
Optimized Index Structures for Querying RDF from the Web

Andreas Harth Stefan Decker

Digital Enterprise Research Institute (DERI)
National University of Galway, Ireland

University Road
Galway, Ireland

firstname.lastname@deri.org

Abstract

Storing and querying Resource Description Framework
(RDF) data is one of the basic tasks within any Semantic
Web application. A number of storage systems provide as-
sistance for this task. However, current RDF database sys-
tems do not use optimized indexes, which results in a poor
performance behavior for querying RDF. In this paper we
describe optimized index structures for RDF, show how to
process and evaluate queries based on the index structure,
describe a lightweight adaptable implementation in Java,
and provide a performance comparison with existing RDF
databases.

1. Introduction
In recent years RDF has emerged as the prevalent data for-
mat for the Semantic Web. RDF is a graph-based data for-
mat which is schema-less and self-describing, meaning that
the labels of the graph within the graph describe the data it-
self. Many applications that deal with RDF have the need to
store the data persistently and perform queries on the data
set.

Systems such as Jena2 [17], Sesame [5], rdfDB [7], Red-
land [2], Kowari1, FORTH RDF Suite [1] and others pro-
vide a storage infrastructure for RDF data. However, after
looking at the index structures of the systems, most of the
systems use an index structure which do not support typical
query scenarios for data from the Web which results in poor
query answering performance in some cases.

Furthermore, to judge a given piece of information we
usually need to look at the context of the information. As
an example for context consider the source of a piece of
information. We might want to trust information coming
from whitehouse.gov more than information from white-
house.com (or vice versa). However, the notion of context

1http://www.kowari.org/

is missing in most current RDF storage systems.
In this paper we adapt database techniques for RDF data

storage and indexing, which results in improved query an-
swering performance and capabilities compared to current
RDF storage systems. Our paper identifies and combines
several techniques from the database area to arrive at a
system with improved efficiency for storing and retrieving
RDF. Specifically, this paper makes the following contribu-
tions:

• We define and realize a complete index structure in-
cluding full-text indexes for RDF triples with context.

• We describe YARS, a lightweight open-source imple-
mentation of the index structure in Java with small
footprint which can be embedded into an application
and adapted to special application needs.

The remainder of the paper is organized as follows: Sec-
tion 2 reviews the data model for data and queries and intro-
duces an example. In Section 3, we present optimized in-
dex structures tailored for speeding up queries on RDF data.
We describe how to perform query processing for select-
project-join (SPJ) queries in Section 4. Section 5 presents
the architecture and implementation of Yet Another RDF
Store (YARS), our prototype system. In Section 6 we evalu-
ate YARS and in Section 7 we discuss related work. Section
8 concludes the paper.

2. Preliminaries
In this section we first give an example of RDF data found
on the Web and then define the data model and query lan-
guage used.

2.1 Example

FOAF (Friend of a Friend) is a vocabulary “describing peo-
ple, the links between them and the things they create and

1

do” 2. FOAF is frequently used to describe a person’s home-
page in machine-readable format, and is a good example for
data that is distributed across the Semantic Web. Figure 1
shows a small RDF graph describing the authors of this pa-
per using the FOAF vocabulary.

��������	��
�

�

�
������������

�
�����

�
�����������

����
����

����
����

����
����

�

�
���������
������

����������� ����
�����

����
���������	�������

�

�
���������������

����
�
��������

���
����������

����
����

����
�
�
�����

���������������

����
����
����

�
����

Figure 1: FOAF example originating from two different
sources describing the authors. The contexts of the graphs
are http://sw.deri.org/˜aharth/foaf.rdf
andhttp://www.isi.edu/˜stefan/foaf.rdf .

2.2 Data Model

We begin with defining the standard RDF data model as
described in various W3C Recommendations [13], [10].

Definition 2.1 (RDF Triple, RDF Node) Given a set of URI
referencesR, a set of blank nodesB, and a set of literalsL,
a triple (s, p, o)∈ (R∪B)×R× (R∪B ∪L) is called an
RDF triple, An element of an RDF triple is called an RDF
node.

In such a triple, s is called the subject, p the predicate,
and o the object.

Although the RDF specification itself does not define the
notion of context [8], usually applications require context to
store various kinds of metadata for a given set of RDF state-
ments. E.g. MacGregor and Ko [12] reported on an appli-
cation that stored information about ships and their position
and argued that quads are a suitable formalism to capture
context.

The interpretation of context is depends on the applica-
tion. For example, in an information integration use case,
the context is the URI of the file or repository from which
a triple originated. Capturing provenance is one of the fun-
damental necessities in open distributed environments like
the Web, where the quality of data has to be judged by its
origin. Contexts are useful in other application scenariosas
well, such as versioning or access control.

2http://www.foaf-project.org/

Definition 2.2 (Triple in Context) A pair (t, c) with t be a
triple and c∈ (R∪ B) is called a triple in context c.

Please note that a triple ((s, p, o), c) in context c is equiv-
alent to the quad (s, p, o, c).

2.3 N3 Syntax

We use Notation3 (N3) as a syntax for RDF. For a full de-
scription of N3 see [3]. To make this paper self-contained,
we introduce the basic syntactic N3 primitives. Brackets
(<>) denote URIs, quotes (””) denote Literals, and blank
node identifiers start with “ :”. There exists a number of
syntactic shortcuts, for example “;” to introduce another
predicate and object for the same subject. Namespaces can
be introduced with the @prefix keyword. Figures 2 and 3
show the N3 syntax for the two contexts in the example de-
picted in Figure 1.

@prefix foaf: <http://xmlns.com/foaf/0.1/ .

<http://www.harth.org/andreas/#me>
foaf:name "Andreas Harth" ;
foaf:mbox <mailto:andreas.harth@deri.org> ;
foaf:workplaceHomepage <http://www.deri.org/>;
foaf:knows <http://decker.cn/stefan/> .

Figure 2: N3 syntax of context
http://sw.deri.org/˜aharth/foaf.rdf in
Figure 1.

@prefix foaf: <http://xmlns.com/foaf/0.1/ .

<http://decker.cn/stefan/>
foaf:name "Stefan Decker" ;
foaf:firstName "Stefan" ;
foaf:mbox <mailto:stefan.decker@deri.org> .

Figure 3: N3 syntax of context
http://www.isi.edu/˜stefan/foaf.rdf in
Figure 1.

N3 offers an extension to the RDF data model with prim-
itives for variables and grouping of graphs. Variables in N3
are denoted using a question mark “?”. Within N3, RDF
subgraphs can become the subject or object of a statement,
using “{}”. N3 is able to represent lists of nodes using “()”.

2

2.4 YARS Query Language

To be able to express queries, two sets of N3 language
extensions are required. For the extensions, we introduce
two namespaces,ql 3 and yars 4. The first set of lan-
guage extensions, namely the predicatesql:where and
ql:select enable us to formulate queries. A query con-
sists of aql:where clause which comprises a set of state-
ments that can contain variables. An optionalql:select
clause determines the format of the result set.

The second set of language extensions define YARS-
specific query primitives and are listed below.

• Theyars:context predicate denotes that the sub-
graph grouped in the subject is occurring in the con-
text provided as the object. Theyars:context
predicate enables us to express our notion of context
within the RDF data model. In the example in Fig-
ure 4 theyars:context predicate specifies that
we only want to query statements originating from
http://sw.deri.org/˜aharth/foaf.rdf .

• The yars:keyword predicate allows to represent
keyword-containment requirement for subjects. E.g.,
the yars:keyword in the example in Figure 4 re-
quires that the variable?n needs to contain the string
“Harth”.

• The predicateyars:prefix can be used to spec-
ify that a variable in the subject has to match on
the prefix denoted in the object. For example, the
yars:prefix predicate in the example in Figure 4
specifies that only statements using the FOAF predi-
cates should be used for query answering.

• The predicateyars:count is used to query occur-
rence counts for statements quoted as subject. The ob-
ject is a variable that is bound to the occurrence count
of the access pattern during query evaluation.

3. Index Organization
The goal of the index is to support evaluation of SPJ queries.
At the lowest level, the index structure enables fast retrieval
of quads, given any combination of subject (s), predicate
(p), object (o) or context (c). We want to avoid expensive
joins wherever possible, and therefore trade index space for
retrieval time.

All our persistent indexes use B+-trees [6], a well un-
derstood data structure which support insert, deletes, and
lookups (especially range lookups). Conceptually, we have

3http://www.w3.org/2004/12/ql#
4http://sw.deri.org/2004/06/yars#

<> ql:select { ?x ?p ?z . };
ql:where {

{ ?x foaf:name ?n .
?n yars:keyword "Harth" .
?x ?p ?z .
?p yars:prefix foaf: .

} yars:context
<http://sw.deri.org/˜aharth/foaf.rdf> .

} .

Figure 4: N3 query to get all FOAF information about the
person with the name containing “Harth” from a specified
source.

(key, value) pairs where retrieval based on key yields the
value using few disk operations.

Our index structure contains two sets of indexes:

• thelexiconcovers the string representations of an RDF
graph (R,L,B).

• thequad indexescover the quads.

3.1 Lexicon

The lexicon indexes operate on the string representations
of RDF nodes, and enable fast retrieval of object identifiers
(OIDs) for RDF nodes. OIDs are represented and stored
on disk as 64 bit longs. Since we reference RDF nodes in
multiple indexes the mapping from string values to OIDs
saves space. Also, processing and comparing OIDs is faster
than comparing strings.

The lexicon consists of three different indexes: the
nodeoidandoidnodeindexes map strings to OIDs, and the
keyword index is an inverted text index.

3.1.1 NodeOID and OIDNode Index

The oidnodeand nodeoidindexes are used to map OIDs
to string values of RDF nodes and vice versa. OIDs are
assigned increasingly monotonically for each unique node
that is inserted. OID 0 is a special OID that denotes a vari-
able.

An alternative to keeping thenodeoidindex is to com-
pute the hash of the node and use the resulting number as
an OID. However, hash functions with a small probability
of collisions such as SHA1 or MD5 produce at least 128 bit
keys for OIDs, which would increase the index size consid-
erably.

Keeping a separate index for mapping string values to
OIDs and storing the mapping in B+-trees has the advantage
that we are able to perform prefix queries on node values,

3

given that thenodeoidindex is sorted lexographically. Table
1 shows thenodeoidindex created for the example graph
provided by Figure 1.

Key Value

“Andreas Harth” 3
“Stefan” 14
“Stefan Decker” 11
<http://www.harth.org/andreas/#me> 1
<http://decker.cn/stefan/> 10
<http://sw.deri.org/˜aharth/foaf.rdf> 4
<http://www.deri.org/> 8
<http://www.isi.edu/˜stefan/foaf.rdf> 12
<http://xmlns.com/foaf/0.1/firstName> 13
<http://xmlns.com/foaf/0.1/knows> 9
<http://xmlns.com/foaf/0.1/mbox> 5
<http://xmlns.com/foaf/0.1/name> 2
<http://xmlns.com/foaf/0.1/workplaceHomepage> 7
<mailto:andreas.harth@deri.org> 6
<mailto:stefan.decker@deri.org> 15

Table 1: OIDs for the node values in the example dataset in
thenodeoid index

3.1.2 Keyword Index

The prevalent type of queries used today to explore Web
data are keyword queries. To speed up these type of queries,
the lexicon keeps an inverted index on string literals to al-
low for fast full-text searches. Each literal is tokenized into
words. Each word represents a key in the index, with a
sorted list of OIDs as occurrences. Table 2 shows such an
index constructed for the example. We use the full list stor-
age scheme as described in [15], but keep OIDs instead of
document identifiers for the hitlist. Keeping the number of
hits helps to determine join ordering during query process-
ing.

Key No of hits List of hits

“Andreas” 1 3
“Decker” 1 11
“Harth” 1 3
“Stefan” 2 11,13

Table 2: Keyword/hitlist pairs for literals in the invertedtext
index.

3.2 Quad Indexes

The following section shows that we only need a restricted
number of indexes to cover all possible access patterns for
RDF data.

3.2.1 Access Patterns

We want to avoid expensive joins whenever possible. Thus,
we need an index that allows to lookup any combination of
s, p, o, c directly rather than joining the results from lookups
in multiple indexes.

The quad indexes are based on the notion of access pat-
terns.

Definition 3.1 (Access Pattern) An access pattern is a quad
where any combination of s, p, o, c is either specified or a
variable.

For example, an access pattern could be a quad where
only s is specified, and p, o, and c are variables. The access
pattern (s:?:?:?) denotes all quads where the subject equals
to s, whereas the other nodes have unspecified value. To
compute the total number of access patterns we just have to
consider that for each element of the quad (4) there exist 2
possibilities (either a node is specified, or it is a variable).
Therefore the total number of access patterns is2 ∗ 2 ∗ 2 ∗
2 = 16. Table 3 shows all possible access patterns for quad
lookups.

No Access pattern No Access pattern

1 (?:?:?:?) 9 (s:?:o:c)
2 (s:?:?:?) 10 (?:?:o:c)
3 (s:p:?:?) 11 (?:?:o:?)
4 (s:p:o:?) 12 (?:?:?:c)
5 (s:p:o:c) 13 (s:?:?:c)
6 (?:p:?:?) 14 (s:p:?:c)
7 (?:p:o:?) 15 (?:p:?:c)
8 (?:p:o:c) 16 (s:?:o:?)

Table 3: Possible quad patterns; in total, there are 16 differ-
ent patterns to cover all possible access combinations.

A naive implementation of a complete index on quads
would need 16 indexes, one for each access pattern. Imple-
menting a complete index in the naive way is prohibitively
expensive in terms of index construction time and storage
utilization. In the next section we show how we can cover
all access patterns with just six indexes.

3.2.2 Combined Indexes

To reduce the number of indexes needed, we leverage the
fact that B+-tree provide support for range or prefix queries.
A combined index on s, p, o, and c for a quad (s, p, o, c)
is able to support queries for access patterns 1 through 5
in Table 3. For example, a lookup for the access pattern
(s:p:?:?) resolves to a prefix query for s and p on thespoc
index. Therefore, we do not need to keep a separate index
of s and p but can reuse thespocindex.

4

Using combined indexes reduces the number of neces-
sary indexes to implement a complete index on quads to
six. Table 4 shows the six indexes and which access pattern
they cover.

spoc poc ocs

(?:?:?:?) (?:p:?:?) (?:?:o:?)
(s:?:?:?) (?:p:o:?) (?:?:o:c)
(s:p:?:?) (?:p:o:c) (s:?:o:c)
(s:p:o:?)
(s:p:o:c)

csp cp os

(?:?:?:c) (?:p:?:c) (s:?:o:?)
(s:?:?:c)
(s:p:?:c)

Table 4: Six indexes needed to cover all 16 access patterns.

To simplify and speed up the lookup operations on ac-
cess patterns, we implement every index containing the full
quads as key (i.e. (c:p:s:o) for the cp access pattern), rather
than having the index on (c:p) and keep the remaining ele-
ments of a quad in linked lists in the value part. That means
we store each quad (s, p, o, c) as key (s:p:o:c) in thespoc
index, as key (p:o:c:s) in thepocsindex, and so on.

Table 5 shows thespoc and pocs indexes for the ex-
ample dataset. For example, to retrieve all informa-
tion about the predicate with OID 2 (which resolves to
http://xmlns.com/foaf/0.1/name) we perform
a range query on indexpocs from (2:min:min:min) to
(2:max:max:max), which is equivalent to a prefix query for
all keys that start with OID 2. The result of the operation is
an iterator over all keys with the specified predicate.

(s:p:o:c) Value (p:o:c:s) Value

(1:2:3:4) - (2:3:4:1) -
(1:5:6:4) - (2:11:12:10) -
(1:7:8:4) - (5:6:4:1) -
(1:9:10:4) - (5:15:12:10) -
(10:2:11:12) - (7:8:4:1) -
(10:5:15:12) - (9:10:4:1) -
(10:13:14:12) - (13:14:12:10) -

Table 5: spocandpocsindexes for the example. The re-
maining four quad indexes are constructed accordingly.

3.2.3 Occurrence Counts

A large number of applications, such as data mining, rank-
ing, and user interface generation, require to collect statisti-
cal information about the data set. To allow these applica-

tions to quickly access basic statistical information, we are
able to store occurrence counts directly in the index.

For each key that is inserted into an index, we generate
additional keys denoting access patterns. We utilize the un-
used value field in the B+-tree index to record occurrence
counts of access patterns. For each quad in an index, we
construct one key that contains node OIDs only consisting
of “0”s, one key that contains the first node OID together
with “0”s, one that contains the first and second node OID,
and one that contains the first three node OIDs.

Using our example, consider the quad
(<http://www.harth.org/andreas/#me >,
foaf:knows, <http://decker.cn/stefan/ >,
<http://sw.deri.org/˜aharth/foaf.rdf >) ,
which resolves to the key (1:9:10:4) to insert into the
spoc index. We generate four additional keys: (0:0:0:0),
(1:0:0,0), (1:9:0:0), and (1:9:10:0), and insert them intothe
index as key. The value part is initialized with “1” if the
access pattern was not present before, otherwise the value
part is incremented by one. Table 6 illustrates how thespoc
index looks like after adding occurrence counts. Note that
the value part of the key (1:9:10:4) which denotes a quad
still remains empty.

(s:p:o:c) value

(0:0:0:0) 7
(1:0:0:0) 4
(1:9:0:0) 1
(1:9:10:0) 1
(1:9:10:4) -
(1:5:0:0) 1
.

Table 6: spoc index with occurrence counts stored in the
index.

Determining the result size of an access pattern is
as simple as looking up the corresponding access pat-
tern key in the index. The value associated with that
key is the number of resulting quads for a given ac-
cess pattern For example, an index lookup for the key
(0:0:0:0) yields the total number of quads in an index
(7 given the index in Table 6). An index lookup for
the key (1:0:0:0) returns the number of quads with sub-
ject <http://www.harth.org/andreas/#me >, a
lookup for (1:9:0:0) the number of quads with that subject
and predicate foaf:knows, and so on.

Since counting and storing the occurrence counts is quite
expensive, adding the counts can be performed as a batch
operation once the quad indexes have been constructed.

5

4. Query Processing
The following section describes how to perform index
lookups on the indexes and how to process and execute con-
junctive queries.

4.1 Index Lookups

Given our indexing structure, there are a set of lookup oper-
ations that the lexicon and the quad indexes support. Table
7 lists the atomic lookup operations. For example, a prefix
lookup for <http://xmlns.com/foaf/0.1/ > re-
turns OID 13 as a lower bound and OID 7 as an upper bound
(see Table 1 for the content of thenodeoidindex). Thequad
operation only returns OIDs of nodes that are needed in sub-
sequent steps in the query processing. The other operations
work analogously, for details please consult Table 7.

Operation Parameter Index Result
deployed

getOID node value nodeoid OID
getNode OID oidnode node value
getPrefix prefix of nodeoid range from lower

node value OID to upper OID
getKeyword keyword inverted iterator over OIDs

index
getCountKw keyword inverted result size

index
getQuad access quad iterator over list

pattern indexes of OIDs
getCountQ access quad result size

pattern indexes

Table 7: Lookup operations on the index structure.

4.2 Query Plan

This section describes how to combine lookup operations
from the different indexes to be able to answer queries. In
the query processing stage, results from the lexicon indexes
are combined with results from the quad indexes, and re-
sults from the quad indexes among each other.

The simplest case for a query is to ask for quads match-
ing one quad pattern, which involves looking up the OIDs
for node values specified in the query to OIDs on the
nodeoid index, constructing keys with lower and upper
bounds that determine the result set, and ranging over the
corresponding quad index to derive the matching quads. For
example, consider a query that asks for all quads with the
literal “Stefan Decker” as object, (?, ?, “Stefan Decker”, ?).
We first look up the OID of the literal in thenodeoidin-
dex. The result, OID 11, is then used to construct a set of
keys with lower bound (11:min:min:min) and upper bound

<> ql:select { ?x ?y ?z . };
ql:where {

{ ?x ?y ?z } yars:context ?c .
?c yars:prefix <http://www.cnn.com/> .

} .

Figure 5: N3 query to return all statements from the con-
texts starting with<http://www.cnn.com/>.

(11:max:max:max). Next, we perform a range query over
theocspquad index, and the resulting quads are then trans-
lated to node values which are returned to the user.

Consider a query to retrieve the statements associated
with a context prefix, for example return all statements
that originate from URIs starting with http://www.cnn.com/.
Figure 5 shows the query in N3 notation.

So far, we have only considered queries that involve one
particular quad pattern. More complex queries consist of
multiple quad patterns that are connected via logical AND
(conjunctive queries), which are evaluated based on joins.
To be able to efficiently answer conjunctive queries, we
have to perform a query optimization step which involves
reordering of quad patterns. In particular, the query execu-
tion step should start with the quad pattern that yields the
smallest result set, which is then subsequently combined
with other quad patterns that were specified in the query.

It is common to use heuristics to estimate the size of a
result set. One example of a heuristics is to estimate the
result size of an access pattern based on the number of vari-
ables specified in that access pattern. Rather than relying
on heuristics, we can use thegetCountQoperation that ac-
cesses occurrence counts in the quad indexes to accurately
determine the result size of a given access pattern.

The result of the plan evaluation is a list of variable bind-
ings with OIDs.

4.3 Result Construction

Our query language has closure; that means, results of a
query are itself expressed in RDF and can be therefore fed
into another query. Theql:select clause of a query
specifies a template that is used to construct the results. One
type of template can be a set of RDF lists of variable bind-
ings that constitute the answer to a query. Another type of
template can include RDF statements that contain variables
which are bound during query execution. The result of the
query processing is then a set of RDF statements with val-
ues filled in for the corresponding variables.

If no select clause is specified in the query, then a set of
lists with variable bindings is returned as an answer to the
query.

6

5. Architecture and Implementation
The goal of our implementation was to build a system that
offers scalable query facilities suited for aggregated RDF
data collected from the Web while providing a lightweight
implementation that can be used in other systems that need
to store and retrieve RDF data (which is almost every Se-
mantic Web application). The prototype system is available
for download5 and is released under a BSD-style license.

5.1 Components

The basic architecture of the YARS system is depicted in
Figure 6. YARS consists of an HTTP access interface,
a storage component that handles both persistent and in-
memory indexes, and a query handler to perform query pro-
cessing and evaluation.

The system is implemented in Java as a Web applica-
tion that runs inside a Tomcat application server and uses
Jena’s N3 parser to parse incoming data and queries. The
size of the resulting war file including all packages is around
250k, making YARS applicable for applications where a
small footprint is required. Excluding test cases and ex-
ternal components, the system currently consists of around
6000 lines of Java code.

������

��

�	�	�
��	�

��

������
��

�	�	�
��	�

��	�	�����������

�������������

�	�����

Figure 6: YARS components and data flow for N3 queries
and N3 statements

5.2 Access Interface

We defined an HTTP access interface with operations for
insertion (HTTP PUT), querying (HTTP GET), and dele-
tion (HTTP DELETE). We chose to use HTTP as a network

5http://sw.deri.org/2004/06/yars/yars.html

interface, which makes it possible to use standard HTTP
browsers for HTTP GET operations or versatile HTTP
clients such as curl6 or wget to interface with YARS. The
data format for input is N3, and results are returned in N-
Triples format. We support N3 as a result format, because,
given our index structure, we can return results in a stream-
ing fashion without the need to construct the result set in
memory first.

5.3 Storage

To be able to implement the index organization we chose to
use JDBM7, a lightweight open-source library that includes
implementation of B+-trees for persistent storage of data on
disk. JDBM consist of a record manager that offers caching
and transactions. Bothoidnodeand nodeoidindexes are
candidates for high number of buffers because lookups in
these indexes are very frequent.

We chose to use a pre-existing B-tree implementation
over developing our own B-tree for similar reasons as [15].

The additional layer we had to implement was the han-
dling of concatenated keys in the quad indexes. The text
inverted index is constructed and held in memory for bet-
ter access performance. Both insert and delete operations
are transactions. Indexes can be created as batch operations
based on thespocindex.

6. Experimental Results

We conducted a performance evaluation based on a syn-
thetic dataset from the Lehigh University Benchmark [9]
containing 2.8 million triples for our experiments. We cre-
ated a dataset, univ(20, 0), which file size in N-Triples for-
mat is 392 MB.

We considered the following RDF stores for evaluation:
Sesame, Kowari, Redland and Jena2. [9] shows that Sesame
generally supersedes Jena in performance results, therefore
we did not include it in the benchmarking. We tried to
install Kowari 1.0.2, but failed to get a running version.
Therefore we concentrated in our efforts on Sesame 1.1RC2
and Redland 0.9.18.

As a test server, we used a Pentium-4 2.4 GHz machine
with 4 GB main memory running Debian Sarge. YARS
and Sesame were running inside a Tomcat servlet container
with a VM memory size set to 1GB for index construction
and 128 MB for retrieval tests. Both clients for YARS and
Sesame were programmed in Java. In contrast to Sesame
and YARS, Redland does not provide an HTTP access in-
terface. Therefore we used the Perl API to add data to the
repository and perform queries.

6http://curl.haxx.se/
7http://jdbm.sourceforge.net/

7

Sesame lacks context support; we refrained from using
reification in Sesame to keep context information and just
stored triples. The context mechanism was enabled in the
Redland store.

6.1 Index Construction

For the index construction test, we loaded the files from
N-Triples format into the repository. The index creation
time for YARS consists of creating the quad index exclud-
ing statistical information, and the lexicon indexes without
inverted index to be comparable to the other repositories
that do not construct these indexes either. Figure 7 shows
the performance measurements from the index construction
process.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

se
co

nd
s

no of triples

Sesame MySQL
Sesame Native

YARS
Redland

Figure 7: Index construction times for synthetic dataset

To be able to discuss the results, we first briefly introduce
the indexing methods of the various data stores. Redland
stores three indexes, based on hash tables. The po2s index
maps a key on p and o to value s, the so2p index maps s
and o to p, and the sp2o index maps s and p to o. The
native store of Sesame has been recently included into the
Sesame distribution. Internally, resources and literals are
mapped to OIDs, and then separate indexes are kept on s,
p, o. For queries specifying both s and p, an expensive join
has to be performed. YARS keeps the complete index on
quads without statistics as well as thenodeoidandoidnode
indexes. Although we are keeping full indexes and have a
sophisticated index structure, index construction times for
YARS are comparable with the other systems.

YARS trades index space for query time. As Table 8
shows, YARS requires more space than the Sesame imple-
mentations. However, Sesame does not include the notion
of context, which means that the index contains less in-
formation. In a triple store, triples that occur in multiple
files/contexts are just stored once. In a quad store, those
triples are stored as many times as they occur in different

contexts. Please note that we keep 8 byte OIDs instead of
Sesame’s 4 byte OIDs, which roughly doubles our index
size.

System Index Size (bytes)

Redland 2.164.019.200
Sesame MySQL 340.381.636
Sesame native 39.997.992
YARS 1.090.002.944

Table 8: Index size for the synthetic Univ20 dataset.

6.2 Queries

Since the queries associated with the Lehigh benchmark
take into account reasoning, we created four basic queries
that test different access patterns and have different charac-
teristics. Please note that we perform the query experiments
on plain RDF semantics and do therefore not take any rea-
soning into account.

No Query

1 ?x rdf:type univ:UndergraduateStudent
2 ?x ?p ”UndergraduateStudent0”
3 <http://www.University965.edu> ?p ?o
4 ?x univ:worksFor ?y

Table 9: Quad queries used in the evaluation.

Each query was executed against the repository after a
random 300 MB file was copied to hard disk to flush buffers.
We issued each query ten times, but only included the first
result here since we wanted to test index lookup time and
not the cache manager of the persistence layer.

Query Redland Sesame Sesame YARS
MySQL Native

1 0:10.48 0:18.87 1:05.16 0:18.41
2 0:44.14 0:00.73 0:00.55 0:00.49
3 0:44.15 0:00.46 0:00.47 0:00.32
4 3:04.21 0:03.42 0:01.95 0:00.47

Table 10: Performance results for quad queries.

The results obtained in the query tests reflect the inter-
nal index structures of the various repositories. In query
1, Redland is very fast since the query is only a hash in-
dex lookup on the po2s index. Sesame/MySQL performs
quite well here, probably due to extensive optimizations in
MySQL. Sesame/Native needs to join results from the s in-
dex with the p index and is therefore slow returning results.

8

YARS performs just an index lookup and streams back the
results. The result size for query 1 is around 160.000 triples.

Queries 2 to 4 are returning smaller result sets, usually
only a few triples/quads. Here as well, the performance re-
sults reflect the index organization of the store. Since YARS
keeps a complete index on quads, all quad queries can be
mapped to simple index lookup operations.

YARS has some overhead for resolving the dependencies
and order in the different indices as shown by the first query.
However, as soon as in the other stores multiple indexes or
table scans are involved, YARS shows a better performance.
For query 4 YARS was 400x faster than Redland, and still
4x to 7x faster than the available Sesame implementations.

7. Related Work
[16] presents a path indexing schema for distributed RDF
repositories for the Sesame system, but does not discuss
how to improve retrieval performance for local storage.
Their indexing schema can be combined with ours to en-
able distributed indexes.

[4] presents indexing techniques for object-oriented
databases. These techniques are focussing on path expres-
sions in combination with object-oriented primitives likein-
heritance and classes. Our index can be interpreted as an
index for path length 1, but also allows multi-directional
queries, e.g. our index also allows to query for properties
pointing to certain objects. As an additional extension our
index structure supports a context mechanism.

Lore [14] has an index scheme for semistructured data.
However, in their data model a root node always exists,
whereas RDF is just a directed labelled graph without any
further requirements. Lore uses various path indexes which
do not cover all access patterns, as opposed to our complete
index.

The query facility we offer is in the tradition of RDF
stores such as Jena and Sesame. These RDF repositories
store their data in a relational database, and offer limited
reasoning capabilities. In contrast, we focus on fast storage
and retrieval only and describe indexing techniques based
on multi-dimensional access methods that are B-Tree based,
similar to [11]. Multi-dimensional indexing methods such
as R-Trees and space-filling curves are not entirely suited
for our problem because we often have queries along one
particular dimension.

8. Conclusion
Query processing for RDF is an important issue for Seman-
tic Web applications and we have determined a set of in-
dexes required for efficient RDF query processing. In com-
parison with many other RDF indexing approaches that in-
dex only for a restricted set of access patters, our approach

provides indexes for all access patterns on RDF with con-
text. We utilize indexes on string representations and on the
RDF graph to efficiently answer queries that are character-
istic for data from the Web.

Acknowledgements

Thanks to Thomas Fanghänel for suggesting the use of con-
catenated keys, and to Carlos F. Enguix for discussion and
comments.

This work is supported by Science Foundation Ireland
(SFI) under the DERI-Lion project (SFI/02/CE1/l131) and
by the European Union’s IST programme under the DIP
project (FP6-507483).

References

[1] S. Alexaki, V. Christophides, G. Karvounarakis,
D. Plexousakis, and K. Tolle. The rdfsuite: Manag-
ing voluminous rdf description bases. InProceed-
ings of the 2nd International Workshop on the Seman-
tic Web (SemWeb’01), in conjunction with WWW10,
Hongkong, May 2001.

[2] D. Beckett. The design and implementation of the
Redland RDF application framework.Computer Net-
works, 39(5):577–588, 2002.

[3] T. Berners-Lee. Notation 3
– Ideas about Web architecture.
http://www.w3.org/DesignIssues/Notation3.html.

[4] E. Bertino. An Indexing Technique for Object-
Oriented Databases. InProceedings of the 7th Interna-
tional Conference on Data Engineering, Kobe, pages
160–170. IEEE Computer Society, Apr. 1991.

[5] J. Broekstra, A. Kampman, and F. van Harmelen.
Sesame: A Generic Architecture for Storing and
Querying RDF and RDF Schema. InProceedings of
the 2nd International Semantic Web Conference, Sar-
dinia, pages 54–68. Springer, 2002.

[6] D. Comer. The Ubiquitous B-Tree.ACM Computing
Surveys, 11:121–137, 1979.

[7] R. Guha. rdfDB : An RDF Database.
http://www.guha.com/rdfdb/.

[8] R. V. Guha, R. McCool, and R. Fikes. Contexts for
the Semantic Web. InProceedings of the 3rd Inter-
national Semantic Web Conference, Hiroshima, Nov.
2004.

9

[9] Y. Guo, Z. Pan, and J. Heflin. An Evaluation of
Knowledge Base Systems for Large OWL Datasets.
In Proceedings of the 3rd International Semantic Web
Conference, Hiroshima, pages 274–288. LNCS 3298,
Springer, 2004.

[10] P. Hayes. RDF Semantics. W3C Recommendation,
Feb. 2004. http://www.w3.org/TR/rdf-mt/.

[11] H. Leslie, R. Jain, D. Birdsall, and H. Yaghmai. Ef-
ficient Search of Multi-Dimensional B-Trees. InPro-
ceedings of the 21th International Conference on Very
Large Data Bases, Zurich, pages 710–719. Morgan
Kaufmann, Sept. 1995.

[12] R. M. MacGregor and I.-Y. Ko. Representing Con-
textualized Data using Semantic Web Tools. InPro-
ceedings of the 1st International Workshop on Prac-
tical and Scalable Semantic Systems, Sanibel Island,
Florida, Oct. 2003.

[13] F. Manola and E. Miller. RDF Primer. W3C Rec-
ommendation, Feb. 2004. http://www.w3.org/TR/rdf-
primer/.

[14] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and
J. Widom. Lore: A Database Management System for
Semistructured Data.SIGMOD Record, 26(3):54–66,
1997.

[15] S. Melnik, S. Raghavan, B. Yang, and H. Garcia-
Molina. Building a Distributed Full-Text Index for the
Web. InProceedings of the 10th International World
Wide Web Conference, Hong Kong, pages 396–406,
2001.

[16] H. Stuckenschmidt, R. Vdovjak, G.-J. Houben, and
J. Broekstra. Index Structures and Algorithms for
Querying Distributed RDF Repositories. InProceed-
ings of 13th International World Wide Web Confer-
ence, New York, pages 631–639, May 2004.

[17] K. Wilkinson, C. Sayers, H. A. Kuno, and
D. Reynolds. Efficient RDF Storage and Retrieval
in Jena2. InProceedings of SWDB’03, 1st Inter-
national Workshop on Semantic Web and Databases,
Co-located with VLDB 2003, Berlin, pages 131–150,
Sept. 2003.

10

