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Abstract is missing in most current RDF storage systems.
In this paper we adapt database techniques for RDF data
Storing and querying Resource Description Framework storage and indexing, which results in improved query an-
(RDF) data is one of the basic tasks within any Semantic swering performance and capabilities compared to current
Web application. A number of storage systems provide as-RDF storage systems. Our paper identifies and combines
sistance for this task. However, current RDF database sys-several techniques from the database area to arrive at a
tems do not use optimized indexes, which results in a poorsystem with improved efficiency for storing and retrieving

performance behavior for querying RDF. In this paper we RDF. Specifically, this paper makes the following contribu-
describe optimized index structures for RDF, show how to tions:

process and evaluate queries based on the index structure, ) ) ) )
describe a lightweight adaptable implementation in Java, ©® Ve define and realize a complete index structure in-
and provide a performance comparison with existing RDF cluding full-text indexes for RDF triples with context.

databases. e We describe YARS, a lightweight open-source imple-

. mentation of the index structure in Java with small
1. Introduction footprint which can be embedded into an application

and adapted to special application needs.
In recent years RDF has emerged as the prevalent data for-

mat for the Semantic Web. RDF is a graph-based data for- The remainder of the paper is organized as follows: Sec-
mat which is schema-less and self-describing, meaning thation 2 reviews the data model for data and queries and intro-
the labels of the graph within the graph describe the data it-duces an example. In Section 3, we present optimized in-
self. Many applications that deal with RDF have the need to dex structures tailored for speeding up queries on RDF data.
store the data persistently and perform queries on the datalMe describe how to perform query processing for select-
set. project-join (SPJ) queries in Section 4. Section 5 presents

Systems such as Jena2 [17], Sesame [5], rdfDB [7], Red-the architecture and implementation of Yet Another RDF
land [2], Kowari!, FORTH RDF Suite [1] and others pro- Store (YARS), our prototype system. In Section 6 we evalu-
vide a storage infrastructure for RDF data. However, after ate YARS and in Section 7 we discuss related work. Section
looking at the index structures of the systems, most of the 8 concludes the paper.
systems use an index structure which do not support typical
query scenarios for data from the Web which results in poor 2. Preliminaries
guery answering performance in some cases. _ ) i )

Furthermore, to judge a given piece of information we In this section we first give an example of RDF data found
usually need to look at the context of the information. As ©N the Web and then define the data model and query lan-
an example for context consider the source of a piece of9uage used.
information. We might want to trust information coming
from whitehouse.gov more than information from white- 2.1 Example

h . i . H , th ti f text . . . -
ouse.com (or vice versa). However, the notion of contex FOAF (Friend of a Friend) is a vocabulary “describing peo-

Lhttp://www.kowari.org/ ple, the links between them and the things they create and




do”?. FOAF is frequently used to describe a person’s home- Definition 2.2 (Triple in Context) A pair (t, ¢) with t be a
page in machine-readable format, and is a good example fottriple and ce (R U B) is called a triple in context c.

data that is distributed across the Semantic Web. Figure 1
shows a small RDF graph describing the authors of this pa-

, Please note that a triple ((s, p, 0), €) in context c is equiv-
per using the FOAF vocabulary.

alent to the quad (s, p, o, C).

~
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/ We use Notation3 (N3) as a syntax for RDF. For a full de-
/ S s vt e scription of N3 see [3]. To make this paper self-contained,
/ andreas/#me foaf:knows . -/ldecker.cn \ " ' X ==

’ e ‘/’ we introduce the basic syntactic N3 primitives. Brackets

/ Togtname foatmbor - (<>) denote URIs, quotes’() denote Literals, and blank

/ de identifiers start with_*:". Th ist ber of
( noae laentfiers start witn_":". ere exiIsts a humber o

/// ‘ ) ;
\ syntactic shortcuts, for example “;” to introduce another
Sl harth@deri.org e decker@deri.org

----- — - predicate and object for the same subject. Namespaces can
be introduced with the @prefix keyword. Figures 2 and 3

Figure 1: FOAF example originating from two different show the N3 syntax for the two contexts in the example de-
sources describing the authors. The contexts of the graphgicted in Figure 1.

are http://sw.deri.org/"aharth/foaf.rdf
andhttp://www.isi.edu/"stefan/foaf.rdf

@prefix foaf: <http://xmins.com/foaf/0.1/ .

<http://www.harth.org/andreas/#me>

foaf:name "Andreas Harth" ;
2.2 Data Model foaf:mbox <mailto:andreas.harth@deri.org> ;

We begin with defining the standard RDF data model as foaf:workplaceHomepage <http://www.deri.org/>;
described in various W3C Recommendations [13], [10].  foafknows <http://decker.cn/stefan/> .

Definition 2.1 (RDF Triple, RDF Node) Given a set of URI

referencesk, a set of blank nodes, and a set of literal<, Figure 2: N3 syntax of context
atriple (s, p, 0)e (RUB) x R x (RUBUL)iscalledan  http://sw.deri.org/"aharth/foaf.rdf in
RDF triple, An element of an RDF triple is called an RDF  Figure 1.

node.

In such a triple, s is called the subject, p the predicate,
and o the object.

Although the RDF specification itself does not define the
notion of context [8], usually applications require COM®&X  <http://decker.cn/stefan/>
store various kinds of metadata for a given set of RDF state- foaf:name "Stefan Decker" :
ments. E.g. MacGregor and Ko [12] reported on an appli- foaf:firstName "Stefan" ;
cation that stored information about ships and their pmsiti ~ foaf:mbox <mailto:stefan.decker@deri.org> .
and argued that quads are a suitable formalism to capture
context.

The interpretation of context is depends on the applica- Figure 3: N3 syntax of context
tion. For example, in an information integration use case, http://www.isi.edu/"stefan/foaf.rdf in
the context is the URI of the file or repository from which Figure 1.

a triple originated. Capturing provenance is one of the fun-
damental necessities in open distributed environmengs lik
the Web, where the quality of data has to be judged by its
origin. Contexts are useful in other application scenaai®s
well, such as versioning or access control.

@prefix foaf: <http://xmins.com/foaf/0.1/ .

N3 offers an extension to the RDF data model with prim-
itives for variables and grouping of graphs. Variables in N3
are denoted using a question mark “?”. Within N3, RDF
subgraphs can become the subject or object of a statement,
2http://www.foaf-project.org/ using “{}". N3 is able to represent lists of nodes using “()".




2.4 YARS Query Language

<> gliselect { ?x ?p ?z .

To be able to express queries, two sets of N3 language
extensions are required. For the extensions, we introduce
two namespacegyl 3 andyars 4. The first set of lan-
guage extensions, namely the predicajewhere and
gl:select enable us to formulate queries. A query con-
sists of agl:where  clause which comprises a set of state-
ments that can contain variables. An optiogléelect
clause determines the format of the result set.

The second set of language extensions define YARS-

h
gl:where {
{ ?x foaf:name ?n .

?n yars:keyword "Harth" .
X ?p ?z .
?p yars:prefix foaf: .
} yars:context
<http://sw.deri.org/ aharth/foaf.rdf> .

specific query primitives and are listed below.

e Theyars:context predicate denotes that the sub-

Figure 4: N3 query to get all FOAF information about the
person with the name containing “Harth” from a specified

graph grouped in the subject is occurring in the con- Source.

text provided as the object. Thgars:context
predicate enables us to express our notion of context
within the RDF data model. In the example in Fig-
ure 4 theyars:context predicate specifies that
we only want to query statements originating from
http://sw.deri.org/ aharth/foaf.rdf

The yars:keyword  predicate allows to represent
keyword-containment requirement for subjects. E.g.,
the yars:keyword  in the example in Figure 4 re-
quires that the variablen needs to contain the string
“Harth”.

The predicateyars:prefix can be used to spec-
ify that a variable in the subject has to match on
the prefix denoted in the object. For example, the
yars:prefix predicate in the example in Figure 4
specifies that only statements using the FOAF predi-
cates should be used for query answering.

The predicateyars:count  is used to query occur-
rence counts for statements quoted as subject. The ob
ject is a variable that is bound to the occurrence count
of the access pattern during query evaluation.

3. Index Organization

The goal of the index is to support evaluation of SPJ queries.
At the lowest level, the index structure enables fast redtie
of quads, given any combination of subject (s), predicate
(p), object (0) or context (c). We want to avoid expensive
joins wherever possible, and therefore trade index space fo
retrieval time.

All our persistent indexes use B+-trees [6], a well un-
derstood data structure which support insert, deletes, an
lookups (especially range lookups). Conceptually, we have

Shttp://www.w3.0rg/2004/12/ql#
4http://sw.deri.org/2004/06/yarst#

(key, value) pairs where retrieval based on key yields the

value using few disk operations.

Our index structure contains two sets of indexes:

e thelexiconcovers the string representations of an RDF
graph R, L, B).

e thequad indexesover the quads.

3.1 Lexicon

The lexicon indexes operate on the string representations
of RDF nodes, and enable fast retrieval of object identifiers
(OIDs) for RDF nodes. OIDs are represented and stored
on disk as 64 bit longs. Since we reference RDF nodes in
multiple indexes the mapping from string values to OIDs
saves space. Also, processing and comparing OIDs is faster
than comparing strings.

The lexicon consists of three different indexes: the

nodeoidandoidnodeindexes map strings to OIDs, and the

keyword index is an inverted text index.

3.1.1 NodeOID and OIDNode Index

The oidnodeand nodeoidindexes are used to map OIDs
to string values of RDF nodes and vice versa. OIDs are
assigned increasingly monotonically for each unique node
that is inserted. OID 0 is a special OID that denotes a vari-
able.

An alternative to keeping theodeoidindex is to com-
pute the hash of the node and use the resulting number as
an OID. However, hash functions with a small probability
of collisions such as SHA1 or MD5 produce at least 128 bit

(J<eys for OIDs, which would increase the index size consid-

erably.

Keeping a separate index for mapping string values to
OIDs and storing the mapping in B+-trees has the advantage
that we are able to perform prefix queries on node values,



given that thenodeoidndex is sorted lexographically. Table
1 shows thenodeoidindex created for the example graph
provided by Figure 1.

| Key | Value |
“Andreas Harth” 3
“Stefan” 14
“Stefan Decker” 11
<http://www.harth.org/andreas/#me 1
<http://decker.cn/stefan/ 10
<http://sw.deri.org/"aharth/foaf.rof 4
<http://www.deri.orgt 8
<http://www.isi.edu/"stefan/foaf.rdf 12
<http://xmiIns.com/foaf/0.1/firstName 13
<http://xmins.com/foaf/0.1/knows 9
<http://xmIns.com/foaf/0.1/mbax 5
<http://xmins.com/foaf/0.1/name 2
<http://xmins.com/foaf/0.1/workplaceHomepage 7
<mailto:andreas.harth@deri.ofg 6
<mailto:stefan.decker@deri.axg 15

Table 1: OIDs for the node values in the example dataset in
thenodeoid index

3.1.2 Keyword Index

The prevalent type of queries used today to explore Web

data are keyword queries. To speed up these type of queries,

the lexicon keeps an inverted index on string literals to al-
low for fast full-text searches. Each literal is tokenizetbi
words. Each word represents a key in the index, with a

sorted list of OIDs as occurrences. Table 2 shows such an

index constructed for the example. We use the full list stor-

3.2.1 Access Patterns

We want to avoid expensive joins whenever possible. Thus,
we need an index that allows to lookup any combination of
s, p, 0, c directly rather than joining the results from lop&u
in multiple indexes.

The quad indexes are based on the notion of access pat-
terns.

Definition 3.1 (Access Pattern) An access patternis a quad
where any combination of s, p, 0, c is either specified or a
variable.

For example, an access pattern could be a quad where
only s is specified, and p, 0, and c are variables. The access

to s, whereas the other nodes have unspecified value. To
compute the total number of access patterns we just have to
consider that for each element of the quad (4) there exist 2
possibilities (either a node is specified, or it is a variable
Therefore the total number of access patteris4 * 2

2 = 16. Table 3 shows all possible access patterns for quad
lookups.

| No | Access patter] No | Access patterr]

1| (2:2:2:? 9 | (s:?:0:c)
2| (s:?2:?:? 10 | (?:?:0:¢)
3| (sip:?:? 11 | (?:?:0:?
4 | (s:p:0:?) 12 | (?:?:?:¢)
5| (s:p:0:c) 13| (s:?:?:c)
6 | (?2:p:?:? 14 | (s:p:?:c)
7| (?:p:0:?) 15 | (?:p:?:c)
8 | (?:p:0:c) 16 | (s:?:0:?)

age scheme as described in [15], but keep OIDs instead ofTable 3: Possible quad patterns; in total, there are 16rdiffe

document identifiers for the hitlist. Keeping the number of
hits helps to determine join ordering during query process-
ing.

| Key | No of hits | List of hits |
“Andreas” | 1 3
“Decker” | 1 11
“Harth” 1 3
“Stefan” 2 11,13

Table 2: Keyword/hitlist pairs for literals in the inverteskt
index.

3.2 Quad Indexes

The following section shows that we only need a restricted

ent patterns to cover all possible access combinations.

A naive implementation of a complete index on quads
would need 16 indexes, one for each access pattern. Imple-
menting a complete index in the naive way is prohibitively
expensive in terms of index construction time and storage
utilization. In the next section we show how we can cover
all access patterns with just six indexes.

3.2.2 Combined Indexes

To reduce the number of indexes needed, we leverage the
fact that B+-tree provide support for range or prefix queries
A combined index on s, p, o, and c for a quad (s, p, 0, C)
is able to support queries for access patterns 1 through 5
in Table 3. For example, a lookup for the access pattern
(s:p:?:?) resolves to a prefix query for s and p ongpec

number of indexes to cover all possible access patterns foindex. Therefore, we do not need to keep a separate index

RDF data.

of s and p but can reuse teBpocindex.



Using combined indexes reduces the number of neces+ions to quickly access basic statistical information, e a
sary indexes to implement a complete index on quads toable to store occurrence counts directly in the index.
six. Table 4 shows the six indexes and which access pattern

For each key that is inserted into an index, we generate
they cover.

additional keys denoting access patterns. We utilize the un
| used value field in the B+-tree index to record occurrence
counts of access patterns. For each quad in an index, we
construct one key that contains node OIDs only consisting
of “0”s, one key that contains the first node OID together
with “0”s, one that contains the first and second node OID,

| spoc | poc | ocs

?2:2:2:?)| (2:p:?:?)| (2:?:0:?
(s:2:2:?2)| (?:p:0:?)| (?:?:0:C)
(s:p:?:?)| (?:p:0:c)| (s:?:0:C)

Ezgg’c))) and one that contains the first three node OIDs.

| csp | cp | 0s | Using our example, consider the quad
22:2:0)] (2p:7:0)] (5:2:0:2 ( <http://www.harth.org/andreas/#me >,
(é_',',_',')'c) """"" foaf:knows, <http://decker.cn/stefan/ >,
(sp’> 0) <http://sw.deri.org/~aharth/foaf.rdf >),

which resolves to the key (1:9:10:4) to insert into the
gSpocindex. We generate four additional keys: (0:0:0:0),
(1:0:0,0), (1:9:0:0), and (1:9:10:0), and insert them ithte
index as key. The value part is initialized with “1” if the
To simplify and speed up the lookup operations on ac- access pattern was not present before, otherwise the value

cess patterns, we implement every index containing the full part is incremented by one. Table 6 illustrates howsihec
quads as key (i.e. (c:p:s:0) for the cp access patterngrath index looks like after adding occurrence counts. Note that
than having the index on (c:p) and keep the remaining ele-the value part of the key (1:9:10:4) which denotes a quad
ments of a quad in linked lists in the value part. That meansstill remains empty.
we store each quad (s, p, 0, c) as key (s:p:0:c) insthec
index, as key (p:o:c:s) in theocsindex, and so on.

Table 4: Six indexes needed to cover all 16 access pattern

Table 5 shows thespocand pocsindexes for the ex- | (s:p:0:c) | value |
ample dataset. For example, to retrieve all informa- (0:0:0:0) | 7
tion about the predicate with OID 2 (which resolves to (1:0:0:.0) | 4
http://xmiIns.com/foaf/0.1/name ) we perform (1:9:0.0) |1
a range query on indepocs from (2:min:min:min) to (1:9:10:0)| 1
(2:max:max:max), which is equivalent to a prefix query for (1:9:10:4) | -
all keys that start with OID 2. The result of the operation is (1:5:0:0) |1
an iterator over all keys with the specified predicate. .
| (s:p:0:c) | Value || (p:o:c:s) | Value | Table 6: spocindex with occurrence counts stored in the
(1.2:3:4) - (2:3:4:1) - index.
(1:5:6:4) - (2:11:12:10) | -
(1:7:8:4) - (5:6:4:1) -
(1:9_:1_014) ) (551_5:_12:10) ) Determining the result size of an access pattern is
(10:2:11:12) | - (7:8:4:1) ) as simple as looking up the corresponding access pat-
(10:5:15:12) | - (9:10:4:1) ) tern key in the index. The value associated with that
(10:13:14:12)| - (13:14:12:10)| - key is the number of resulting quads for a given ac-

cess pattern For example, an index lookup for the key
(0:0:0:0) yields the total number of quads in an index
(7 given the index in Table 6). An index lookup for
the key (1:0:0:0) returns the number of quads with sub-
ject <http://www.harth.org/andreas/#me >, a
lookup for (1:9:0:0) the number of quads with that subject
and predicate foaf:knows, and so on.

Table 5: spocand pocsindexes for the example. The re-
maining four quad indexes are constructed accordingly.

3.2.3 Occurrence Counts

A large number of applications, such as data mining, rank-
ing, and user interface generation, require to collecisttat
cal information about the data set. To allow these applica-

Since counting and storing the occurrence counts is quite
expensive, adding the counts can be performed as a batch
operation once the quad indexes have been constructed.



4. Query Processing
<> qliselect { ?x ?y ?z . };

The following section describes how to perform index gl:where {

lookups on the indexes and how to process and execute con- { ?x ?y ?z } yars.context ?c .

junctive queries. ?c yars:prefix <http://www.cnn.com/> .

}.

4.1 Index Lookups

Given our indexing structure, there are a set of lookup oper-Figure 5: N3 query to return all statements from the con-
ations that the lexicon and the quad indexes support. Tableexts starting with< http://www.cnn.conts.

7 lists the atomic lookup operations. For example, a prefix

lookup for <http://xmIns.com/foaf/0.1/ > re-

turns OID 13 as a lower bound and OID 7 as an upper bound(11:max:max:max). Next, we perform a range query over
(see Table 1 for the content of thedeoidndex). Thequad theocspquad index, and the resulting quads are then trans-
operation only returns OIDs of nodes that are needed in sub4ated to node values which are returned to the user.
sequent steps in the query processing. The other operations Consider a query to retrieve the statements associated

work analogously, for details please consult Table 7. with a context prefix, for example return all statements
that originate from URIs starting with http://www.cnn.com
Operation Parameter | Index Result Figure 5 shows the query in N3 notation.
deployed So far, we have only considered queries that involve one
getoID node value| nodeoid | OID particular quad pattern. More complex queries consist of
getNode oID oidnode | node value multiple quad patterns that are connected via logical AND
getPrefix prefixof | nodeoid | range from lower (conjunctive queries), which are evaluated based on joins.
node value| OID to upper OID To be able to efficiently answer conjunctive queries, we
getkeyword | keyword | inverted | iterator over OIDs have to perform a query optimization step which involves
!ndex : reordering of quad patterns. In particular, the query execu
getCountkw | keyword :%Zr;ed result size tion step should start with the quad pattern that yields the
getouad access quad orator over Tist smallest result set, which is then subggqugntly combined
pattern indexes | of OIDs with other quad patterns that were specified in the query.
getCountQ | access quad result size It is common to use heuristics to estimate the size of a
pattern indexes result set. One example of a heuristics is to estimate the
result size of an access pattern based on the number of vari-
Table 7: Lookup operations on the index structure. ables specified in that access pattern. Rather than relying
on heuristics, we can use tigetCountQoperation that ac-
cesses occurrence counts in the quad indexes to accurately
determine the result size of a given access pattern.
4.2 Query Plan The result of the plan evaluation is a list of variable bind-

ings with OIDs.
This section describes how to combine lookup operations

from the different indexes to be able to answer queries. In .
the query processing stage, results from the lexicon irelexe 4-3  Result Construction
are combined with results from the quad indexes, and re-
sults from the quad indexes among each other.

The simplest case for a query is to ask for quads matc
ing one quad pattern, which involves looking up the OIDs

Our query language has closure; that means, results of a
guery are itself expressed in RDF and can be therefore fed
h'into another query. Thel:select clause of a query
for node values specified in the query to OIDs on the specifies a template that is used to con_structthe _results_. On
nodeoidindex, constructing keys with lower and upper pre of templatg can be a set of RDF lists of variable bind-
' ings that constitute the answer to a query. Another type of

bounds tha’F determ|_ne the resu_lt set, and ranging over th(iemplate can include RDF statements that contain variables
corresponding quad index to derive the matching quads. For

example. consider a query that asks for all auads with theWhich are bound during query execution. The result of the
IiteraIeSt’efan Decker’gas gbject (2,2 “Stefa?\ Decke}?, ? guery processing is then a set of RDF statements with val-

. : . T ues filled in for the corresponding variables.
We first look up the OID of the literal in thaodeoidin- If no select clause is specifiedgin the query, then a set of
dex. The result, OID 11, is then used to construct a set of P query,

keys with lower bound (11:min:min:min) and upper bound gitesr;vlth variable bindings is returned as an answer to the



5. Architecture and Implementation interface, which makes it possible to use standard HTTP

h | of _— . build h browsers for HTTP GET operations or versatile HTTP
The goal of our implementation was to build a system that oo g 5ch as cuftlor wget to interface with YARS. The

offers scalable query facilities S_Uited fqr_aggre_gated _RDF data format for input is N3, and results are returned in N-
data collected from the Web while providing a lightweight 105 tormat. We support N3 as a result format, because,
implementation that can be used in other systems that nee‘E;iven our index structure, we can return results in a stream-

to stqre and retn-eve. RDF data (which is almos.t every Se'ing fashion without the need to construct the result set in
mantic Web application). The prototype system is available memory first

for download® and is released under a BSD-style license.

5.1 Components 5.3 Storage

The basic architecture of the YARS system is depicted in To be able to implement the index organization we chose to
Figure 6. YARS consists of an HTTP access interface, use JDBM’, a lightweight open-source library that includes
a storage component that handles both persistent and inimplementation of B+-trees for persistent storage of data o
memory indexes, and a query handler to perform query pro-disk. JDBM consist of a record manager that offers caching
cessing and evaluation. and transactions. Bothidnodeand nodeoidindexes are
The system is implemented in Java as a Web applica-candidates for high number of buffers because lookups in
tion that runs inside a Tomcat application server and usesthese indexes are very frequent.
Jena’s N3 parser to parse incoming data and queries. The We chose to use a pre-existing B-tree implementation
size of the resulting war file including all packages is agbun over developing our own B-tree for similar reasons as [15].
250k, making YARS applicable for applications where a  The additional layer we had to implement was the han-
small footprint is required. Excluding test cases and ex- dling of concatenated keys in the quad indexes. The text
ternal components, the system currently consists of aroundnverted index is constructed and held in memory for bet-

6000 lines of Java code. ter access performance. Both insert and delete operations
" s \ are transactions. Indexes can be created as batch opsration
Statementsl Queriesg Statements based on thepOCIndeX'
y 6. Experimental Results
Webapp
T \ We conducted a performance evaluation based on a syn-
* \ thetic dataset from the Lehigh University Benchmark [9]

containing 2.8 million triples for our experiments. We cre-
ated a dataset, univ(20, 0), which file size in N-Triples for-
: mat is 392 MB.

Y We considered the following RDF stores for evaluation:

Query Handling Sesame, Kowari, Redland and Jena2. [9] shows that Sesame
- generally supersedes Jena in performance results, therefo
. f we did not include it in the benchmarking. We tried to
Y install Kowari 1.0.2, but failed to get a running version.
Storage Therefore we concentrated in our efforts on Sesame 1.1RC2
and Redland 0.9.18.

As a test server, we used a Pentium-4 2.4 GHz machine
with 4 GB main memory running Debian Sarge. YARS
and Sesame were running inside a Tomcat servlet container
with a VM memory size set to 1GB for index construction
and 128 MB for retrieval tests. Both clients for YARS and
Sesame were programmed in Java. In contrast to Sesame
5.2 Access Interface and YARS, Redland does not provide an HTTP access in-

We defined an HTTP access interface with operations forterface. Therefore we used the Perl API to add data to the

insertion (HTTP PUT), querying (HTTP GET), and dele- repository and perform queries.
tion (HTTP DELETE). We chose to use HTTP as a network

Notation3 Parser

Figure 6: YARS components and data flow for N3 queries
and N3 statements

Shttp://curl.haxx.se/
Shitp://sw.deri.org/2004/06/yars/yars.html http://jdbm.sourceforge.net/




Sesame lacks context support; we refrained from usingcontexts. Please note that we keep 8 byte OIDs instead of
reification in Sesame to keep context information and just Sesame’s 4 byte OIDs, which roughly doubles our index
stored triples. The context mechanism was enabled in thesize.
Redland store.

| System | Index Size (bytes)

. Redland 2.164.019.20Q

6.1 Index Construction Sesame MySQL 340.381.636
For the index construction test, we loaded the files from Sesame native 39.997.992
N-Triples format into the repository. The index creation YARS 1.090.002.944

time for YARS consists of creating the quad index exclud-
ing statistical information, and the lexicon indexes witho
inverted index to be comparable to the other repositories
that do not construct these indexes either. Figure 7 shows
the performance measurements from the index construction

Table 8: Index size for the synthetic Univ20 dataset.

process. 6.2 Queries
Since the queries associated with the Lehigh benchmark
o Sgsame thsoL —— take into account reasoning, we created four basic queries
o000 |- redand /| that test different access patterns and have differenachar
teristics. Please note that we perform the query experignent
10000 1 on plain RDF semantics and do therefore not take any rea-

soning into account.

8000

seconds

| No | Query |
1 ?x rdf:type univ:UndergraduateStudent
2 ?x ?p "UndergraduateStudent0”

3 <http://www.University965.edt ?p ?0
4 ?X univ:worksFor ?y

6000

4000 +

2000

0 b= = L L L L
0 500000 1le+06 1.5e+06 2e+06 2.5e+06 3e+06

0 of tiples Table 9: Quad queries used in the evaluation.
Figure 7: Index construction times for synthetic dataset

Each query was executed against the repository after a
random 300 MB file was copied to hard disk to flush buffers.

To be able to discuss the results, we first briefly introduce : : ) )
) . . We issued each query ten times, but only included the first
the indexing methods of the various data stores. Redland query y

. . result here since we wanted to test index lookup time and
stores three indexes, based on hash tables. The po2s ind P

%ot the cache manager of the persistence layer.
maps a key on p and o to value s, the so2p index maps s g P y

and o to p, and the sp2o index maps s and p to 0. The ("Guery [ Redland| Sesame| Sesame YARS
native store of Sesame has been recently included into the MySQL | Native
Sesame distribution. Internally, resources and litereds a 01048 101887 | 1.0516] 018 41
mapped to OIDs, and then separate indexes are kept on s, 0-44.14 | 0:00.73 | 0:0055!| 0:00.49
p, 0. For queries specifying both s and p, an expensive join 0:44'15 0200.46 0:00'47 0:00'32
has to be performed. YARS keeps the complete index on 3:04'21 0203'42 0:01'95 0:00'47
guads without statistics as well as thedeoidandoidnode — — — —
indexes. Although we are keeping full indexes and have a Table 10: Performance results for quad queries.
sophisticated index structure, index construction tinoes f

YARS are comparable with the other systems.

YARS trades index space for query time. As Table 8  The results obtained in the query tests reflect the inter-
shows, YARS requires more space than the Sesame implenal index structures of the various repositories. In query
mentations. However, Sesame does not include the notionl, Redland is very fast since the query is only a hash in-
of context, which means that the index contains less in- dex lookup on the po2s index. Sesame/MySQL performs
formation. In a triple store, triples that occur in multiple quite well here, probably due to extensive optimizations in
files/contexts are just stored once. In a quad store, thoseMySQL. Sesame/Native needs to join results from the s in-
triples are stored as many times as they occur in differentdex with the p index and is therefore slow returning results.

A WNPE




YARS performs just an index lookup and streams back the provides indexes for all access patterns on RDF with con-
results. The result size for query 1 is around 160.000 siple text. We utilize indexes on string representations and en th
Queries 2 to 4 are returning smaller result sets, usually RDF graph to efficiently answer queries that are character-
only a few triples/quads. Here as well, the performance re-istic for data from the Web.
sults reflect the index organization of the store. Since YARS
keeps a complete index on quads, all quad queries can be
mapped to simple index lookup operations. Acknowledgements
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[16] presents a path indexing schema for distributed RDF

repositories for the Sesame system, but does not discusBeferenCeS
how to improve retrieval performance for local storage.
Their indexing schema can be combined with ours to en-
able distributed indexes.

[4] presents indexing techniques for object-oriented
databases. These techniques are focussing on path expres- . . ) ) : :
sions in combination with object-oriented primitives like tic Web (SemWeb'01), in conjunction with WWW10,
heritance and classes. Our index can be interpreted as an Hongkong May 2001.
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