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Abstract

Web-pages – especially dynamically generated ones – contain several items that cannot be classified
as the “primary content”, e.g., navigation sidebars, advertisements, copyright notices, etc. Most clients
and end-users search for the primary content, and largely do not seek the non-informative content. A tool
that assists an end-user or application to search and process information from Web-pages automatically,
must separate the “primary content sections” from the other content sections. We call these sections as
“Web-page blocks” or just “blocks”. First, a tool must segment the Web-pages into Web-page blocks and
second, the tool must separate the primary content blocks from the non-informative content blocks. In this
paper, we formally define Web-page blocks and devise a new algorithm to partition an HTML page into
constituent Web-page blocks. We then propose four new algorithms, ContentExtractor, FeatureExtractor,
K-FeatureExtractor, and L-Extractor. These algorithms identify primary content blocks by (i) looking
for blocks that do not occur a large number of times across Web-pages, by (ii) looking for blocks with
desired features, and by (iii) using classifiers, trained with block-features respectively. While operating on
several thousand Web-pages obtained from various Websites, our algorithms outperform several existing
algorithms with respect to runtime and accuracy. Furthermore, we show that a Web-cache system that
applies our algorithms to remove non-informative content blocks and to identify similar blocks across
Web-pages can achieve significant storage savings.



Index Terms

H.2.8.d Data mining, H.2.8.e Feature Extraction or construction, H.2.8.l Text Mining, H.2.8.m Web

mining, Data Mining, Web-page block, Informative Block, Inverse Block Document Frequency

I. INTRODUCTION

Search engines crawl the World-Wide Web to collect Web-pages. These pages are either

readily accessible without any activated account or they are restricted by username and password.

Whatever be the way the crawlers access these pages, they are (in almost all cases) cached locally

and indexed by the search engines.

An end-user who performs a search using a search engine is interested in the primary

informative content of these Web-pages. However, a substantial part of these Web-pages –

especially those that are created dynamically – is content that should not be classified as the

primary informative content of the Web-page. These blocks are seldom sought by the users of the

Website. We refer to such blocks as non-content blocks. Non-content blocks are very common in

dynamically generated Web-pages. Typically such blocks contain advertisements, image-maps,

plug-ins, logos, counters, search boxes, category information, navigational links, related links,

footers and headers, and copyright information.

Before the content from a Web-page can be used, it must be subdivided into smaller semantically-

homogeneous sections based on their content. We refer to such sections as blocks in the rest of

the paper. A block (or Web-page block) B is a portion of a Web-page enclosed within an open-

tag and its matching close-tag, where the open and close tags belong to an ordered tag-set T

that includes tags like <TR>, <P>, <HR>, and <UL>. Figure 1, shows a Web-page obtained
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from CNN’s Website1 and the blocks in that Web-page.

Fig. 1. A Web-page from CNN.com and its blocks (shown using boxes)

In this paper, we address the problem of identifying the primary informative content of a

Web-page. From our empirical observations, we found that approximately three-fourths of the

dynamically generated pages found on the Web, have a table in it. An HTML table is defined

using the tag <TABLE>. In a table occurring in a Web-page, we consider each cell to be a

block. Where tables are not available, identifying blocks involves partitioning a Web-page into

1http://www.cnn.com
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sections that are coherent, and that have specific functions. For example, a block with links

for navigation is a navigation block. Another example, is an advertising block that contains

one or more advertisements that are laid out side by side. Usually, a navigation block is found

on the left side of a Web-page. Typically, the primary informative content block is laid out to

the right of a Web-page. We have designed and implemented four algorithms, ContentExtractor,

FeatureExtractor, K-FeatureExtractor, and L-Extractor which identify the primary content blocks

in a Web-page.

An added advantage of identifying blocks in Web-pages is that if the user does not require

the non-content blocks or requires only a few non-content blocks, we can delete the rest of the

blocks. This contraction is useful in situations where large parts of the Web are crawled, indexed

and stored. Since the non-content blocks are often a significant part of dynamically generated

Web-pages, eliminating them results in significant savings with respect to storage cache and

indexing.

Our algorithms can identify similar blocks across different Web-pages obtained from different

Websites. For example, a search on Google News on almost any topic returns several syndicated

articles. Popular items like syndicated columns or news articles written by global news agencies

like AP or Reuters appear in tens of newspapers. Even the top 100 results returned by Google

contain only very few unique columns related to the topic because of duplicates published at

different sites. Ideally, the user wants only one of these several copies of articles. Since the

different copies of the article are from different newspapers and Websites, they differ in their

non-content blocks but have similar content blocks. By separating and indexing only the content

blocks, we can easily identify that two Web-pages have identical content blocks, save on storage
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and indexing by saving only one copy of the block, and make our search results better by

returning more unique articles. Even search times improve because we have less data to search.

We propose simple yet powerful algorithms, called ContentExtractor, FeatureExtractor, K-

FeatureExtractor, and L-Extractor to identify and separate content blocks from non-content

blocks. We have characterized different types of blocks based on the different features they

possess. FeatureExtractor is based on this characterization and uses heuristics based on the occur-

rence of certain features to identify content blocks. K-FeatureExtractor is a special modification

of FeatureExtractor which performs better in a wide variety of Web-pages. ContentExtractor

identifies non-content blocks based on the appearance of the same block in multiple Web-

pages. L-Extractor uses various block-features and train a Support Vector (SV) based classifier

to identify a informative block vs. a non-informative block.

First, the algorithms partition the Web-page into blocks based on heuristics. These heuristics

are based on our previous study of HTML editing style over a few thousand Web-pages. Lin and

Ho [18] have proposed an entropy-based algorithm that partitions a Web-page into blocks on

the basis of HTML tables. In contrast, we non-only consider HTML tables, but also other tags,

combined with our heuristics to partition a Web-page. Secondly, our algorithms classifies each

block as either a content block or a non-content block. While the algorithm decides whether

a block, B, is content or not, it also compares B with stored blocks to determine whether B

is similar to a stored block. Both (K-)FeatureExtractor and ContentExtractor produce excellent

precision and recall values and runtime efficiency and above all, do not use any manual input

and require no complex machine learning process. L-Extractor is still under experimentation,

and it produces fairly good accuracy.
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While operating on several thousand Web-pages obtained from news and various other Web-

sites,our algorithms significantly outperform their nearest competitor - the Entropy-based block-

ing algorithm proposed by Lin and Ho [18]. We also compared ContentExtractor with the

Shingling algorithm devised by Ramaswamy et.al. [21], [22]. ContentExtractor achieves similar

savings on storage requirements as the Shingling algorithm. However it outperforms the Shingling

algorithm significantly with respect to runtime, showing that simple heuristics can suffice to

identify primary content blocks in Web-pages.

The rest of the paper is organized as follows: In Section II we have discussed the related

work. We define the concept of “blocks” and a few related terms in section III. We describe

our algorithms in sections IV, V, and VII. We outline our performance evaluation plan and the

data set on which we ran our experiments in section VI. We compare our algorithms with the

LH and Shingling algorithm in subsection VI-D. We indicate our future work and conclude in

section VIII.

II. RELATED WORK

Yi and Liu [19], [26] have proposed an algorithm for identifying non-content blocks (the

refer to it as “noisy” blocks) of Web-pages. Their algorithm examines several Web-pages from

a single Website. If an element of a Web-page has the same style across various Web-pages, the

element is more likely than not to be marked as a non-content block. Their algorithm also looks

at the entropy of the blocks to determine non-content blocks. Their technique is intuitively very

close to the concept of “information content” of a block. This is one of the very innovative ideas

we have studied. Our algorithms only look at the inverse block document frequency (defined

below) and features of blocks. In order to identify the presentation styles of elements of Web-
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pages, Yi and Liu’s algorithm constructs a “Style Tree”. A “Style Tree” is a variation of the

DOM sub-structure of Web-page elements. If there are Web-pages whose elements have the

same style but different contents and yet are non-content blocks, our algorithms would not be

able to detect that. However, in practice, we have seen that our algorithms even in the presence

of advertisement images that vary from page to page can identify them as non-content blocks by

making use of the text in the blocks that are almost the same. Since our algorithms use simple

heuristics to determine non-content blocks, it does not incur the overhead of constructing “Style

Tree”s.

Another work that is closely related is the work by Lin and Ho [18].The algorithm they

proposed also tries to partition a Web-page into blocks and identify content blocks. They used

the entropy of the keywords used in a block to determine whether the block is redundant. We

believe that we have a more comprehensive definition of blocks and demonstrate that we have

designed and implemented an algorithm that gives better precision and recall values than their

algorithm as shown below.

Cai, et.al. [4] have introduced a vision-based page segmentation (VIPS) algorithm. This

algorithm segments a Web-page based on its visual characteristics, identifying horizontal spaces

and vertical spaces delimiting blocks much as a human being would visually identify semantic

blocks in a Web-page. They use this algorithm to show that better page segmentation and a

search algorithm based on semantic content blocks improves the performance of Web searches.

Song, et.al. [25] have used VIPS to find blocks in Web-pages. Then they use Support Vector

Machines (SVM) and Neural Networks to identify important Web-pages. We observed that VIPS

is significantly more expensive than our simple blocking algorithm. So, in one of our algorithms
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(L-Extractor), for the first step we used our blocking algorithm and in the second step, we used

a SVM-based algorithm to achieve good results. However, we also show that one can use even

simpler and less expensive techniques as used in ContentExtractor and k-FeatureExtractor to

identify primary content blocks in Web-pages.

Ramaswamy, et.al., [21], [22] propose a Shingling algorithm to identify fragments of Web-

pages and use it to show that the storage requirements of Web-caching are significantly reduced.

We show below that a ContentExtractor-based algorithm provides similar savings for Web-

caching, however, ContentExtractor is significantly less expensive than the Shingling algorithm.

Bar-Yossef and Rajagopalan [3] have proposed a method to identify frequent templates of

Web-pages and pagelets (identical to our blocks). Yi and Liu argue that their entropy-based

method supersedes the template identification method. We show that our method produces better

result than the entropy-based method.

Kushmerick [15], [16] has proposed a feature-based method that identifies Internet adver-

tisements in a Web-page. It is solely geared towards removing advertisements and does not

remove other non-content blocks. While their algorithm can be extended to remove other non-

content blocks, its efficacy for the general Web-cleaning problem has not been studied. Besides,

their algorithm generates rules from training examples using a manually-specified procedure that

states how the features to be used can be identified. This manual specification is dependent upon

applications. Our algorithms do not require any manual specification or training data set (except

L-Extractor, which is still experimental).

There has been substantial research on the general problem of extracting information from

Web-pages. Information extraction or Web mining systems try to extract useful information
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from either structured, or semi-structured documents. Since a large percentage of dynamically-

generated Web-documents have some form of underlying templates, Wrapper [15], [16], Road-

runner [9], Softmealy [12] and other systems try to extract information by identifying and

exploiting the templates. Systems like Tsimmis [5] and Araneus [2] depend on manually

provided grammar rules. In Information Manifold [14], [17], Whirl [7], or Ariadne [1], the

systems tried to extract information using a query system that is similar to database systems. In

Wrapper systems [16], the wrappers are automatically created without the use of hand-coding.

Kushmerick et.al. [15], [16] have found an inductive learning technique. Their algorithm learns

a resource’s wrapper by reasoning about a sample of the resource’s pages. In Roadrunner [9],

a subclass of regular expression grammar (UFRE or Union Free Regular Expression) is used to

identify the extraction rules by comparing Web-pages of the same class and by finding similarities

or dissimilarities among them. In Softmealy [12], a novel Web-wrapper representation formalism

has been presented. This representation is based on a finite-state transducer (FST) and contextual

rules, which allow a wrapper to wrap semistructured Web-pages containing missing attributes,

multiple attribute values, variant attribute permutations, exceptions and typos, the features that

no previous work can handle. A SoftMealy wrapper can be learnt from labelled example items

using a simple induction algorithm. For other semi-structured wrapper generators like Stalker

[20], a hierarchical information-extraction technique converts the complexity of mining into a

series of simpler extraction tasks. It is claimed that Stalker can wrap information sources that

can not be learnt by existing inductive learning techniques. Most of these approaches are geared

toward learning the regular expressions or grammar induction [6] of the inherent structure or the

semi-structure and so computational complexities are quite high.
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The efforts mentioned above are involved in extracting information that originally came from

databases. This underlying data stored in databases is very structured in nature. Our work

concentrates on Web-pages where the underlying information is unstructured text. The techniques

used for information extraction are applied on entire Web-pages, whereas they actually seek

information only from the primary content blocks of the Web-pages.

Using our algorithm to extract the primary content blocks of the Web-pages as a pre-processing

step, and then running the information extraction algorithms on the primary content blocks will

reduce the complexity and increase the effectiveness of the extraction process.

Our preliminary work [10] shows great improvements in extracting the informative blocks

from the Web-pages. We can enhance our feature-based algorithm by using machine learning

mechanisms to select the useful features that are used to identify the non-content blocks. Our

study of using Support Vector Learning approach in this context is described in section VII.

III. SEGMENTING WEB-PAGES INTO BLOCKS

In this section, we define the concept of “blocks” in Web-pages and a few other related terms.

Most Web-pages on the Internet are still written in HTML [8]. Even dynamically generated

pages are mostly written with HTML tags, complying with the SGML format. The layouts of

these SGML documents follow the Document Object Model tree structure of World Wide Web

Consortium 2. Out of all these tags, Web authors mostly use <TABLE> to design the layouts.

Our algorithm uses <TABLE> as the first tag on the basis of which it partitions a Web-page.

After <TABLE>, it uses <TR>, <P>, <HR>, <UL>, <DIV> and <SPAN> etc. as the next

few partitioning tags in that order. We selected the order of the tags based on our observations

2W3C or http://www.w3c.org
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of Web-pages and believe that it is a natural order used by most Web-page designers (according

to our study of HTML editing style for a few thousand Web-pages from various sources and

formats). For example, <TABLE> comes as first partitioning tag since we see more instances

of <UL> in a table cell than <TABLE>s coming inside <LI>, an item under <UL>. Our

algorithms partition a Web-page based on the first tag in the list to identify the blocks, and then

sub-partitions the identified blocks based on the second tag and so on. It continues to partition

until there is any tag left in a block in the block-set which is part of the list of tags. This ensures

that the blocks are atomic in nature and no further division is possible on them. The partitioning

algorithm is illustrated in subsection IV-A and this tag-set is called the partitioning tag-set.

A. Block Features

By definition, blocks may include other smaller blocks. But in our implementation, as we

described above we have taken all atomic blocks for computation purpose (except in few cases

in FeatureExtractor). Atomic blocks will have features like text, images, applets, javascript,

etc. Actually all HTML tags (Following W3C (http://w3c.org)) except the tags in partitioning

tag-set are included for feature analysis. A block-feature set is a set of features that a block

contains. Several features are associated with their respective standard tags but not all features

have standard tags. For example, an image is always associated with the tag <img>, however,

the text feature has no standard tag. For features that are associated with a tag, we used the W3C

guidelines on HTML pages to make the full list of features. The features of a block that we

have used includes, but not limited to, Text, Text-tag, List, Table, Link, Object, Frame, Form,

Script, Style-Sheet, etc. The most important and nice quality of algorithm is that we can update

this list as time and version of HTML pages change, without doing any fundamental changes
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in the algorithm.

Examples of individual features in the feature vectors constructed by our algorithms are: the

number of terms (in case of text feature), the number of images (in case of <IMG> tag),

the number of javascripts (in case of <SCRIPT> tag), etc. However, for text blocks, simply

taking the number of terms in the block may result in falsely identifying two blocks as similar.

Therefore, we augment the features by adding a binary feature for each term in the corpus

of documents. If a term occurs in a block, the entry in the corresponding feature vector is a

one, otherwise it is zero. If other features are deemed important, our framework can be easily

modified by adding new features and adjusting the weights of those features while computing

the similarity between blocks.

B. Inverse Block Document Frequency and Block Similarity

ContentExtractor computes the Inverse Block Document Frequency (IBDF ) as defined below.

For example, if a block appears in multiple Web-pages, say, in most of CNN’s Web-pages, the

block will have a smaller Inverse Block Document Frequency (IBDF ) than one that appears

only in one Web-page.

Let us assume IBDF i represents the IBDF of a block Bi in a set of pages S. Typically, the

set S consists of similar pages from the same source. IBDF i is inversely proportional to the

number of Web-pages the block Bi occurs in.

So S is a set of Web-pages of the same class, i.e., obtained from the same source. Then

S = {P1,P2,P3, . . .PM}. (1)

where Pis (∀i ∈M) are individual HTML pages from that source.
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And

IBDF i ≡ f(
1

|Si|+ 1
) (2)

where

Si = ∪{Pl : Sim(Bi,Bk) < ε, ∀Bk ∈ Pl, ∀Pl ∈ S} (3)

f denotes a function, usually linear or log function. The function Sim(Bi,Bk) is a similarity

measure of the two blocks. An expert provides the threshold ε.

There may be a question regarding whether the basis of our algorithm is a rule-based technique.

Actually we draw analogy between the TF-IDF measure in vector-space model [24] and our

IBDF measure. As we eliminate the commonly occurring or redundant words or phrases in

a collection by applying the IDF measure of all the words and phrases, we here extend the

same concept for blocks. If we consider blocks as the atomic units in a Web-page, it is easy to

visualize that the blocks having lower IBDF values or high frequency of occurring in several

Web-pages will be eliminated as redundant blocks. TF-IDF measure and related algorithms are

undoubtedly not rule-based algorithms. Likewise IBDF measure and ContentExtractor should

not be considered as rule-based approaches.

IV. ALGORITHM: CONTENTEXTRACTOR

The input to the algorithms is a set (at least two) of Web-pages belonging to a class of

Web-pages. A class is defined as a set of Web-pages from the same Website whose designs or

structural contents are very similar. A set of Web-pages dynamically generated from the same

script is an example of a class. The output of the algorithms are the primary content blocks in

the given class of Web-pages.
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The first step of all our algorithms is to use the GetBlockSet routine (described next) to

partition each page into blocks.

A. GetBlockSet

The GetBlockSet routine takes an HTML page as input with the ordered tag-set.

GetBlockSet takes a tag from the tag-set one by one and calls the GetBlocks routine for each

block belonging to the set of blocks, already generated. New sub-blocks created by GetBlocks

are added to the block set and the generating main block (which was just partitioned) is removed

from the set. The First function gives the first element (tag) of an ordered set, and the Next

function gives the consecutive elements (tags) of an ordered set.

B. GetBlocks

GetBlocks takes a full document or a part of a document, written in HTML, and a tag as its

input. It partitions the document into blocks according to the input tag. For example, in case

of the <TABLE> tag given as input it will produce the DOM tree with all the table blocks.

It does a breadth-first search of the DOM tree (if any) of the HTML page. If the input tag is

<TABLE> and there is no table structure available in the HTML page, it does not partition the

page. In that case the whole input page comes back as a single block. In case of other tags such

as <P>, it partitions the page/block into blocks/sub-blocks separated by those tags. Figure 2,

shows the structure of two HTML pages. It also shows the blocks that our blocking algorithm

identifies for each of these pages (under the dotted line).
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Output of HTML 1

HTML 1

IMG 1 TABLE TABLE TABLE

TR TR

TEXT 1 TABLE

TR TR

TEXT 8TEXT 3

TR

IMG 2

TR

TEXT 2

IMG 3 TABLE TABLE TABLE

TRTR

TEXT 1 TABLE

TR TR TR

TR

TEXT 4

TR

TEXT 5

TEXT 3 TEXT 6 TEXT 7

IMG 1 IMG 2 TEXT 2

TEXT 8

IMG 3 TEXT 4 TEXT 5

TEXT 6 TEXT 7

Output of HTML 2

ContentExtractor
HTML 2

Fig. 2. Two Web-pages’ block structures as seen by GetBlockSet. The output from them are shown under the dotted line.

C. Identifying Primary Content Blocks

After the blocks have been identified, the second step of the process involves identifying the

primary content blocks and separating them from the non-content blocks. All four algorithms

identify the primary content blocks in the Web-pages, but their methodologies are different.

D. ContentExtractor

We show the pseudo-code for ContentExtractor in Algorithm 1. It calculates the IBDF

values of each block. For implementation purpose we compute the IBDF values as a counter,

and compare with θ, which is same as comparing IBDF −1 with θ−1. The algorithm used a

similarity measure function Sim, to find out the similarity between two blocks.
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Algorithm 1: ContentExtractor
Input : Set S of HTML pages, Sorted tag-set T
Output: Primary Content Blocks and their associated pages in S
begin
MBD ←− ∅
{ Here the MBD matrix is the block-document matrix where rows represent
document and columns represent block identifier.}
for each Hk ∈ S do
{ Here Bk represents the kth row of the MBD matrix. }
Bk ←− GetBlockSet(Hk, T )
Mk

BD ←− Bk

for each bij ∈ MBD do
IBDFij

−1 ←− 1
for each bkl ∈ MBD do
{ Here i 6= k.}
Simijkl ←− Sim(bij, bkl)
if Simijkl > ε then

IBDFij
−1 ←− Update(IBDFij

−1)
{Update Recalculates IBDF−1}

{ If IBDF−1 value above threshold we will produce the output }
for each bij ∈ MBD do

if IBDFi
−1 > θ−1 then

Output the content of the block

end

(Function GetBlockSet : )
Input : HTML page H , Sorted tag-set T
Output: Set of Blocks in H

begin
B ←− H; // set of blocks, initially set to H.
f ←− Next(T )
while f 6= ∅ do

b←− First(B)
while b 6= ∅ do

if b contains f then
BN ←− GetBlocks(B, f) B ←− (B − b) ∪ BN

b←− Next(B)

f ←− Next(T )

end
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Algorithm 2: Sim Function (ContentExtractor Algorithm continued)
(Function Sim : )
Input : Block1, Block2

Output: Similarity Measure
begin

//FeatureVector produces a vector of all
//features as enlisted and described above
F1 ←− FeatureV ector(Block1)
F2 ←− FeatureV ector(Block2)
return cos(F1,F2)

end

1) The Similarity Function and Threshold: Given two blocks, Sim returns the cosine between

their block feature vectors. We used a threshold value of ε = 0.9. That is, if the similarity measure

is greater than the threshold value, then the two blocks are accepted as identical. The threshold

value can be changed according to the needs of the application and affects the precision and recall

of the algorithm. Blocks that occur rarely across different Web-pages, i.e., have low IBDF ’s

are output as the primary content blocks.

2) Complexity Measure: The computational complexity of this approach is dependent on the

computation of the similarity measure between blocks and the computation of the IBDF ’s of

the blocks.

Let us assume there are N blocks per page and the total number of documents in a class is

M . According to the definition of a class, these pages are derived from the same script or from

the same Website. In practical cases, pages derived from the same class are of the same design.

Their headers, left panels, or the footers are similar (depending on the threshold ε). Thus, during

the comparison, the number of completely new blocks coming from the second page is pretty

low. Therefore, when the algorithm compares pages Pi and Pi+1, we can arguably assume that
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the similar blocks will largely outnumber the dissimilar blocks.

Suppose the average number of new blocks in Pi +1 that are not present in Pi is κ. Then from

above discussion κ � N . Accordingly, after the first comparison, a (N + κ)×M dimensional

Block-Document matrix will be formed. The computational complexity of this step is O(N 2).

After these pages are compared, the blocks of the third page will be compared with the combined

set of blocks coming from first two pages. When the second step of the comparison will be

performed, the cost of computation will be increased. Ultimately the total number of comparison

will be

N2 + (N + κ)×N + (N + 2κ)×N + . . . + (N + (M − 2)κ)×N

= (M − 1)N 2 +
κ

2
(M2 − 3M + 2)N

= (MN2 −N2 +
κ

2
M2N −

3κ

2
MN + κN)

= O(M2N) (4)

as M >> N and κ << N .

The Block-Document matrix computation will be dependent on the value of M or the number

of pages in the set and the average number of blocks in each individual page. In the future,

we would like to explore if taking a smaller number of pages in a set is enough for identi-

fying the irrelevant blocks. The time complexity to make the sorted block-document matrix is

O(M3N2log(N)).

If all Web-pages in the same class are dynamically generated from the same template, and

running ContentExtractor for all M documents is excessively costly, in practice, we can identify
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the template using fewer than M documents. Then, for all M documents, the primary content

block that appears at a fixed place in the template can be extracted using the template.

V. ALGORITHM: FEATUREEXTRACTOR/K-FEATUREEXTRACTOR

We now show our second algorithm, FeatureExtractor. We designed FeatureExtractor such

that any informative block (corresponding to any feature) can be identified. For example, Fea-

tureExtractor invoked with the features text, image, links, identifies the text blocks, image blocks

or navigational blocks as the primary content blocks respectively. We show the pseudo-code for

FeatureExtractor in Algorithm 3.

A. Block Features

The following list describes the features of a Web-page block that we have used in our

implementation. A Web-page block can have any or all features of an HTML page. The W3C

HTML guidelines have been followed here.

• Text : The text content inside the block.

• Text-tag: The text tags, e.g., <h1>, <h2> etc. inside the block.

• List : The lists available inside the block.

• Table : Available tables inside the block.

• Link : URLs or links inside the block.

• Object : Image, Applet etc. available in the block.

• Frame : Frames inside the block. Usually it is rare to have frame in the block, but to make

the list complete it has been added.

• Form : Forms available inside the block.
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• Script : Javascripts or other types of scripts written in the block.

• Style-Sheet : This is also to make the list complete and compliant to W3C guidelines.

Styles are usually important for browser rendering, and usually included inside other tags,

like links and tables etc.

A question may arise here that why we are taking these features. As aforesaid, all these blocks

are HTML blocks and we are trying to find out a particular block or set of blocks which can be

identified by the block-property such as text-blocks or image-blocks. In FeatureExtractor we are

looking for all the text-blocks and so we need to compare the properties of a block against other

blocks. These comparison is only possible if we consider all the HTML tags as the feature-set of

the blocks. As we mentioned earlier, we can update this list if we so desire because of changes

in HTML features or because of an application’s updated preferences of desirable features easily

without fundamentally changing the algorithm.

Unlike the ContentExtractor algorithm, the FeatureExtractor algorithm does not depend on

multiple Web-pages but depends on the feature-set and the chosen feature for output. The set

features are HTML features as explained before. For example, let us consider the chosen feature

is text (TI). Now our algorithm calculates a value for each feature in each block. Say, a block

contains 1000 words and 2 images and 3 links and an applet, and the maximum values of words,

images, links, and applets contained in blocks in the data-set are 2000, 4, 50 and 3. Then the

values for the features in the given block are 1000/2000, 2/4, 3/50, and 1/3 respectively. After

that we put each block in the winner-basket if the sum of the feature values of the desired features

is greater than the sum of the feature values of the rest of the features. From this winner-basket,

we recompute the feature values for this new set of blocks, and chose the one with highest value
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of desired feature.

Now according to this algorithm a block with a single word and nothing else would be the

obvious winner and will be chosen. In most practical cases this scenario did not arise. And also,

we do not consider a single row or column of a table as a block. We consider the whole table

(in the highest depth of table tree) as a block. So the chance of getting a block with a single

word is distant.

Algorithm 3: FeatureExtractor
Input : Set of HTML pages H , Sorted Tag Set T , Desired Feature FI

Output : Content Blocks of H

Feature: Feature set FS used for block separation sorted according to importance taken
from T

begin
B ←− GetBlockSet(B, T )

{ W is the output variable that records potential output block sets}
W ←− ∅
for each b ∈ B do

P1 ←− Pr(FI|F)
P2 ←− Pr((F − FI)|F)
if P1 > P2 then
W ←− W ∪ b

{ Now depending on the condition or choice we will produce output from the set W }
for each b ∈ W do

Pb ←− Pr(FI|F ,W)
//FI = TI in the experiment

{ Output: Sort W according to the Probability value Pb and (1) Produce the content
of the Winner block }

end

B. K-FeatureExtractor

Though FeatureExtractor performs with high precision and recall for one of our datasets, it

may not do so in general and can be improved. For Web-pages with multiple important text
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blocks, a typical reader may be interested in all the sections not just one of them (winner

of FeatureExtractor). For example, an end-user may be interested in all the reviews available

from a page in Amazon.com and each review is in a separate block. General shopping sites,

review sites, chat forums etc. may all contain multiple blocks of important textual information.

FeatureExtractor shows poor precision and recall as it produces only one text-block with highest

probability, while other important blocks are not retrieved. To overcome this drawback, we

revised the last part of the FeatureExtractor and named the new algorithm as K-FeatureExtractor

(Algorithm 4). To handle more general Web-pages of varied editing-styles, we improved the

FeatureExtractor algorithm. Instead of taking just the winner block from the winner-basket, we

apply a k-means clustring algorithm to select the best probability blocks from the basket. This

helps us get high precision and recall from shopping Websites and review Websites and in general

a much broader range of Websites. The results from using the K-FeatureExtractor for these types

of Web-pages are shown in table III separately. Needless to mention that FeatureExtractor did

not do well for these Web-pages. K-FeatureExtractor uses an adaptive K-means clustering on

the winner set to retrieve multiple winners as opposed to FeatureExtractor that selects a single

winner. The usual values of k taken are 2 or 3, and the initial centroids are chosen from the

sorted list at equidistant index values. After the clustering is done, the high probability cluster(s)

are taken and the corresponding text contents of all those blocks are taken as the output.

Algorithm 4: K-FeatureExtractor
begin

. . . same as FeatureExtractor except the last statement . . .
{ Output: Sort W according to the probability value Pb and (2) Use k-means
clustering and take high probability cluster(s). Combine the text contents from all of
the blocks. }

end
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Site Address Category Number
ABC http://www.abcnews.com Main Page, USA, World, Business, Entertainment, Sci-

ence/Tech, Politics,Living
415

BB http://www.bloomsberg.com Main Page, World, Market, US Top Stories, World Top Stories,
Asian, Australia/New Zealand, Europe, The Americas

510

BBC http://www.bbc.co.uk Main Page, The Continents, Business, Health, Nature, Tech-
nology, Entertainment

890

CBS http://www.cbsnews.com Main Page, National, World, Politics, Technology, Health,
Entertainment

370

CNN http://www.cnn.com Main Page, World, US, All Politics, Law, Tech(nology), Space
(Technology), Health, Showbiz, Education, Specials

717

FOX http://www.foxnews.com Main Page, Top Stories, Politics, Business, Life, Views 476
FOX23 http://www.fox23news.com Main Page, General, Local, Regional, National, World, In

Depth, Sports, Business, Entertainment, Health
658

IE http://www.indianexpress.com Main Page, International, Sports, National Network, Business,
Headlines

269

IT http://www.indiatimes.com Main Page, Main Stories, Top Media Headlines 454
MSNBC http://www.msnbc.com Main Page, Business, Sports, Technology an Science, Health,

Travel
647

YAHOO http://news.yahoo.com Main Page, Top Stories, US (National), Business, World,
Entertainment, Sports, Technology, Politics, Science

505

Shopping http://www.shopping.com Miscellaneous Products 100
Amazon http://www.amazon.com Book Pages 100
Barnes
And
Noble

http://www.bn.com Book Pages 100

Epinion http://www.epinions.com Reviews 100

TABLE I

DETAILS OF THE DATASET. THE NUMBER OF PAGES TAKEN FROM INDIVIDUAL CATEGORIES ARE NOT SHOWN DUE TO THE

ENORMOUS SIZE OF THE LATEX TABLE, BUT THE INTERESTED READER CAN CONTACT AUTHORS TO GET THE DETAILS.

VI. EXPERIMENTAL EVALUATION

In this section, we present empirical evaluation of our methods. We also compare our algo-

rithms with two other major competitors.

A. First Comparison: With the LH Algorithm

We implemented and compared our algorithm with LH, the entropy-based algorithm, proposed

by Lin and Ho [18]. They use the terms precision and recall to refer to the metrics to evaluate

their algorithm. Although, the use of these terms are somewhat different from their usual sense

in the field, “Information Retrieval”, in order to avoid confusion, we use the same terms (added
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with a “b-” for blocks) to refer to the evaluation metrics of our work.

B. Metric Used

Precision is defined as the ratio of the number of relevant items (actual primary content blocks)

r found and the total number of items (primary content blocks suggested by an algorithm) t

found. Here we used a block level precision and so we call it as b-Precision.

b− Precision =
r

t
. (5)

Recall has been defined as the ratio of the number of relevant items found and the desired

number of relevant items. The desired number of relevant items includes the number of relevant

items found and the missed relevant items m. In case of blocks we call it as block level recall

or b− Recall.

b−Recall =
r

r + m
. (6)

Similar to the way it is defined in information retrieval literature by Van Rijsbergen [23], we

can refer to the F-measure here as the b-F-measure and define it as

b− F −measure =
2 ∗ (b− Precision) ∗ (b− Recall)

(b− Precision) + (b−Recall)
(7)

C. Data Set

Exactly like Lin and Ho, we chose several Websites from the news domain. We crawled the

Web for news articles and other types of Websites to collect documents. The details (name,

source, category, number) of the dataset are shown in Table I.
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Site b-
Prec
of LH

b-
Recall
of LH

b-F-
measure
of LH

b-
Prec
of CE

b-
Recall
of CE

b-F-
measure
of CE

b-Prec of
(K-) FE

b-Recall
of (K-)
FE

b-F-
measure
of (K-) FE

ABC 0.811 0.99 0.89 0.915 0.99 0.95 1.00 1.00 1.00
BB 0.882 0.99 0.93 0.997 1.00 0.998 1.00 1.00 1.00
BBC 0.834 0.99 0.905 0.968 1.00 0.983 1.00 1.00 1.00
CBS 0.823 1.00 0.902 0.972 1.00 0.985 0.98 0.977 0.978
CNN 0.856 1.00 0.922 0.977 1.00 0.988 0.98 0.98 0.98
FOX 0.82 1.00 0.901 0.967 1.00 0.983 1.00 0.99 0.994
FOX23 0.822 1.00 0.902 0.985 1.00 0.992 1.00 1.00 1.00
IE 0.77 0.95 0.85 0.911 0.993 0.95 0.93 0.99 0.959
IT 0.793 0.99 0.878 0.924 0.981 0.951 0.96 0.98 0.969
MSNBC 0.802 1.00 0.89 0.980 1.00 0.989 0.92 1.00 0.95
YAHOO 0.730 1.00 0.84 0.967 1.00 0.98 1.00 0.95 0.974

TABLE II

BLOCK LEVEL PRECISION AND RECALL VALUES FROM LH ALGORITHM, ContentExtractor AND FeatureExtractor. THE

SECOND, THIRD, AND FOURTH COLUMNS ARE FROM LH ALGORITHM, THE FIFTH, SIXTH, AND THE SEVENTH COLUMNS ARE

FROM ContentExtractor AND THE EIGHTH, NINTH, AND TENTH COLUMNS ARE FROM (K-)FeatureExtractor. WE PUT K IN

PARENTHESIS TO IMPLY THAT THESE RESULTS ARE ALMOST SAME FOR FeatureExtractor AND K-FeatureExtractor

In total we took 15 different Websites including news, shopping, opinion posting Websites

etc. whose designs and page-layouts are completely different. In table II, we took 11 different

news Websites for first comparison. Unlike Lin and Ho’s dataset [18] that is obtained from one

fixed category of news sections (only one of them is “Miscellaneous” news from CDN), we took

random news pages from every section of a particular Website. This choice makes the dataset a

good mix of a wide variety of HTML layouts. This step was necessary to compare the robustness

of their algorithm to ours.

D. Performance Comparison

We implemented all four algorithms in Perl 5.8.0 on a Pentium-based Linux platform. With

the generous help from a few graduate students and professors, we calculated the b-precision

and b-recall values for each Website and layout category for text feature. These values are shown

in tables II and III.
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Our algorithms outperform LH in all news sites in all categories. The b-recall is always good

since all algorithms could find most relevant blocks but the results obtained by running the LH

algorithm were less precise than those obtained by ContentExtractor since the former algorithm

also includes lots of other non-content blocks.

We believe that the primary reason for the poor b-precision of LH is because of the greedy

approach taken by their algorithm while identifying the solution. A second reason is that the

LH algorithm works at the feature level instead of the block level. LH gives high redundancy

score to features that occur across Web-pages. The redundancy score of a block is proportional

to the weighted sum of the redundancy scores of each feature it contains. Instead of looking at

occurrences of features across Web-pages, the ContentExtractor algorithm looks at occurrences

of similar blocks across pages. This fundamental difference results in better b-precision obtained

by our algorithm.

The FeatureExtractor algorithm only works well on Web-pages where the primary Web-pages

have one dominant feature. For example, in news Web pages, text is the dominant feature.

However, if we go to a domain where the primary content is a mix of multiple features, Feature-

Extractor’s b-precision suffers. If FeatureExtractor has to be deployed in such a domain, it must

be modified to handle multiple features and use a weighted measure of the presence of multiple

features to identify the primary content pages. Due to the dependence of FeatureExtractor on

one particular feature, we expect it to perform poorer than ContentExtractor in more general

cases where the dominant features in a primary content block are not known.

In other cases (the last four Websites in table I) where there is a single dominant feature but

multiple blocks should be in the winner set (not just a single winner), FeatureExtractor may not
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Site b-
Prec
of LH

b-
Recall
of LH

b-F-
measure
of LH

b-
Prec
of CE

b-
Recall
of CE

b-F-
measure
of CE

b-Prec
of
K-FE

b-
Recall
of
K-FE

b-F-
measure
of K-FE

Shopping 0.79 1.00 0.88 0.971 1.00 0.985 1.00 0.99 0.994
Amazon 0.771 0.99 0.86 0.98 1.00 0.989 1.00 0.967 0.983
Barnes
And
Noble

0.81 1.00 0.895 0.982 0.98 0.98 1.00 0.968 0.983

Epinion 0.79 1.00 0.88 0.97 1.00 0.984 1.00 0.956 0.977

TABLE III

BLOCK LEVEL PRECISION AND RECALL VALUES FROM LH ALGORITHM, ContentExtractor AND FeatureExtractor. THE

SECOND, THIRD, AND FOURTH COLUMNS ARE FROM LH ALGORITHM, THE FIFTH, SIXTH, AND THE SEVENTH COLUMNS ARE

FROM ContentExtractor AND THE EIGHTH, NINTH, AND TENTH COLUMNS ARE FROM K-FeatureExtractor. DUE TO POOR

PERFORMANCE OF FeatureExtractor FOR THESE WEB-PAGES (WHICH WE DO NOT SHOW HERE) WE IMPROVED IT TO

K-FeatureExtarctor

Property LH ContentExtractor (K-)FeatureExtractor
b-Precision Low High Very High
b-Recall High Very High Very High
Number of pages needed All the pages to calculate

Entropy of features
Very few (5 − 10) pages
from same class are enough
to give high performance

A single HTML page is
all that is needed

Time of completion Always more than Con-
tentExtractor

Less than LH (shown in
figure 3)

Even less than Con-
tentExtractor

TABLE IV

A PROPERTY-WISE COMPARISON TABLE FOR THREE ALGORITHMS. NOTE THAT (K-)FeatureExtractor HERE REPRESENTS

BOTH FeatureExtractor AND K-FeatureExtractor. FOR THE CASE OF (K-)FeatureExtractor WE TOOK THE B-PRECISION,

B-RECALL, B-F-MEASURE AND ALL OTHER COMPARISONS WITH RESPECT TO TEXT FEATURE.

perform well. And supporting our intuition, FetaureExtractor resulted in poor performance for

these Websites. Because of that, we used K-FeatureExtractor for these Websites. The results are

shown in table III compared to our ContentExtractor and LH algorithms.

E. b-Precision and b-Recall

Both FeatureExtractor and ContentExtractor performed better than LH in almost all cases.

Actually with ContentExtractor, there are few or almost no missing blocks because the algorithm
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discards only repetitive blocks and keeps the other blocks and repetitive blocks have low real

information content. In the news domains, most primary content blocks were dominated by text

content and so FeatureExtractor deployed with the mandate to find blocks with predominantly

text content, performs well. The b-precision of ContentExtractor increases with the number of

pages involved in IBDF calculation. We compare the features of the first three algorithms in

Table IV.
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Fig. 3. Run-times for the LH, ContentExtractor and FeatureExtractor algorithms. The vertical axis represents the time of
execution (in seconds) for a number of pages (plotted in the horizontal axis).

F. Execution Time

Figure 3 shows execution time taken by the three algorithms (LH, ContentExtractor and

FeatureExtractor) averaged over all test Web-pages. We did not include K- FeatureExtarctor

as the time taken by it would be same and will overlap the lowermost curve to make it more

cluttered. From the figure it is clear that our algorithms outperform the LH algorithm by a

significant margin. We can further increase the performance of ContentExtractor by generating
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Fig. 4. Total storage requirement of Web-caches using ContentExtractor-based and Shingling algorithms.

a template of a set of Web-pages using five to ten Web-pages from a site and using the template

to extract primary content blocks.

Here in table IV we present a comparison table for the features of both algorithms. This

table shows the clear difference between LH and our ContentExtractor and (K)-FeatureExtractor

algorithms.

G. Second Compariosn: With Shingling Algorithm

In this section, we compare one of our algorithms with the Shingling algorithm proposed

by Ramaswamy et.al. [21]. Regarding the way this algorithm is designed, it is the closest to

our ContentExtractor algorithm, and therefore we will attempt to compare these two algorithms

side-by-side. They also partition the HTML page into blocks (in their case they call them the

nodes of the AF or Augmented Fragment tree). Then they characterize each individual node

with different properties, such as SubtreeV alue, SubtreeSize, SubtreeShingles and others.
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Property Shingling Algorithm ContentExtractor
Atomic Structure AF Tree Node Block
Basis of Similarity Shared Fragment Measure IBDF Measure
Similarity Calculation ShareFactor IBDF value
Similarity Threshold ShareFactor θ

−1

Matching MinMatchFactor ε

Atomic Property Complex and expensive measurement of
(N − W + 1) node-ids.

Simple HTML tag feature, which is perfect
for measuring similarity. Inexpensive.

Precision and Recall Similar to ContentExtractor Similar to Shingling
Speed Slow Much faster
Disk Space Requirements (Fig-
ure 4)

Similar to ContentExtractor Similar to Shingling

TABLE V

A PROPERTY-WISE COMPARISON TABLE FOR Shingling algorithm AND ContentExtractor

Site b-Prec of
Shingling

b-Recall of
Shingling

b-F-
measure
of Shingling

b-Prec of CE b-Recall of
CE

b-F-
measure
of CE

ABC 0.92 0.99 0.953 0.915 0.99 0.95
BB 0.98 1.00 0.989 0.997 1.00 0.998
BBC 0.971 1.00 0.985 0.968 1.00 0.983
CBS 0.97 0.99 0.979 0.972 1.00 0.985
CNN 0.97 1.00 0.984 0.977 1.00 0.988

TABLE VI

BLOCK LEVEL PRECISION AND RECALL VALUES FROM Shingling ALGORITHM, AND ContentExtractor ALGORITHM FOR 50

WEB-PAGES. THE SECOND, THIRD, AND FOURTH COLUMNS ARE FROM Shingling ALGORITHM, THE FIFTH, SIXTH, AND THE

SEVENTH COLUMNS ARE FROM ContentExtractor.

The detection of similar nodes was done by an algorithm called “Shared Fragment Detection”.

The Shingling algorithm was designed to save storage for Web-caches. First, we compare the

storage requirements of a Web-cache using a ContentExtractor algorithm versus one obtained

by the Shingling algorithm. Table 4 shows a comparison of the Shingling algorithm with

ContentExtractor. To show the amount of storage-savings obtained, we show the initial storage

requirement of few HTML files, when neither of our algorithms have been run. It is evident

that both ContentExtractor and the Shingling algorithm provide substantial (and almost similar)

amount of savings in caching size.
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Fig. 5. Total execution time taken for ContentExtractor and the Singling-based algorithm.

Precision and recall values using Shingling algorithm are very very close (from table VI) to

our those from ContentExtractor algorithm as we see from the Web-pages we have analysed.

Thus, the main advantage of ContentExtractor is its time of execution. Due to less complex steps

and easy feature-based characterization of individual blocks in ContentExtractor the generation

of informative blocks is very fast. The Shingling algorithm depends mainly on calculating the

hash values of all (N −W + 1) possible token-IDs for N tokens and shingles set of window

length W . The computation of hash values and the computation for the comparison involved in

the resemblance equation

Resemblance(Ai, Bj) =
SubtreeShingles(Ai) ∩ SubtreeShingles(Bj)

SubtreeShingles(Ai) ∪ SubtreeShingles(Bj)
(8)

are expensive. ContentExtractor does not remove any HTML tags and uses them for making

the feature vector. This computation is relatively simple and inexpensive because the compari-
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son/similarity is based on just a cosine calculation between two vectors. Therefore, ContentEx-

tractor is much faster than the Shingling algorithm. Figure 5 shows a comparison of run-times

taken by Shingling algorithm and ContentExtractor. Clearly, the Shingling algorithm does not

scale very well and thus, the times for the larger number of Web-pages is not reported.

VII. ALGORITHM: L-EXTRACTOR

Song et.al. [25] used VIPS to perform page segmentation and then used an SVM to identify

primary content blocks in a Web-page. VIPS is an expensive page segmentation algorithm.

However, we hypothesized that an SVM can be very useful to identify primary content blocks.

To prove our hypothesis, we applied our GetBlockSet algorithm to 250 Web-pages. In the next

step we created the feature-vectors for these blocks using HTML tags as described above. This

set includes all HTML tags except that are included in the partitioning-list of tags and including

text feature. We then ran our Support Vector Learning classifier [11] (We used a linear Kernel

for the Perl SV classifier with cost and weight values of two-class C-SVC algorithm both set to

1 with 5-fold cross validation following Chang and Lin [13]). Figure 6 shows the accuracy of

finding the informative blocks over increasing number of Web-pages. From this study we can

claim that our block-partitioning algorithm combined with an SVM works with high efficiency.

VIII. CONCLUSIONS AND FUTURE WORK

We devised simple, yet powerful, and modular algorithms, to identify primary content blocks

from Web-pages. Our algorithms outperformed the LH algorithm significantly, in b-precision

as well as run-time, without the use of any complex learning technique. The FeatureExtractor

algorithm, provided a feature, can identify the primary content block with respect to that feature.
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The ContentExtractor algorithm detects redundant blocks based on the occurrence of the same

block across multiple Web-pages. The algorithms, thereby, reduce the storage requirements,

make indices smaller, and result in faster and more effective searches. Though the savings in

filesize and the precision and recall values from “Shingling Algorithm” is as good as from

ContentExtractor, ContentExtractor outperforms the “Shingling Algorithm” by high margin in

run-time. We intend to deploy our algorithms as a part of a system that crawls Web-pages, and

extracts primary content blocks from it. In the next step, we will look at the primary content

and identify heuristic algorithms to identify the semantics of the content to generate markup.

The storage requirement for indices, the efficiency of the markup algorithms, and the relevancy

measures of documents with respect to keywords in queries should also improve (as we have

shown briefly by caching size benefit) since now only the relevant parts of the documents are

considered.
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