Binary operations on sets (after Ray Mayer's notes)

Definition: A binary operation on a set A is a function $\circ: A \times A \rightarrow A$. Binary operations are usually denoted by special symbols such as:

$$
+,-, \cdot, /, \times, \infty, \cap, \cup, \text { or }, \text { and } .
$$

We often write $a \circ b$ rather than $\circ(a, b)$.
Examples and non-examples:
(1),$+ \cdot$ on $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$;
(2) - on $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$;
(3) / on $\mathbb{Q} \backslash\{0\}, \mathbb{R} \backslash\{0\}, \mathbb{C} \backslash\{0\} ;$
(4) - is not a binary operation on \mathbb{N}.

Definition: Let \circ be a binary operation on a set A. An element $e \in A$ is an identity element for \circ if for all $a \in A, a \circ e=a=e \circ a$.

Examples and non-examples:

Theorem: Let \circ be a binary operation on A. Suppose that e and f are both identities for o. Then $e=f$. In other words, if an identity exists for a binary operation, it is unique. Hence we talk about the identity for \circ.
Proof: Since for all $a \in A$, $e \circ a=a$, we get in particular that $e \circ f=f$. Also, for every $a \in A, a \circ f=a$, hence $e \circ f=e$. Thus $e=e \circ f=f$.

Note: we used the symmetry and the transitivity of the equality property.
Definition: Let \circ be a binary operation on A and suppose that e is its identity. Let x be an element of A. An inverse of x is an element $y \in A$ such that $x \circ y=e=y \circ x$.
Examples and non-examples:
(1) Let $\circ=+$ on \mathbb{Z}. Then 0 is the identity element and every element has an (additive) inverse.
(2) Let $\circ=\cdot$ on $\mathbb{Q} \backslash\{0\}$. Then 1 is the identity element and every element has a multiplicative inverse.
(3) If S is a set and A is the collection of all subsets of S, \cap is a binary operation on S. Find its identity element, and find all elements that have an inverse.

Definition: A binary operation \circ on A is associative if for all $a, b, c \in A, a \circ(b \circ c)=$ $(a \circ b) \circ c$.

Examples and non-examples:

(1),$+ \cdot$ and function composition are associative.
(2) - , / are not associative.

Theorem: Let \circ be an associative binary operation on A with identity e. If x has an inverse, that inverse is unique.

Proof: Let y and z be inverses of x. Then

$$
\begin{aligned}
y & =y \circ e(\text { by property of identity }) \\
& =y \circ(x \circ z) \text { (since } z \text { is an inverse of } x) \\
& =(y \circ x) \circ z(\text { since } \circ \text { is associative) } \\
& =e \circ z(\text { since } y \text { is an inverse of } x) \\
& =z(\text { by property of identity }) .
\end{aligned}
$$

Thus by the transitivity of equality, $y=z$.
Definition: We say that x is invertible if x has an inverse. The (abstract) inverse is usually denoted x^{-1}.

Be careful! What is the number 5^{-1} if $\circ=+$?
Theorem: If x is invertible, then its inverse is also invertible, and the inverse of the inverse is x.
Proof: By definition of inverses of $x, x^{-1} \circ x=e=x \circ x^{-1}$, which also reads as "the inverse of x^{-1} is x.
Theorem: Cancellation. Let \circ be an associative binary operation on a set A, let e be the identity and z an invertible element in A. Then for all $x, y \in A$,

$$
\begin{aligned}
& x \circ z=y \circ z \Rightarrow x=y, \\
& z \circ x=z \circ y \Rightarrow x=y .
\end{aligned}
$$

Proof: We prove only the first implication. If $x \circ z=y \circ z$, then $(x \circ z) \circ z^{-1}=(y \circ z) \circ z^{-1}$, hence by associativity, $x \circ\left(z \circ z^{-1}\right)=y \circ\left(z \circ z^{-1}\right)$. Thus by the definition of inverses and identities, $x=x \circ e=y \circ e=y$.

If \circ is associative, we will in the future omit parentheses in $a \circ b \circ c \circ d$, as the order of the computation does not matter.

If \circ is not associative, you need to keep parentheses! For example, in $\mathbb{Z}, a-b-c-d$ can have parentheses inserted in how many different ways, and five different values can be obtained! Find specific four integers a, b, c, d for which you get 5 values with different placements of parentheses.
Definition: A binary operation \circ on A is commutative if for all $a, b \in A, a \circ b=b \circ a$.
Examples and non-examples:

