# Binary operations on sets (after Ray Mayer's notes)

**Definition:** A binary operation on a set A is a function  $\circ$ :  $A \times A \rightarrow A$ . Binary operations are usually denoted by special symbols such as:

$$+,-,\cdot,/,\times,\circ,\cap,\cup,\ or,\ and$$
.

We often write  $a \circ b$  rather than  $\circ (a, b)$ .

### Examples and non-examples:

- (1) +, · on  $\mathbb{N}$ ,  $\mathbb{Z}$ ,  $\mathbb{Q}$ ,  $\mathbb{R}$ ,  $\mathbb{C}$ ;
- $(2) \text{on } \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C};$
- (3) / on  $\mathbb{Q} \setminus \{0\}$ ,  $\mathbb{R} \setminus \{0\}$ ,  $\mathbb{C} \setminus \{0\}$ ;
- (4) is not a binary operation on  $\mathbb{N}$ .

**Definition:** Let  $\circ$  be a binary operation on a set A. An element  $e \in A$  is an **identity** element for  $\circ$  if for all  $a \in A$ ,  $a \circ e = a = e \circ a$ .

#### Examples and non-examples:

**Theorem:** Let  $\circ$  be a binary operation on A. Suppose that e and f are both identities for  $\circ$ . Then e = f. In other words, if an identity exists for a binary operation, it is unique. Hence we talk about the identity for  $\circ$ .

*Proof:* Since for all  $a \in A$ ,  $e \circ a = a$ , we get in particular that  $e \circ f = f$ . Also, for every  $a \in A$ ,  $a \circ f = a$ , hence  $e \circ f = e$ . Thus  $e = e \circ f = f$ .

**Note:** we used the symmetry and the transitivity of the equality property.

**Definition:** Let  $\circ$  be a binary operation on A and suppose that e is its identity. Let x be an element of A. An **inverse** of x is an element  $y \in A$  such that  $x \circ y = e = y \circ x$ .

#### Examples and non-examples:

- (1) Let  $\circ = +$  on  $\mathbb{Z}$ . Then 0 is the identity element and every element has an (additive) inverse.
- (2) Let  $\circ = \cdot$  on  $\mathbb{Q} \setminus \{0\}$ . Then 1 is the identity element and every element has a multiplicative inverse.
- (3) If S is a set and A is the collection of all subsets of S,  $\cap$  is a binary operation on S. Find its identity element, and find all elements that have an inverse.

**Definition:** A binary operation  $\circ$  on A is associative if for all  $a, b, c \in A$ ,  $a \circ (b \circ c) = (a \circ b) \circ c$ .

## Examples and non-examples:

- (1) +, · and function composition are associative.
- (2) -, / are not associative.

**Theorem:** Let  $\circ$  be an associative binary operation on A with identity e. If x has an inverse, that inverse is unique.

*Proof:* Let y and z be inverses of x. Then

$$y = y \circ e$$
 (by property of identity)  
=  $y \circ (x \circ z)$  (since z is an inverse of x)  
=  $(y \circ x) \circ z$  (since  $\circ$  is associative)  
=  $e \circ z$  (since y is an inverse of x)  
= z (by property of identity).

Thus by the transitivity of equality, y = z.

**Definition:** We say that x is **invertible** if x has an inverse. The (abstract) inverse is usually denoted  $x^{-1}$ .

П

Be careful! What is the number  $5^{-1}$  if  $\circ = +$ ?

**Theorem:** If x is invertible, then its inverse is also invertible, and the inverse of the inverse is x.

*Proof:* By definition of inverses of x,  $x^{-1} \circ x = e = x \circ x^{-1}$ , which also reads as "the inverse of  $x^{-1}$  is x.

**Theorem: Cancellation.** Let  $\circ$  be an associative binary operation on a set A, let e be the identity and z an invertible element in A. Then for all  $x, y \in A$ ,

$$x \circ z = y \circ z \Rightarrow x = y,$$
  
 $z \circ x = z \circ y \Rightarrow x = y.$ 

*Proof:* We prove only the first implication. If  $x \circ z = y \circ z$ , then  $(x \circ z) \circ z^{-1} = (y \circ z) \circ z^{-1}$ , hence by associativity,  $x \circ (z \circ z^{-1}) = y \circ (z \circ z^{-1})$ . Thus by the definition of inverses and identities,  $x = x \circ e = y \circ e = y$ .

If  $\circ$  is associative, we will in the future omit parentheses in  $a \circ b \circ c \circ d$ , as the order of the computation does not matter.

If  $\circ$  is not associative, you need to keep parentheses! For example, in  $\mathbb{Z}$ , a-b-c-d can have parentheses inserted in how many different ways, and five different values can be obtained! Find specific four integers a, b, c, d for which you get 5 values with different placements of parentheses.

**Definition:** A binary operation  $\circ$  on A is **commutative** if for all  $a, b \in A$ ,  $a \circ b = b \circ a$ . **Examples and non-examples:**