles)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Re
la

tiv
e

de
vi

at
io

n
(%

)

Figure 6: Completion Time for all-to-all transfer

0 500 1000 1500 2000 2500 3000 3500 4000
Run number

0

5

10

15

20

Ti
m

e
(1

00
0'

s
of

 c
yc

le
s)

Figure 7: Time taken for executing 1000 NOP’s

4. WORKAROUNDS TO RDTSC

The focus of our work has been to modify the value of
the RDTSC register as observed by the guest operating sys-
tem. While this does eliminate the straightforward ways
of making fine grained timing measurements we note that
there may be other possible ways for an attacker to make
fine grained timing measurements.

First, the attacker could use a pure compute job on a
machine under their control, with a similar architecture as
the ones in the cloud and note the job’s completion time.
Once they have such a baseline, the attacker could use such
a compute job with core isolation to time the various actions
they are interested in. An example of such a scenario we
have explored is the use of a constant number of loops with
a NOP.

In figure 7 we show the time taken to execute 1000 NOP’s
in a guest operating system running on top of an unmodified
Xen system with core pinning. It can be seen that there is
some variation in the time taken to execute 1000 NOP’s.
Whether this variation is enough to deter an attacker or we
need to some how prevent an attacker from making such
measurements needs to be explored further.

Without exploring further, we note that the attacker could
also use network based measurements to perform fine grained
timing measurements.

5. DISCUSSION

5.1 Perturbation function
In this paper the perturbations to the timers that we con-

sidered are only step functions. While this was an easy
modification to introduce, the attacker can easily observe
the perturbation being introduced by waiting for the time
when the timer changes. She can then add an offset to the

0 102 103 104 105 106 107

Clock fuzziness (cycles)

0
1
2
3
4
5
6
7
8
9

Th
ro

ug
hp

ut
 (G

bp
s)

Figure 8: Throughput to localhost in the case of
fully virtualized VM runnning on modified Xen

timer by using some computation based measurements as
we discuss in Section 4.

To prevent such a possibility we recommend that the per-
turbation that is introduced have a random behavior. How-
ever, the perturbation should still ensure that the value of
the RDTSC register returned is monotonically increasing.
It is easy to see that not doing otherwise would lead to in-
consistent system performance. An example of this would
be inconsistent file modification times which could affect ap-
plications like make. One such approach is outlined in Al-
gorithm 1.

Algorithm 1 Algorithm for suggested change to Xen timer

Algorithm modifyRDTSC

fuzz = rand() // random number between 0, 4096
t = now − now%fuzz // now is the current time
if vm.last > t then
regs.eax = vm.last− vm.last%fuzz
regs.edx = vm.last >> 32

else
regs.eax = now − now%fuzz
regs.edx = now >> 32

end if
vm.last = regs.edx << 32|regs.eax

5.2 Para-virtualized vs Fully virtualized VMs
While we show that it is possible to eliminate fine grained

timers available to the guest OS by modifying the underlying
hypervisor, there are limits to the perturbation that can be
introduced. These limits are different for the case of fully
virtualized VMs and para-virtualized VMs.

In the case of para-virtualized VMs we have observed that
the system becomes unusable (VM instantly hangs) when
the RDTSC counter is perturbed by more than 10000. This
means that the clock can be perturbed upto a few microsec-
onds (10000 cycles). On the other hand, we have observed
that a fully virtualized system can handle perturbation of
about 10M . This means that in those cases the clock can
operate at millisecond granularity.

While the system continues to be usable, in the case of
fully virtualized VMs we observe an interesting pattern in
the performance of network throughput. In Figure 8 we
see that upto the granularity of 10’s of µs the performance
remains unaffected by the clock fuzz, it then begins to drop
before the system becomes unusable.

We believe that the main reason for this difference in be-
havior is the difference in the clock sources used by the
fully virtualized VM and the para-virtualized VM. The lat-
est pvops kernel used as the guest OS in para-virtualized
mode uses a xen clock source while the unmodified Linux
running in fully virtualized mode uses tsc clock source. The
pvops kernel falls back to the xen clock source even if we
set kernel clock source option to be tsc. Whether the pvops
kernel can be forced to use the tsc clocksource remains to
be explored further.

6. CONCLUSION
In this paper we show that it is possible to degrade the

granularity of the clock available to guest operating system
without affecting the performance of typical applications.
Further research needs to be done to explore other possible
timers available to attackers, ways to degrade them and the
nature of the noise that these degradations should introduce.

Acknowledgments
We thank Dan Boneh and Vitaly Shmatikov for helpful dis-
cussions and the CCSW reviewers for their comments.

This material is based upon work supported by the MURI
program under AFOSR Grant No. FA9550-08-1-0352.

7. REFERENCES
[1] A. Aviram, S. Hu, B. Ford, and R. Gummadi.

Determinating timing channels in compute clouds. In
A. Perrig and R. Sion, editors, Proceedings of CCSW
2010. ACM Press, Oct. 2010.

[2] D. J. Bernstein. Cache-timing attacks on AES, Apr.
2005. Online:
http://cr.yp.to/papers.html#cachetiming.

[3] E. Brickell, G. Graunke, M. Neve, and J.-P. Seifert.
Software mitigations to hedge AES against
cache-based software side channel vulnerabilities.
Cryptology ePrint Archive, Report 2006/052, 2006.
http://eprint.iacr.org/.

[4] Y. Chen, V. Paxson, and R. Katz. What’s new about
cloud computing security? Technical Report
UCB/EECS-2010-5, UC Berkeley Department of
EECS, jan 2010. Online: http://www.eecs.berkeley.

edu/Pubs/TechRpts/2010/EECS-2010-5.pdf.

[5] J. Dean. Designs, lessons and advice from building
large distributed systems. Invited talk at LADIS 2009,
Oct. 2009. Online:
http://www.cs.cornell.edu/projects/ladis2009/

talks/dean-keynote-ladis2009.pdf.

[6] FFTW. http://www.fftw.org/.

[7] J. W. Gray. On analyzing the bus-contention channel
under fuzzy time. In C. Meadows, editor, Proceedings
of CSFW 1993, pages 3–9. IEEE Computer Society,
June 1993.

[8] J. W. Gray. Countermeasures and tradeoffs for a class
of covert timing channels. Technical Report
HKUST-CS94-18, Hong Kong Uuiversity of Science
and Technology, 1994. Online:
http://hdl.handle.net/1783.1/25.

[9] W.-M. Hu. Reducing timing channels with fuzzy time.
In Proceedings of IEEE Security and Privacy
(“Oakland”) 1991, pages 8–20. IEEE Computer
Society, May 1991.

[10] IOLAT disk latency measure.
http://pedro.larroy.com/devel/iolat/.

[11] C. Percival. Cache missing for fun and profit.
Presented at BSDCan 2005, May 2005. Online:
http://www.daemonology.net/papers/htt.pdf.

[12] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage.
Hey, you, get off of my cloud! Exploring information
leakage in third-party compute clouds. In S. Jha and
A. Keromytis, editors, Proceedings of CCS 2009, pages
199–212. ACM Press, Nov. 2009.

[13] E. Tromer, D. A. Osvik, and A. Shamir. Efficient
cache attacks on AES, and countermeasures. J.
Cryptology, 23(1):37–71, Jan. 2009.

