Binary operations on sets (after Ray Mayer's notes) **Definition:** A binary operation on a set A is a function \circ : $A \times A \rightarrow A$. Binary operations are usually denoted by special symbols such as: $$+,-,\cdot,/,\times,\circ,\cap,\cup,\ or,\ and$$. We often write $a \circ b$ rather than $\circ (a, b)$. ### Examples and non-examples: - (1) +, · on \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} ; - $(2) \text{on } \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C};$ - (3) / on $\mathbb{Q} \setminus \{0\}$, $\mathbb{R} \setminus \{0\}$, $\mathbb{C} \setminus \{0\}$; - (4) is not a binary operation on \mathbb{N} . **Definition:** Let \circ be a binary operation on a set A. An element $e \in A$ is an **identity** element for \circ if for all $a \in A$, $a \circ e = a = e \circ a$. #### Examples and non-examples: **Theorem:** Let \circ be a binary operation on A. Suppose that e and f are both identities for \circ . Then e = f. In other words, if an identity exists for a binary operation, it is unique. Hence we talk about the identity for \circ . *Proof:* Since for all $a \in A$, $e \circ a = a$, we get in particular that $e \circ f = f$. Also, for every $a \in A$, $a \circ f = a$, hence $e \circ f = e$. Thus $e = e \circ f = f$. **Note:** we used the symmetry and the transitivity of the equality property. **Definition:** Let \circ be a binary operation on A and suppose that e is its identity. Let x be an element of A. An **inverse** of x is an element $y \in A$ such that $x \circ y = e = y \circ x$. #### Examples and non-examples: - (1) Let $\circ = +$ on \mathbb{Z} . Then 0 is the identity element and every element has an (additive) inverse. - (2) Let $\circ = \cdot$ on $\mathbb{Q} \setminus \{0\}$. Then 1 is the identity element and every element has a multiplicative inverse. - (3) If S is a set and A is the collection of all subsets of S, \cap is a binary operation on S. Find its identity element, and find all elements that have an inverse. **Definition:** A binary operation \circ on A is associative if for all $a, b, c \in A$, $a \circ (b \circ c) = (a \circ b) \circ c$. ## Examples and non-examples: - (1) +, · and function composition are associative. - (2) -, / are not associative. **Theorem:** Let \circ be an associative binary operation on A with identity e. If x has an inverse, that inverse is unique. *Proof:* Let y and z be inverses of x. Then $$y = y \circ e$$ (by property of identity) = $y \circ (x \circ z)$ (since z is an inverse of x) = $(y \circ x) \circ z$ (since \circ is associative) = $e \circ z$ (since y is an inverse of x) = z (by property of identity). Thus by the transitivity of equality, y = z. **Definition:** We say that x is **invertible** if x has an inverse. The (abstract) inverse is usually denoted x^{-1} . П Be careful! What is the number 5^{-1} if $\circ = +$? **Theorem:** If x is invertible, then its inverse is also invertible, and the inverse of the inverse is x. *Proof:* By definition of inverses of x, $x^{-1} \circ x = e = x \circ x^{-1}$, which also reads as "the inverse of x^{-1} is x. **Theorem: Cancellation.** Let \circ be an associative binary operation on a set A, let e be the identity and z an invertible element in A. Then for all $x, y \in A$, $$x \circ z = y \circ z \Rightarrow x = y,$$ $z \circ x = z \circ y \Rightarrow x = y.$ *Proof:* We prove only the first implication. If $x \circ z = y \circ z$, then $(x \circ z) \circ z^{-1} = (y \circ z) \circ z^{-1}$, hence by associativity, $x \circ (z \circ z^{-1}) = y \circ (z \circ z^{-1})$. Thus by the definition of inverses and identities, $x = x \circ e = y \circ e = y$. If \circ is associative, we will in the future omit parentheses in $a \circ b \circ c \circ d$, as the order of the computation does not matter. If \circ is not associative, you need to keep parentheses! For example, in \mathbb{Z} , a-b-c-d can have parentheses inserted in how many different ways, and five different values can be obtained! Find specific four integers a, b, c, d for which you get 5 values with different placements of parentheses. **Definition:** A binary operation \circ on A is **commutative** if for all $a, b \in A$, $a \circ b = b \circ a$. **Examples and non-examples:**