
Algorithmic Fun - Abalone∗

Oswin Aichholzer, Franz Aurenhammer, Tino Werner

Institute for Theoretical Computer Science

Graz University of Technology

Graz, Austria

e-mail: {oaich,auren}@igi.tu-graz.ac.at, tino@sbox.tu-graz.ac.at

Why games?

A main area of research and teaching at our institute
is algorithms design. Loosely speaking, an algorithm is
a method (technique, recipe) which transforms a given
input – say a set of character strings – into the de-
sired output – an alphabetically sorted list, for exam-
ple. ”Algorithm” is among the most basic notions in
computer science. Beside the important role as a driv-
ing force in many fields of computing theory, as well as
the countless practical applications, algorithms bear in-
herent beauty, elegance, and – fun. This may have been
the motivation for many theoreticians to constantly
contribute to this area. The present note, however,
is not intended to present our research publications on
algorithms design but rather shows that, in collabo-
ration with students, projects of manageable size can
provide all at the same time: teaching of ideas and
concepts, fun, and improved results.

For half a century, board games (like chess) have
often been considered as benchmark examples for arti-
ficial intelligence. Surprisingly enough, the most suc-
cessful game programs to date are not really based on
artificial intelligence. They mostly rely on three pil-
lars: brute force (the power of computers), clever al-
gorithmic techniques (algorithms design), and sophis-
ticated evaluation strategies (developed by human in-
telligence). Along these lines, we present an algorithm
we designed for a sophisticated program playing the
board game Abalone on an advanced level.

Several famous people in computer science have con-
tributed to the algorithmic theory of games. To name
a few whose work is related to our topic, the funda-
mental principle of minimizing-maximizing strategies
for games (described below) was invented by Claude
E. Shannon around 1950. In 1975 Donald E. Knuth
and Ronald W. Moore investigated the expected per-

∗Abalone is a registered trademark of Abalone S.A. - France

Figure 1: Playing makes fun. Algorithms make fun.
Playing with algorithms is funsquared.

formance of alpha-beta pruning. Last not least, the
mathematician Emanuel Lasker, World Chess Cham-
pion 1894-1921, developed several games and strate-
gies.

Abalone

Though not much older than 10 years, Abalone is con-
sidered one of the most popular ’classical’ board games.
It may be the geometric appeal of the hexagonal board,
the compactness of its rules, or simply the nice hand-
ling of the elegant marbles which makes Abalone an
attractive game. From an algorithmic point of view,
Abalone bears challenging questions. In this note, we
report on a students project where Abalone1 was cho-
sen to implement a general search tree strategy, as
well as to develop tailor-made heuristics and evalua-
tion methods.

1For other games (like Four Wins, Scrabble, ...) we developed
different algorithmic strategies.

1



Rules: Abalone is played by two players, black and
white, each starting with 14 balls of the respectice
color. The rules to move the balls are simple. If it
is white’s turn, then at most three aligned white balls
may be moved (rigidly) by one position, choosing one
of the six available directions. Thereby, black balls are
pushed along if they lie in the line of movement and
are in minority. Balls pushed off the board are out of
the game. The goal is to be the first player that pushes
out six balls of the opponent.

More details and information about this nice game
can be found on the official Abalone web site at
http://www.abalonegames.com.

Geometric score function

To guide the actions of the players, a means to evaluate
a given Abalone constellation (i.e., a particular config-
uration of the balls on the playing board) is needed. As
will become apparent soon, an important objective is
to keep this procedure simple and efficient. The follow-
ing geometric approach turned out to be surprisingly
powerful. It relies on the intuitive insight that a strong
player will keep the balls in a compact shape and at a
board-centered position. This led us to use the static
evaluation function, called score function, below.

1. Compute the centers of mass of the white and the
black balls, respectively.

2. Take a weighted average of these centers and the
center of the game board (which gets weighted
with a factor below one). Call this reference
point R.

3. Sum up the distances of all white balls to R (same
for the black balls). Distances are measured along
the six lines of movement on the board. (This is
a hexagonal version of the well-known Manhattan
metric.) Balls pushed off the board are granted a
suitable constant distance.

4. The discrepancy of the two sums now gives the
score of the position.

Minimax strategy

Abalone is a typical two-player, perfect information
game. No randomness (like flipping a coin, rolling a
dice, or dealing cards) is involved. When taking turns,
the two players try to maximize and minimize, respec-
tively, the score function – from the first player’s view.

Figure 3: Screen shot of the program.

Accordingly, the first player is called the maximizer ,
and his opponent the minimizer . To figure out good
moves in a systematic way, the future development of
the game is represented by a decision tree: the branches
from the root of this tree (the start situation) reflect
all possible moves for the maximizer, each leading to a
new game position (root of a subtree) where it is the
minimizer’s turn. Again, all branches from this node
display the possible moves, now for the minimizer, and
so on.

Suppose now that the minimizer is playing optimally.
Then, the best move for the maximizer will be one
where the lowest score reachable by the minimizer is
as high as possible; confer Figure 2. When looking
ahead d steps, a tree of depth d with alternating maxi-
mizing/minimizing levels has to be considered. At the
’end’ of this tree, namely at its leaves (and only there),
the score function is computed for the corresponding
game positions. Then, by traversing the tree (using
depth-first-search) the maximizer can find the move
which is optimal when looking d steps ahead . Clearly,
the strength of the chosen move depends on how far we
can think ahead. The deeper the tree, the more critical
situations, impending traps, or winning moves can be
taken into account.

Obviously, in a globally optimal strategy there is no
artificial limit on the depth of the tree. All leaves are
situations where the game comes to an end. Unfortu-
nately, for most games this is not realistic; the tree
would simply grow too fast (namely exponentially).
The most powerful computers available today would
not even find a first move unless we bound the depth
of the tree. Still with a given bound d we have to be
careful. The time complexity of searching the tree is

2



move 1 move 4

m
ov

e 
2 m

ove 3

13 4 7 6 3 5 1 2

24

4 maximizing

3 1 minimizing

Figure 2: A decision tree with alpha-beta pruning at work: branches and leaves drawn dotted need not be
considered. This saves time without loosing any information.

roughly Bd, where B is the branching factor (the num-
ber of possible moves at a certain position). A quick
calculation: Abalone has about 60 possible moves for
a typical position, and we want the computer to cal-
culate ahead eight moves. Provided the program can
evaluate one million positions per second (which means
a lot of computation plus data handling etc.) we esti-
mate 168 · 106 seconds for one move. In other words,
you have to wait over 266 years to complete a game of,
say, 50 turns. Our assumptions on the computational
power are still to optimistic for today’s personal com-
puters – we should multiply by a factor of 50. It is now
evident that computational power will not be the key
to better Abalone playing; algorithmic improvement is
asked for.

Alpha-beta pruning

Alpha-beta pruning is a method for reducing the num-
ber of nodes explored by the minimax strategy. Essen-
tially, it detects nodes which can be skipped without
loss of any information. Consider Figure 2 for an exam-
ple. After examining the first move of the maximizer
(the leftmost subtree) we know he can do a move of
score at least 4. When trying his second move we find
that the minimizer now has a move leading to score
3 on the first try. We conclude that there is no need
to explore the rest of the second subtree: if there are
moves exceeding score 3 then the minimizer will not
take them, so the best the maximizer can get out of
this subtree is score 3, which he will ignore since he al-

ready has a better move. In this (lucky) case we know
– without looking at the remaining nodes – that no in-
teresting move can be expected from the subtree. In
this way, the number of traversed nodes can be signif-
icantly reduced.

”I think only one move ahead – but a good
one!”
Emanuel Lasker, World Chess Champion
1894-1921, when asked how ’deep’ he thinks

Technically, for each explored node alpha-beta prun-
ing computes an α-value and a β-value, expressing the
maximum and minimum score, respectively, found so
far in related subtrees. With the help of these values
it can be decided whether or not to consider further
subtrees, because the score of a node will always be at
least its α-value and at most its β-value.

Let us point out that this strategy is no heuristic at
all: if the tree depth d is fixed, the calculated best move
is independent from the use of alpha-beta pruning. The
advantage lies in the number of skipped nodes and thus
in the decrease of runtime. Observe further that the
runtime depends on the order in which subtrees are
visited. See Figure 2 again. If the minimizer first
considers a move with a score higher than 4 (e.g., the
third subtree) then we have to continue until a move
with lower score is found. This gets particularly time-
consuming if the first move of the maximizer is weak.

3



−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

start value

min value max value

de
pt

h

score

Figure 4: The funnel of our pruning heuristic helps to bypass unrealistically bad (or good) positions.

The best behavior will be obtained when the most
promising moves (high score for maximizer, low score
for minimizer) come first. It can be proved that such
an optimal alpha-beta pruning explores about square
root of the subtrees per node. (We get a complexity of
2 ·Bd/2

− 1 for d even, and B(d+1)/2 + B(d−1)/2
− 1 for

d odd). This is still exponential in the ’look-ahead’ d.

Clearly, optimal alpha-beta pruning cannot be man-
aged in real games. A simple but good approximation
is obtained when treating the moves at an actual posi-
tion as leaves of the tree and presorting them by score.

Heuristic alpha-beta pruning

Heuristics for playing a game try to mimic what hu-
man players do: detect all interesting situations and
avoid investigation of the majority of ’boring’ moves.
Usually this drastically reduces the number of work to
be done, but bears the risk that tricky moves are over-
looked. The ability to intuitively distinguish between
strong and weak moves is considered one of the major
advantages of human players over computer programs.

There exists a plethora of game heuristics in the lit-
erature, and no modern chess program could survive
without them. Unlike decision trees and alpha-beta
pruning, heuristics strongly depend on the character-
istics of the game in question. We found none of the
popular heuristics suited well for our purposes; a new
method had to be developed.

Unlike in chess, the score of an Abalone position
changes rather smoothly. One reason is that all the
’figures’ (the balls) are of equal status. (For example,
there are no kings which have to be protected under
all circumstances.) Thus, for a reasonable move the re-

sulting change in score is bounded, in a certain sense.
This fact has an interesting implication. Assume we
already have reached a very good score for a position
of full depth d. Then we may skip a subtree of the deci-
son tree whenever the score at its root is low (according
to the above mentioned bound) and thus destroys the
hope of reaching a better situation.

This observation works symmetrically for minimum
and maximum, which leads to some kind of ’funnel’
that restricts reasonable moves to lie in its interior;
see Figure 4. A crucial point is how narrow this fun-
nel can be made. For broad funnels, the heuristic will
not discard a significant number of moves. If the fun-
nel is too restrictive, on the other hand, we might
skip strong moves and thus miss important positions.
Choosing the optimum is, of course, strongly depen-
dent on the specific game. For Abalone we determined
the best value through careful experiments. Two ob-
servations were made when continuously changing the
width of the funnel: while the improvement in run-
time changed rather continuously, there was a critical
threshold where the strength of play decreased dramat-
ically. We considered the following criterion important
in finding an optimal funnel width: playing on level
d + 1 with heuristic alpha-beta pruning switched on
should always be superior to playing on level d with
the heuristic switched off.

Performance and strength

Let us first take a look at the efficiency of our pro-
gram. Table 1 compares the different approaches in
two extremal situations: starting phase (new opening)
and end game. The table shows the average number

4



2 3 4 5 6 7 8 9 10

1000

100

10

1

0.1

M
in

iM
ax

alp
ha

−be
ta

op
tim

al
 a

lp
ha

−b
et

a

alpha−beta heurist
icpres

orte
d al

pha−
beta

depth
se

co
nd

s

Figure 5: Comparison of runtime for the different approaches

of moves per position which had to be considered, i.e.,
the average branching factor B in the exponential com-
plexity term before. We see that the employed strate-

Strategy Opening Ending

Minimax strategy 60 65
Alpha-beta pruning 15 28
Presorted alpha-beta 13 13
Optimal alpha-beta 9 9
Heuristic alpha-beta 5 8

Table 1: Average number of moves per position

gies lead to significant improvements. In particular,
our final alpha-beta heuristic cuts down B by a fac-
tor around 10 (!) compared to the simple minimax
search. For the concrete example we gave earlier –
where one move took over 5 years – this means that a
move now can be found in about one second! (To be
consistent with the PC times in Figure 5, we have to
multiply these times by 50.) Figure 5 displays the run-
time for different strategies and increasing depth levels,
in the opening phase. The results for the ending phase
are similar though less distinguishing between differ-
ent strategies. As a satisfactory result, our heuristic
clearly outperforms optimal alpha-beta pruning.

To evaluate the strength of our program we could
win Gerd Schnider, three times World Champion of
Abalone, as a human opponent. During the different
stages of implementation and development we had sev-
eral pleasant surprises. For example, the program al-
ready ’developed’ its individual opening strategy. At
first glance, Schnider was disappointed by this uncon-

ventional and ’obviously weak’ opening – but after a
closer analysis he considered it as quite strong. More-
over, when playing against the program at level 7, he
got into serious trouble and couldn’t beat it, despite re-
trying several strategies. Finally he joked, ”Maybe you
should look for another test person.” This convinced us
that, although a lot of future work remains to be done,
our current implementation2 already plays quite well
and offers a challenge for every fan of Abalone.

”I played against the program quite a few
times and it is really strong. I was not able
to beat it in lightning games (around 5 sec-
onds per move), mostly because it defends
weaker positions extremely well. Tactically
it can look ahead further than me but there
are still some shortcomings in its strategy -
to my opinion it should pay more attention
to the compactness of the marbles, and it
under-estimates the importance of the center
a little. Anyway, it is much stronger than
all other programs I played against. With
its help, Abalone theory will improve much
faster than today.”
Gert Schnider, three times World Champion
of Abalone

2A preliminary evaluation version of the program is available
at http://www.igi.TUgraz.at/oaich/abalone.html

5


