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ABSTRACT
We survey the history, development and usage of directory services based on the Lightweight Directory
Access Protocol (LDAP). We present a summary of the naming model, the schema model, the principal
service models, and the main protocol interactions in terms of a C language application programming
interface.

1 INTRODUCTION
The landscape of network-based directory technology is fascinating because of the evolution of distributed
systems ideas and Internet protocol technologies that have contributed to the success of the Internet as a
collection of loosely coordinated, interoperable network-based systems. The success of open systems
directory technology based on the Lightweight Directory Access Protocol (LDAP) is attributed to the
persistence of many people in academia, industry and within international standards organizations. Today,
LDAP-based technology is widely used within national and multi-national intranets, wired and wireless
service provider value-added networks, and the public Internet. This success is due to an Internet
community process that worked to define and evolve practical X.500 and LDAP directory specifications
and technologies towards a more ubiquitous Internet directory service.

There are many different types of directory services, each providing useful capabilities for users and
applications in different network-based settings. We are primarily concerned with directories that have a
structured data model upon which well-defined operations are performed, most notably search and update.
Directories are used to service a much higher percentage of authentication operations (technically called
“bind” operations) and search operations, rather than update operations, which requires them to optimize
for reading rather than writing information. However, as directories become increasingly authoritative for
much of the information that is used to enable a wider range of web services as part of private intranet and
public internet infrastructures, they are increasingly required to provide the kind of update rates one expects
of a transactional database management system.

Directories in general can be characterized by a hierarchical tree-based naming system that offers numerous
distributed system advantages:

o names are uniquely determined by concatenating hierarchical naming components starting at a
distinguished root node (e.g., “com”)

o object-oriented schema and data model supporting very fast search operations
o direct navigation or key-based querying using fully qualified or partially specified names
o distribution and replication based on named sub-tree partitions
o delegated or autonomous administration based on named sub-tree partitions

In addition, Internet directories add various authentication services and fine-grained access control
mechanisms to ensure that access to information contained in the directory is only granted to authorized
users. The type of information contained in a directory can be either general purpose and extensible, or
specialized for a particular optimized directory service. In the following section, we briefly distinguish a
general purpose directory service based on LDAP from more specialized directory services, all of which
typically coexist as part of an organizational information service, but each providing an important
component of a multi-tiered networked information service.



2

The most widely known directory service on the Internet today is the Domain Name System (DNS).
Others that have appeared and are either lightly used or no longer used include: whois, whois++, and
WAIS.    The primary purpose of DNS is to provide name to address lookups where a name is a uniquely
determined hierarchical Internet domain names and an address is an IP or other network layer protocol
addresses, resulting in a very specialized name-to-address mapping service. DNS has a hierarchical name
structure, it is widely replicated, and it is autonomously administered.  However, we distinguish DNS as a
specialized directory service because its information model and query mechanism is specialized to the
purpose of providing very specific host addressing information in response to direct or reverse lookup
queries. There have been various extensions to DNS to extend its rather limited data model, namely in the
area of service (SRV) records, but such records do not significantly enhance the main DNS hostname-to-
address lookup service.

Another class of directories provides various specialized naming services for network operating systems,
called NOS  directories. Popular NOS directories include NIS  for UNIX® systems, NDS  for Novell
Netware™, and Active Directory  for Microsoft Windows™. NOS directories are typically based on
proprietary protocols and services that are tightly integrated with the operating system, but may include
some features and services adopted from X.500 and LDAP directory specifications in order to permit a
basic level of interoperability with client applications that are written to such open systems specifications.
NOS directories are very well suited to local area network environments in support of workgroup
applications (e.g., file, print and LAN email address book services), but have historically failed to satisfy
other business-critical applications requiring Internet scale levels of service and reliability.

Network-based file systems, such as NFS  or AFS , may also be considered as specialized directory
services in that they support an RPC-based query language that uses hierarchical file names as keys to
access files for the purposes of reading and writing those files across a network. There have been attempts
to create Internet-scale distributed file systems, but most file systems are highly specialized for efficient
reading and writing of large amounts of file-oriented data on high-bandwidth local area networks or as part
of a storage area network. Network file systems  are not typically intended for use as general-purpose
directory services distributed or replicated across wide-area networks, although there are various attempts
underway to define Internet-scale file systems.

Various ad hoc directory services have also been constructed using custom database systems (e.g., using
sequentially accessed flat files or keyed record access) or relational database management systems. For
example, a common application of a directory service is a simple “white pages” address book, which
allows various lookup queries based on search criteria ranging from people’s names, email addresses or
other searchable identity attributes. Given that RDBMS products are widely deployed and provide robust
information storage, retrieval and transactional update services, it is straightforward to implement a basic
white pages directory service on top of an RDBMS. However, there can be complications due to limitations
imposed by the fact that most directory services are defined in terms of a hierarchical data model and the
mapping of this hierarchical data model into a relational data model is often less than satisfactory for many
network based directory-enabled applications that require ultra fast search access and cannot tolerate the
inherent overhead of mapping between the two data models. In addition, network based authentication and
access control models may require an extra abstraction layer on top of the RDBMS system. This mapping
may result in less functionality in these areas as well as potential inefficiencies.

Finally, numerous “yellow pages” directories have arisen on the Internet that provide a way to find
information. While called “directories” because of the way information is organized hierarchically and
presented via a web browser, such directories are more properly text-based information search and retrieval
systems that utilize web spiders and some form of semantic qualification to group textual information into
categories that meet various search criteria. These web directories are highly useful for searching and
accessing very large information spaces that are otherwise difficult to navigate and search without the
assistance of some form of browsable navigation directory (e.g., Yahoo and Google). While powerful, we
distinguish this type of directory from LDAP-based directories that rely on an extensible, but consistent
data model that facilitates a more highly structured search mechanism.  Some yellow pages directories
actually utilize LDAP directories to augment their generalized text search mechanisms, by creating
structured repositories of meta information, which is used to guide future searches based on stored
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topological information and/or historical search results.

2 THE EVOLUTION OF LDAP
The LDAPv3 protocol and modern directory servers are the result of many years of research, international
standardization activities, commercial product developments, Internet pilot projects, and an international
community of software engineers and network administrators operating a globally interconnected directory
infrastructure. LDAP directories originated from projects and products that originally implemented
directories based on the 1988 and 1993 International Telecommunications Union (ITU) X.500  series of
international standards [ITU X.500, 1993], [ITU X.501, 1993], [ITU X.511, 1993], [ITU X.518-X.521,
1993], [ITU X.525, 1993]under the assumption that electronic messaging based on the ITU X.400  series of
standards would eventually become the dominant e-mail system in the international business community.
For several technical, economic, and sociopolitical reasons, X.400 has not become the dominant email
transport system that was envisioned, but X.500 has survived and many LDAP protocol features and the
schema and data model are derived from the X.500 specifications, and the early work on deploying
practical Internet directories by the IETF OSI-DS working group [RFC1274] .

Before the emergence of the Internet as a ubiquitous world-wide public network, there was an assumption
that the world’s data networks, and the messaging and directory infrastructures deployed on them, would be
operated much like the world’s voice communications networks were managed in the 1980s. These
networks were managed by large telecommunications companies that had international bilateral agreements
for handling such international communication services.  The emergence of the worldwide Internet as a
viable commercial network undercut many of the underlying service model assumptions that had gone into
designing these technologies by participants in the International Telecommunications Union standards
organizations. As universities, industrial R&D organizations, and technology companies increasingly
embraced the Internet as a model for doing business they created technologies that effectively created  a
value-added network on top of the bandwidth leased from the Telcos. This new style of networking created
new demand for innovations that would better fit the Internet style of networked computing, where there is
a very high degree of local autonomy with regard to deploying and managing network services as part of an
enterprise’s core IT function, rather than leasing expensive application services from a telecommunications
company, as opposed to simply leasing bandwidth.

2.1 The Past, Present and Future Generations of LDAP Directories
Since the mid-1990’s, directory servers based on LDAP have become a significant part of the network
infrastructure of corporate intranets, business extranets, and service providers in support of many different
kinds of mission-critical networked applications. The success of LDAP within the infrastructure is due to
the gradual adoption of directory servers based on the LDAPv3 protocol. The use of LDAP as a client
access protocol to X.500 servers via an LDAP-to-X.500 gateway, has been replaced by pure LDAPv3
directory servers. In this section, we briefly review the technological evolution that led to the current
adoption of LDAPv3 as part of the core network infrastructure.

During the 1980s, both X.400 and X.500 technologies were under active development by computer
technology vendors, as well as by researchers working in networking and distributed systems. Experimental
X.400/X.500 pilots were being run on the public research Internet based on open source technology called
the ISO Development Environment (ISODE) , which utilized a convergence protocol  allowing OSI  layer
7 applications to operate over TCP/IP networks through a clever mapping of the OSI class 0 transport
protocol (TP0) onto TCP/IP. TP0  was originally designed for use with a reliable, connection-oriented
network service, such as that provided by the X.25 protocol. However, the principal inventor of ISODE,
Marshall Rose  (who was to go on to develop SNMP), recognized that the reliable, connection-oriented
transport service provided by TCP/IP could effectively (and surprisingly efficiently) masquerade as a
reliable connection-oriented network service underneath TP0. By defining the simple (5 byte header)
convergence protocol specified in  [RFC 1006], and implementing an embedding of IP addresses into OSI
presentation addresses, the OSI session and presentation layers could be directly mapped onto TCP. Hence
any OSI layer 7 application requiring the upper-layer OSI protocols could instantly be made available on
the public Internet. Given the lack of public OSI networks at the time, this pragmatic innovation enabled
the rapid evolution of X.500-based directory technology through real-world deployments across the
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Internet at universities, industrial and government R&D labs, and forward looking companies working to
commercially exploit emerging Internet technologies. The lack of any real competitive technology led to
the rapid adoption of network-based directory services on the Internet (unlike X.400, which failed to
displace the already well-established SMTP as the primary Internet protocol for email).

LDAP arose primarily in response to the need to enable a fast and simple way to write directory client
applications for use on desktop computers with limited memory capacity (<16MB) and processing power
(<100 MHz). The emergence of desktop workstations and the PC were driving demand for increasingly
sophisticated client applications. In order for X.500 to succeed independently of X.400, client applications
were needed that could run on these rather limited desktop machines by today’s standards. A server is only
as good as the service offered to client applications, and one of the major inhibitors to the adoption of
X.500 as a server technology outside of its use as an address routing service for X.400, was the lack of
sophisticated client applications.  The X.500 client protocol, DAP , was used principally by X.400 to access
information required to route X.400 messages. Since X.400 was another server application based on the full
OSI stack, the complexity of using the DAP protocol for access to X.500 was “in the noise” given the
overall complexity and computing resources required by a commercial grade X.400 system. Many early
X.400/X.500 vendors failed to grasp that simply specified protocols and the “good enough” services they
enable were a key driver in the growth of the Internet and the resulting market demand for server software.
As a result, X.400 and X.500 infrastructures were not as widely deployed commercially as anticipated,
except in selected markets (e.g., some military and governmental organizations) where a high degree of
complexity is not necessarily an inherent disadvantage.

The simplest application for a directory is as a network-based white pages service, which requires a rather
simple client to issue a search using a string corresponding to a person’s name or a substring expression
that will match a set of names, and return the list of entries in the directory that match the name(s). This
type of simple white pages client application was the original motivation for defining LDAP as a
“lightweight” version of DAP. Some people like to claim that that the “L” in LDAP no longer stands for
“lightweight” because LDAP is now used in servers to implement a full-blown distributed directory
service, not just a simple client access protocol. However, the original motivation for making LDAP a
lightweight version of DAP was to eliminate the requirement for the OSI association control service
element (ACSE) , the remote operations service element (ROSE) , the presentation service, and the rather
complicated session protocol over an OSI transport service (e.g., TP4). Even with the convergence protocol
defined in  [RFC 1006], the upper layer OSI protocols required a rather large in-memory code and data
footprint to execute efficiently. LDAP was originally considered “lightweight” precisely because it
operated directly over TCP (eliminating all of the OSI layers except for use of ASN.1 and BER [ITU
X.681, 1993] [ITU X.690, 1993]), had a much smaller binary footprint (which was critical for clients on
small memory desktop PCs of the time), and had a much simpler API than DAP. In this context, the use of
the term lightweight meant a small memory footprint for client application, fewer bits on the wire, and a
simpler programming model, not lightweight functionality.

The LDAPv2 specification ( [RFC 1487] and [RFC 1777]) was the first published version of the
lightweight client directory access protocol. While supporting DAP-like search and update operations, the
interface to LDAPv2 was greatly simplified in terms of the information required to establish an association
with an X.500 server, via an LDAP-to-DAP gateway. The introduction of this application level protocol
gateway mapped the client operations to the full DAP and OSI protocol stack. So in this sense, LDAPv2
was a proper subset of the services offered by DAP, and no changes were required to an X.500 server to
support these lightweight client applications, such as address book client services as part of a desktop email
application. LDAPv2 enabled rapid development of client applications that could then take advantage of
what was expected to be a global X.500-based directory system.  As client applications began to be
developed with LDAPv2, some operational shortcomings manifested themselves. The most notable, was
the lack of a strong authentication mechanism. LDAPv2 only supports anonymous and simple password
based authentication (note: RFC 1777 predated the emergence of SSL/TLS). Such security concerns, the
mapping of the X.500 geopolitical naming model to the Internet domain names, the need for referrals to
support distributed directory data, the need for an Internet standard schema (e.g., inetOrgPerson) and
the desire for a mechanism for defining extensions, led to the formation of IETF LDAPEXT working group
that began defining a richer set of services based on LDAPv2, which became a series of specification for
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LDAPv3 (RFCs 2251-2256).

This process of gradually realizing that a simpler solution will likely satisfy the majority of user and
application requirements is a recurring theme in today’s technology markets.  In addition, the emergence of
business critical web-based network services and the wide spread adoption of LDAPv3 based technologies
as part of the infrastructure enabling web services has enabled a sustainable market for LDAP directories
and ensured that someday in the future, LDAP directories will be considered entrenched legacy systems to
be coped with by some future infrastructure initiatives.

2.2 First and Second Generation Directory Services
As just discussed, LDAP originated as a simplification of the X.500 DAP protocol to facilitate client
development on small machines.  The first LDAPv2 client applications were used with an X.500 server
called “Quipu,” which was developed as a collaboration among various European and American
universities, research organizations, and academic network providers and administrators.1  Quipu was based
on the 1988 X.500 standards specifications and as such, implemented DAP as its client access protocol,
requiring either a full OSI protocol stack or, as discussed previously, the OSI upper layers over  [RFC
1006].  Quipu was deployed on the research Internet in the late 1980’s and gained substantial exposure as
an early directory service on the Internet at relatively small scale (e.g., 100k directory entries was
considered a large directory at the time). Quipu was deployed at a number of universities as part of the
Paradise directory project, which was administered from University College London where Quipu was
primarily developed. In cooperation with researchers at the University of Michigan (i.e., Tim Howes),
individuals at the Internet service provider PSI (i.e., Marshall Rose  and Wengyik Yeong ), researchers at
University College London (e.g., Steve Kille), and other individuals, LDAPv2 emerged and an application
layer gateway called the LDAP daemon (ldapd)  was developed at the University of Michigan that mapped
LDAPv2 operations to DAP operations that were then forwarded onto an X.500 server, such as Quipu. As a
result of LDAPv2 and this LDAP-to-DAP gateway, lightweight client applications were rapidly developed
that could run on Windows and Macintosh PCs.

The success of Quipu as an early prototype X.500 directory on the Internet and LDAPv2 as a client led to
further innovation. One of the main advantages of Quipu was that it was extremely fast in responding to
search operations. This was due to its internal task switching (co-routine) architecture, which predated
POSIX threads on most UNIX® systems, and the fact that on startup, it cached all of the directory entries
into memory. This feature also severely limited the scalability of Quipu because of the expense and
limitations of physical memory on 32-bit server machines and the potentially long startup time required to
build the in-memory cache.  Work was begun in 1992, both at the University of Michigan and at the
ISODE Consortium, to produce a more scalable and robust directory server. The ISODE Consortium was
an early open source organization that was a spinout of University College London and the
Microelectronics and Computer Technology Corporation (MCC) in Austin, Texas.

The University of Michigan team first developed a server that exploited X.500 chaining to create an
alternative back-end server process for Quipu that utilized a disk-based database built from the UNIX®
dbm package as the underlying data store. Client requests were first sent to the main Quipu server instance
that maintained topology information in it cache that allowed it to chain the requests to the back-end server.
Effectively, Quipu was turned into a “routing proxy” and scalability was achieved with one or more back-
end servers hosting the data in it disk-based database, using caching for fast access.  This approach proved
the viability of a disk-based database for Quipu, but without integrating the disk-based database into the
core of the Quipu server. This approach was taken for simplicity, and also because POSIX threads were
finally viable in UNIX® and the new back-end server was based on a POSIX threading model instead of a
task-based co-routine model. However it suffered from the drawback of now having two separate server
processes between the LDAP client and the actual data. An LDAP client request had to first go through the
LDAP-to-DAP gateway, then through the Quipu server, then to the back-end server over the X.500 DSP
protocol [ITU X.525, 1993], then back to the client.

                                                            
1 A Quipu (pronounced key-poo) is a series of colored strings attached to a base rope and knotted so as to encode
information. This device was used by peoples of the ancient Inca empire to store encoded information.
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During this same period, the ISODE Consortium began work on a new X.500 server that was essentially a
rewrite of much of Quipu. Based on the promising performance and scalability results from the University
of Michigan’s back-end server implementation, the goal was to integrate the disk-based backend and
POSIX threading model into a new, single process directory server that could scale well and deliver search
performance comparable to that of Quipu. This result was achieved with a new directory server from
ISODE in 1995, based on the 1993 X.500 ITU standards.  The protocol front-end was also re-designed so
that additional protocol planes could be added as needed to accommodate additional server protocols. At
the time, there was serious consideration given to implementing a DNS protocol plane, so that the directory
server could be used to provide a DNS service in additional to both the LDAP and X.500 directory
services. However, this work was never done. Instead, work was done to provide an integrated LDAPv3
protocol plane alongside of the X.500 DAP and DSP protocols, resulting in the first dual protocol
X.500+LDAP directory server.

The work at the University of Michigan continued in parallel and it became obvious that one could do away
with the LDAP-to-DAP protocol gateway and the routing Quipu server, and simply map LDAPv2 directly
to the new disk-based back-end server. All that was required was to implement the LDAPv2 protocol as a
part of the back-end server and eliminate the X.500 DSP protocol. This was the key observation that led to
the first pure directory server based on LDAPv2 with some extensions, called the standalone LDAP
daemon (slapd) .

These two separate architectural efforts led to the definition of the LDAPv3 protocol within the IETF,
which was jointly defined and authored by individuals at the University of Michigan (Tim Howes  and
Mark Smith) and at the ISODE Consortium (Steve Kille  and Mark Wahl ). Both slapd and the ISODE
server were the first directory servers to implement LDAPv3 as a native protocol directly, and validated its
utility for implementing a directory service, not just as a client access protocol to an X.500 directory. In
addition, both servers adopted the Berkeley DB  b-tree library package as the basis for the disk-based
backend, which added to the scalability, performance, and eventual robustness of both servers. In 1996,
Netscape hired the principal inventors of the University of Michigan slapd server, which became the
Netscape Directory Server  that was widely adopted as an enterprise-scale LDAPv3 directory server. In
1995, the ISODE Consortium converted from a not-for-profit open-source organization to a for-profit OEM
technology licensing company and shipped an integrated X.500 and LDAPv3 server. Also in 1996, Critical
Angle  was formed by former ISODE Consortium engineers and they developed a carrier-grade LDAPv3
directory server for telecommunications providers and ISPs. This was the first pure LDAPv3 server to
implement chaining via LDAPv3, and also the first server to have multi-master replication using LDAPv3.
In addition, Critical Angle developed the first LDAP Proxy Server, which provided automatic referral
following for LDAPv2 and LDAPv3 clients, as well as LDAP firewall, load balancing, and failover
capability, which are critical features for large-scale directory service deployments.

With the emerging market success of LDAPv3 as both a client and a server technology on the Internet and
corporate intranets, vendors of previously proprietary LAN-based directory servers launched LDAPv3
based products, most notably Microsoft Active Directory and Novell eDirectory. Microsoft had originally
committed to X.500 as the basis for its Windows™ directory server, but adopted LDAP as part of its
Internet strategy.

IBM built its SecureWay  LDAP directory product using the University of Michigan slapd open source
code and designed a mapping onto DB2 as the database backend. Like IBM, Oracle implemented an LDAP
gateway onto its relational database product. However, it is generally the case that mapping of the
hierarchical data model of LDAP and X.500 onto a relational data model has inherent limitations. For some
directory service deployments, the overhead inherent in the mapping is a hindrance in terms of
performance.

Most X.500 vendors continue to provide an LDAP-to-DAP gateway as part of their product offerings, but
their marketing does not usually mention either the gateway or X.500, and instead calls the X.500 server an
LDAP server.

The Critical Angle LDAP products were acquired in 1998 by Innosoft International . In 1999, AOL
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acquired Netscape. Sun Microsystems and AOL/Netscape entered into a joint marketing and technology
alliance called iPlanet shortly thereafter.  In March 2000, Sun acquired Innosoft, and consolidated its
directory server expertise by combining the Netscape technology, the Innosoft/Critical Angle technology,
and its own Solaris LDAP-based directory technology initiatives into a single directory product line under
the Sun ONE™ brand.

2.3 Next-Generation Directory Services
Now that LDAPv3 directory servers are widely deployed, whether native LDAP implementations or using
LDAP gateways mapping operations onto X.500 servers or relational database systems, new types of
directory-based services are being deployed. The most recent of these are identity management systems,
which provide authentication, authorization, and policy based services using information stored in the
directory. The most common type of identity management service is web single sign-on. With the
proliferation of network based systems, the need for a common authentication mechanism has dictated that
a higher-level service be deployed that abstracts from the various login and authentication mechanisms of
different web-based services. Identity servers built on top of directory services are providing this
functionality. At present, such services are primarily being deployed within an enterprise, but there are
efforts underway to define standards for federating identity information across the Internet. It will take
some time before these standards activities and the technologies that implement them are deployed, but the
foundation on which most of them are being built is a directory service based on LDAPv3.

Another area where LDAP directories are gaining wide spread usage is among wireless carriers and service
providers. Next generation wireless services are providing more sophisticated hand-held devices with the
opportunity to interact with a more functional server infrastructure. Directories are being deployed to
provide a network-based personal address book and calendars for mobile phones and PDAs that can be
synchronized with the handheld devices, a laptop computer and a desktop computer. Directory services are
being deployed as part of the ubiquitous network infrastructure that is supporting the management of
personal contact and scheduling information for hundreds of millions of subscribers. Fortunately, LDAP
directory technology has matured to the point at which it is capable of providing the performance,
scalability and reliability required to support this “always on” service in a globally connected world.

In order to simplify the integration of directory data access into web service development environments,
new directory access protocols building on LDAP are being defined.  Instead of ASN.1 and TCP, these
protocols use XML [Bray et. al., 2000] as the encoding syntax and Simple Object Access Protocol (SOAP)
[Gudgin, 2003] as a session protocol overlying HTTP or persistent message bus protocols based on Java
Messaging Service (JMS) APIs.  The standards body where these protocols are being developed is OASIS,
the Organization for the Advancement of Structured Information Standards.

One group within OASIS in particular, the Directory Services working group, has published version 2 of
the Directory Services Markup Language (DSMLv2), which leverages the directory semantics from LDAP:
a hierarchical arrangement of entries consisting of attributes, but expresses the LDAP operations in SOAP.
Just as X.500 servers added support for LDAP either natively or through an LDAP to X.500 gateway, there
are implementations of DSMLv2 both as native protocol responders within an LDAP server, or a DSMLv2
to LDAP gateway.

Other working groups have already or are in the process of defining protocols for more specialized
directory access, such as Universal Description, Discovery and Integration of Web Services (UDDI)
[Bellwood, 2003], ebXML Registry Services [OASIS, 2002], and Service Provisioning Markup Language
(SPML) [Rolls, 2003]. In the future, market dynamics may favor the adoption of one or more of these
XML-based protocols to augment and eventually supplant LDAP as the primary client access protocol for
directory repositories in the web services environment.

3 THE LDAP NAMING MODEL
The primary contents of most directory services are entries that represent people, but entries may also
represent organizations, groups, facilities, devices, applications, access control rules, and any other
information object.  The directory service requires every entry have a unique name be assigned when the
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entry is created, and most services have names for users which are based on attributes which do not change
frequently, and are human readable.

Entries in the directory are arranged in a single-rooted hierarchy.  The Distinguished Name (DN)  of an
entry consists of the list of one or more distinguished attribute values chosen from the entry itself, followed
by attributes from that entry's parent, and so on up the tree to the root.  In most deployments, only a single
attribute value is chosen from each entry.

The most widely used naming attributes are defined in the following table.

dc domainComponent: one element of a DNS domain name, e.g.
dc=sun, dc=com

uid userid: a person's account name, e.g. uid=jbloggs
cn commonName: the full name of a person, group, device, etc. e.g.

cn=Joe Bloggs
l localityName: the name of a geographic region, e.g. l=Europe
st stateOrProvinceName: used in the United States and Canada
o organizationName: the name of an organization, e.g. o=Sun

Microsystems
ou organizationalUnitName: the name of a part of an

organization: ou=Engineering
c countryName: the two letter ISO 3166 code for a country, e.g.

c=US

The hierarchy of entries allows for delegated naming models, in which the organization managing the name
space near the root of the tree agrees on the name for a particular entry with an organization to manage that
entry, and delegates to that organization the ability to construct additional entries below that one.  Several
naming models have been proposed for LDAP.

3.1 The X.500 Naming Model
The original X.500 specifications assumed a single, global directory service, operating based on
interconnections between national service providers.  In the X.500 naming model, the top levels of the
hierarchy were to have been structured along political and geographic boundaries.   Immediately below the
root would have been one entry for each country, and the entries below each country entry would have been
managed by the telecommunications operator for that country.  (In countries where there were multiple
operators, the operators would have been required to coordinate the management of this level of the tree.)

As there is no one international telecommunications operator, an additional set of protocol definitions was
necessary to define how the country entries at the very top of the tree were to be managed. The
telecommunications operator for each country would be able to define the structure of entries below the
country entry.  The X.500 documents suggested that organizations that had a national registration could be
represented by organization entries immediately below the country entry.  All other organizations would be
located below entries that represented that country's internal administrative regions, based on where that
organization had been chartered or registered.  In the United States and Canada, for example, there would
have been intermediate entries for each state and province, as states and provinces operate as registrars for
corporations. For example, a corporation that had been chartered as "A Inc." in the state of California in the
United States, might have been represented in the X.500 naming model as an entry with the name o=A
Inc.,st=California,c=US, where o is the attribute for the organization name that was registered
within the state, st for state or province name within the country, and c the attribute for the country code.
It should be noted that some certificate authorities which register organizations in order to issue them
X.509 public key certificates, e.g. for use with SSL or secure email, assume this model for naming
organizations.

The entries for people who were categorized as part of an organization (e.g. that organization's employees)
would be represented as entries below the organization's entry.  However X.500 did not suggest a naming
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model for where entries representing residential subscribers would be represented.

3.2 Limitations of the X.500 Naming Model
The first limitation is that there is no well-defined place in the X.500 model to represent international and
multi-national organizations.  Organizations such as NATO and agencies of the United Nations and the
European Community, as well as multi-national corporations, were some of the first to attempt to pilot
standards-based directory services, yet ran into difficulties as there was no obvious place for the
organization's entry to be located in a name space that requires a root based on a national geopolitical
naming structure.

A related problem is that a corporation typically operates in additional locales beyond the one in where they
are legally incorporated or registered.  In the United States for example, many corporations are registered in
Delaware for legal and tax reasons, but may have no operating business presence in that state beyond a
proxy address.  A naming structure that has the organization based in Delaware may hinder users searching
the directory, who might not anticipate this location as the most likely place to find the directory
information for the corporation.

In some cases, organizations preferred to have an entry created for them in a logically appropriate place in
the X.500 hierarchy, yet the telecommunications operator implied by the naming model as being
authoritative for that region of the directory tree may have had no plans to operate X.500.  Conversely,
some parts of the directory tree had conflicting registration authorities as a result of political turf wars and
legal disputes, not unlike those that plagued the Internet Assigned Numbers Authority (IANA) and the
administrators of the root DNS servers. For use within the United States and Canada, the North American
Directory Forum (NADF) proposed a set of attribute and server extensions to address the problems of
overlapping registration authorities creating entries for individual and business subscribers in entries,
however these extensions were not implemented, and no X.500 service saw significant deployment in these
countries.

3.3 Early Alternatives to the X.500 Naming Model
Many LAN-based directory services predating LDAP suggested a simpler naming model.  Unlike the
complete interconnection in a single, global directory service, these models assumed that interconnection
only occurred between pairs or small groups of cooperating organizations, and that relatively few
organizations worldwide would interconnect.  Instead of the geographic divisions of X.500, this naming
model based on a single registration authority that would assign names to organizations immediately below
the root of the tree, e.g. o=Example, resulting in a flattened namespace. This model did not readily
accommodate conflicts in names between organizations, and relied on one registration authority to ensure
uniqueness.

As the Internet became more widely used by organizations for electronic mail, a variant of the flat
namespace model was to register the organization's Internet domain name as the value for the
organizationName attribute, e.g. o=example.com.  By relying on an external naming authority for
managing the actual assignment of names to organizations, potential conflicts would be resolved before
they reached the directory name registration authority, and the use of the hierarchical domain name space
would allow for multiple organizations with the same name that were registered in different countries or
regions, e.g. o=example.austin.tx.us and o=example.ca.

3.4 Internet Domain-based Naming
The single-component organization naming model described above addresses the difficulty that
organizations have when faced with getting started using the X.500 model, but this approach suffers from a
serious limitation.  While domain names themselves are hierarchical, placing the full domain name as a
string into the organizationName attribute prevented the hierarchical structure of the directory from
being used.  In particular, it was not defined in that approach how an organization that was itself structured
and represented internally with multiple domain names, e.g. east.example.com and
west.example.com, would be able to manage these as part of a hierarchy below the organization entry.
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These limitations were removed in the mapping defined in [RFC 2247]  between Internet domain names
and LDAP distinguished names.  In this approach, each domain name component is mapped into its own
value of the dc attribute to form the distinguished name of the entry (typically an organization) to which
the domain corresponds. For example, the domain name cs.ucl.ac.uk would be transformed into
dc=cs,dc=ucl,dc=ac,dc=uk, and the domain name example.com into dc=example,dc=com.

Follow-on documents have proposed how DNS SRV records can be used to specify the public directory
servers that an organization provides, in a similar manner to the MX records for specifying the mail servers
for that organization. In combination with RFC 2247 naming, a directory client that knows only a domain
name can use these techniques to locale the LDAP server to contact, and construct the search base to use
for the entry which corresponds to that domain.

RFC 2247 assumes that when performing operations on the directory entries for an organization the
organization's domain name is already known to the client so that it can be automatically translated into a
distinguished name to be used as an LDAP search base.  RFC 2247 does not address how to
programmatically locate an organization when the organization's domain name is not known; this is
currently an unsolved problem in the Internet.

3.5  Naming Entries Within an Organization
There are currently no Internet standards that are widely adopted for naming entries representing people
within an organization.  Initial deployments of LDAP made extensive use of the organizationalUnit
entries to construct a directory tree which mirrored the internal divisions of the organization, and use the cn
attribute as the distinguished attribute for the person's entry, as in the following:

cn=Joe Bloggs, ou=Western, ou=Sales, ou=People, dc=example, dc=com

That approach however resulted in organizations needing to frequently restructure their directory tree as the
organization's internal structure changed, and even placing users within organizational units did not
eliminate the potential for name conflicts between entries representing people with the same full name.
Currently the most common approach for directory deployments, in particular those used to enable
authentication services, is to minimize the use of organizationalUnit entries, and to name users by
their login name in the uid attribute.

Many deployments now have only a single organizationalUnit entry: ou=People.  Some multi-
national organizations use an organizationalUnit for each internal geographic or operating division,
in particular when there are different provisioning systems in use for each division, or it is necessary to
partition the directory along geographic lines in order to comply with privacy regulations.  For example, an
organization that has two operating subsidiaries X and Y might have entries in their directory named as
follows:

uid=jbloggs, ou=X, ou=People,dc=example, dc=com
uid=jsmith, ou=France, ou=Y, ou=People, dc=example, dc=com

For service provider directories or directories that offer a hosted directory service for different organization
entities, the DNS domain name component naming is most often used to organize information in the
directory naming tree as follows:

uid=jbloggs, ou=X, dc=companyA, dc=com
uid=jsmith, ou=Y, dc=companyA, dc=com
uid=jwilliams, ou=A, dc=companyB, dc=com
uid=mjones, ou=B, dc=companyB, dc=com

In a typical service provider or hosted directory environment, the directory data for different organizations
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is physically partitioned and an LDAP proxy server is used to direct queries to the appropriate directory
server  that holds the data for the appropriate naming context.

4 THE LDAP SCHEMA MODEL
Directory servers based on LDAP implement an extensible object-oriented schema model that is derived
from the X.500 schema model, but with a number of simplifications as specified in  [RFC 2256]. Two
additional schema definition documents are  [RFC 2798], which defines the inetOrgPerson object
class, and  [RFC 2247], which defines the dcObject and domain object classes. The schema model as
implemented in most LDAP servers consists of two types of schema elements: attribute types and object
classes. Object classes govern the number and type of attributes that an entry stored in the directory may
contain, and the attribute types govern the type of values that an attribute may have. Unlike many database
schema models, LDAP schema has the notion of multi-valued attributes that allows a given attribute to
have multiple values. The types of the values that may be associated with a given attribute are defined by
the attribute type definition. The most common attribute type is a UTF-8 string, but many other types
occur, such as integer, international telephone number, email address, URL, and a reference type that
contains one or more distinguished names, representing a pointer to another entry in the directory.

A directory entry may have multiple object classes that define the attributes that are required to be present,
or may optionally be present. Directory servers publish their internal schema as an entry in the directory.  It
can be retrieved by LDAP clients performing a baseObject search on the a special entry that is defined
by the directory server to publish schema information (e.g., cn=schema), with the attributes
attributeTypes and objectClasses specified as part of the search criteria. This schema entry
maintains the schema definitions that are active for a given directory server instance.  The format of these
two attributes is defined in  [RFC 2252].

4.1 Attribute Type Definitions
An attribute type definition specifies the syntax of values of the attribute, and whether the attribute is
restricted to having at most one value, and the rules that the server will use for comparing values.  Most
directory attributes have the Directory String syntax, allowing any UTF-8 encoded Unicode character, and
use matching rules that ignore letter case and duplicate white space characters.

User attributes can have any legal value which the client provides in the add or modify request, but a few
attributes are defined as operational, in which the attributes are managed or used by the directory server
itself, and may not be added or changed by most LDAP clients directly.  Examples of operational attributes
include createTimestamp and modifyTimestamp.

4.2 Object Class Definitions
Each entry has one or more object classes, which specifies the real-world or information object that the
entry represents, as well as the mandatory and permitted attributes defined in the entry. Object classes come
in one of three kinds: abstract, structural or auxiliary.

There are only two abstract classes. The top class is present in every entry, and it requires the
objectClass attribute be present. The other abstract class is alias, and it requires the
aliasedObjectName attribute be present.

Structural object classes define what the entry represents, and every entry must contain at least one
structural object class; for example: organization, device, or person.  A structural object class
inherits either from top or from another structural object class, and all the structural object classes in an
entry must form a single 'chain' leading back to top.  For example, the object class
organizationalPerson inherits from person, and permits additional attributes to be present in the
user's entry that describe the person within an organization, such as title.  It is permitted for an entry to
be of object classes top, person and organizationalPerson, but an entry cannot be of object
classes top, person and device, since device does not inherit from person, nor person from
device.
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Auxiliary classes allow additional attributes to be present in a user's entry, but do not imply a change in
what the entry represents. For example, the object class strongAuthenticationUser allows the
attribute userCertificate;binary be present, but this class could be used in an entry with object
class person, device or some other structural class.

4.3 Object Classes for Entries Representing People
The person structural class requires the attributes cn (short for commonName) and sn (short for
surname).  This class is sub-classed by the organizationalPerson class, and the
organizationalPerson class is sub-classed by the inetOrgPerson class.  Most directory servers
for enterprise and service provider applications use inetOrgPerson, or a private sub-class of this class,
as the structural class for representing users. In addition to the mandatory attributes cn, sn and
objectClass, the following attributes are typically used in entries of the inetOrgPerson object
class:

departmentNumber a numeric or alphanumeric code
description a single line description of the person within the organization
displayName name of the user as it should be displayed by applications
employeeNumber unique employee number
employeeType a descriptive text string, such as "Employee" or "Contractor"
facsimileTelephoneN
umber

fax number, in international dialing format (e.g., +1 999 222 5555)

givenName first or given name
homePhone home phone number, in international dialing format
homePostalAddress home mailing address, with '$' inserted between lines
jpegPhoto photograph in JPEG format
labeledURI the URI for a web home page
mail Internet email address
manager distinguished name of the entry for a manager
mobile mobile phone number in international dialing format (e.g., +1 999 222 4444)
ou organizational Unit, if different from department
pager pager phone number and codes, if any
postalAddress mailing address, with '$' inserted between lines
roomNumber office room number
secretary distinguished name of the entry for a secretary
surname (sn) Last or surname
telephoneNumber telephone number, in international dialing format
title Job title
uid user id, typically part of the person's distinguished name
userPassword user password compared against during LDAP authentication

For example, the following definition is an LDAP Interchange Format (LDIF) text representation of a
typical user entry in an LDAP directory, as specified in [RFC 2849]. The order of appearance of a most
attributes and value pairs does not imply any specific storage requirements, but it is convention to present
the objectClass attribute first, after the distinguished name. Several additional attributes are permitted
in entries of this object class, but are no longer widely used.  For further details consult [RFC 2256] and
[RFC 2798].

dn: uid=jbloggs,ou=people,dc=example,dc=com
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
cn: Joe Bloggs
sn: Bloggs
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departmentNumber: 15
description: an employee
displayName: Joe Bloggs
employeeNumber: 655321
employeeType: EMPLOYEE
facsimileTelephoneNumber: +1 408 555 1212
givenName: Joe
homePhone: +1 408 555 1212
homePostalAddress: Joe Bloggs $ 1 Mulberry Street $ Anytown AN 12345
labeledURI: http://eng.example.com/~jbloggs
mail: jbloggs@example.com
manager: uid=jsmith,ou=people,dc=example,dc=com
mobile: +1 408 555 1212
ou: Internet Server Engineering
pager: +1 408 555 1212
postalAddress: Joe Bloggs $ 1 Main Street $ Anytown AN 12345
roomNumber: 2114
telephoneNumber +1 408 555 1212 x12
title: Engineering Manager
uid: jbloggs
userPassword: secret

4.4 Other Typical Object Classes
The organization structural class requires the o attribute (short for organizationName) to be
present in the entry, and permits many attributes to optionally also be present, such as
telephoneNumber, facsimileTelephoneNumber, postalAddress and description.
This class is normally used to representcorporations but could also represent other organizations that have
employees, participants or members and a registered name.

The organizationalUnit structural class requires the ou (short for organizationalUnitName)
be present, and permits the same list of optional attributes as the organization class.  This class is
normally used to represent internal structures of an organization, such as departments, divisions, or major
groupings of entries (e.g., ou=People).

The domain structural class requires the dc (domainComponent) attribute be present.  This class is
used to represent objects that have been created with domain component naming, but no other information
about them is known.  The dcObject auxiliary class is used to permit the dc attribute to be present in
entries of the organization or organizationalUnit classes, typically so that the dc attribute can
be used for naming the entry, although the o or ou attribute is still required to be present.

The groupOfNames structural class uses cn for naming the group, which is represented by the attribute
member.  This requires one or more attribute values each containing the distinguished name of another
entry that is a member of the group.  A similar and more widely used class, groupOfUniqueNames,
uses the uniqueMember attribute.

5 LDAP DIRECTORY SERVICES
There are several architectural applications of LDAP in today’s Internet: email address book services, web-
based white pages lookup services, web authentication/authorization services, email server routing and
address list expansion services, and literally hundreds of uses that are generally categorized as a network-
based repository for application-specific information (e.g., application configuration information, directory-
enabled networking such as router tables, and policy-based user authentication and access authorization
rules).  In other words, basic LDAP directory services have become a critical part of the network
infrastructure for many applications, just as DNS, FTP, SMTP and HTTP are core infrastructure services.
LDAP is very often there behind the scenes of many end-user applications and embedded in a number of
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other services that are not end-user visible.

One of the most common questions that arises in corporate directory services deployments is the following:
“why not just use a relational database system rather than a new kind of database?” The answer to this
question is often as varied as the application services in support of which an LDAP directory is being
considered.  In some cases, such as a simple web-based white pages service, there is no real compelling
advantage over using a RDBMS that may already contain all the information about people and their contact
details. Directories are a distinct type of distributed database and are best suited to a new generation of
network-based applications whose data access and service availability requirements do not require a
relational data model or a SQL-based transactional database.

An important distinction that networking system novices make is to distinguish a protocol and the service
implemented in terms of the protocol. A protocol defines the communication pattern and the data
exchanges between two end points in a distributed system. Typically, one end point is a client and the other
a server, but both end points could be peers.  The semantics offered by a server often extends beyond the
information exchange rules that are specified by the protocol. In other words, the server may require
additional features to implement a reliable, maintainable, highly available service that transcend the basic
information exchange implied by a protocol. For example, LDAPv3 has the concept of extended operations
and special controls, some of which are standardized, and some of which are not. The result is that vendors
have created extensions to the core protocol specifications to enable additional services, such as
configuration and management of the server over LDAP without ever having to shutdown the server to
ensure high availability. This is not necessarily a bad thing, since extended operations and controls are
useful from an administrative perspective, enabling network-based management of an LDAP service using
the LDAP protocol or special server-to-server communication enabling a distributed directory service. In a
competitive market, where technology vendors compete with one another by enabling proprietary client
visible features, complete interoperability between clients and servers may be broken. This situation is
typically avoided by having periodic interoperability testing forums where competing vendors demonstrate
interoperability. As long as the core protocol and basic service model is not violated then client
interoperability is maintained.

Another confusing aspect of standards based network services is the difference between standards
conformance versus demonstrated interoperability. Within some standards organizations, the emphasis has
been on demonstration of static conformance to a written specification. Static conformance is often
achieved through the successful demonstration that a server passes some set of conformance tests.
Conformance testing is useful to the vendor, but what is most useful to a user is interoperability testing, i.e.,
does the server from vendor A work with clients from vendors B, C, and D?  Conformance is easier to
achieve than interoperability. LDAPv3 has been shown to be a highly interoperable protocol and most
clients work without complication with most servers. Vendors of LDAPv3 client and server products
regularly meet to perform interoperability testing forums, sponsored by The Open Group, to ensure that
products work together. In the remainder of this section we discuss the basic and advanced modes of
operations for common LDAP-based directory services.

5.1 Basic Directory Services
The LDAP service model is a basic request/response client-server model. A client issues either a bind,
search, update, unbind, or abort request to the server. All protocol operations may either be initiated
directly over a TCP connection or encrypted via an SSL/TLS session.

The bind operation is used to pass authentication credentials to the server, if required. LDAP also supports
anonymous search, subject to access control restrictions enforced by the server. Bind credentials consist of
the user’s distinguished name along with authentication credentials. A distinguished name typically
identifies a user corresponding to a logical node in the directory information tree (DIT). For example:
uid=jbloggs,  ou=People, dc=sun, dc=com. Authentication credentials may be a simple
clear text password (optionally over a SSL or TLS session), information obtained from a digital certificate
required to strongly authenticate, or other encrypted or hashed password authentication mechanisms
enabled by a particular server.
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There are three principal models of distributed operations: a simple client-server model, a referral model,
and a chaining model. The simple client server interaction is not depicted, but operates as one would
expect: a client performs a bind operation against the server (either anonymously or with bind credentials)
issues an LDAP operation (e.g., search), obtains a result (possibly empty or an error), and then either issues
other operations, or unbinds from the server. In this mode of operation, an LDAP server will typically
handle hundreds to thousands of operations per second on behalf of various types of LDAP-enabled clients
and applications.

In some deployments, most notably those on the public Internet or in government, university and enterprise
directory service environments where anonymous clients may connect and search a forest of directories, a
referral model may be appropriate. The referral model assumes that either a) all clients will bind
anonymously, or b) authentication information is replicated among the set of directory servers, or c) there is
some mechanism for proxy authentication at one server on behalf of a network of trusted directory servers
that will accept authentication credentials via a proxy [Weltman, 2003].

Figure 1 depicts the most common referral model situation, and assumes that a client is anonymous, such
that it can bind and search any one of the two directory servers depicted. In the referral model, if a client
request an operation against one directory server (e.g., a search operation) and that directory server does not
hold the entry or entries that satisfy that operation, then a referral may be returned to the client. A referral is
a list of LDAP URLs that point to other directory servers that the original server is configured to refer
queries too.  A referring server may have out of date information and the referral may not succeed. Referral
processing is the responsibility of the client application and is most often handled transparently as part of
the LDAP API from which the client application is built. The referral model is most often appropriate in
directory service deployments where there are no stringent requirements on authentication since servers
may be configured to accept unauthenticated anonymous operations, such as searches. In fact, one of the
major disadvantages of the referral model is that it facilitates trawling of a large distributed directory
service and allows a snooping client application to probe and discover a directory service’s topology.  This
may be undesirable even in a public Internet environment, such as a university network. For this reason,
LDAP proxy servers were invented to provide an additional level of control in these more open network
environments.

Figure 1. LDAP Referral Model

The chaining model is similar to the referral model, but provides a higher degree of security and
administrative control. LDAP chaining is similar to chaining in the X.500 directory service model, but it is
done without requiring an additional sever-to-server protocol as in the case of X.500. Figure 2 illustrates
the chaining model. In this case, a client issues a search request to Server-A, which uses its knowledge of
which server holds the subordinate naming context, and it chains the request to Server-B.
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Chaining assumes an implied trust model between Server-A and Server-B, since typically Server-A will
authenticate to Server-B as itself, not as the client. For efficiency in the chaining model, it is typical for
Server-A to maintain a persistent open network connection to Server-B to eliminate the overhead of
binding for each chained operation. In some cases, such as anonymous clients, there is no authentication
information to proxy, so Server-A will often maintain a separate, non-authentication connection to Server-
B for such requests. A proxied authentication model could also be used in which case the client credentials
are passed along as part of the chained operation, requiring both Server-A and Server-B to authenticate, or
proxy the authentication of the client.

Figure 2. LDAP Chaining Model

5.2 High Availability Directory Services
First generation X.500 and LDAP directory servers focused primarily on implementing as much of the
protocol specifications as possible, providing flexible and extensible schema mechanisms, and ensuring
very fast search performance. During the early adoption phase of a new technology, these are the critical
elements to get right and it is necessary for rapid feedback and technology evolution as the result of real
world deployments. However, as LDAP server technology has become more central to the network
infrastructure backing up mission-critical business operations (e.g., as a network user authentication
service), security, reliability, scalability, performance, and high availability of the service are the dominant
operational requirements. In remainder of this section, we briefly discuss high availability features and
issues related to deployment of LDAP directory services in support of business critical applications.

5.2.1 Master-Slave Replication
The X.500 specifications define a replication protocol called DISP (Directory Information Shadowing
Protocol) that provides a simple master-slave replication service. Technically, directory replication is based
on a weakly consistent supplier-consumer model, but the master-slave terminology has become dominant.
In this weakly consistent replication model, one directory server acts a supplier (master) of data to another
directory server that is the consumer (slave).  At any given time a replica may be inconsistent with the
authoritative master, and so a client accessing data at the replica might not see the latest modifications to
the data. If this situation is likely to cause problems for the client applications, there are deployment
techniques (e.g., using a proxy server) that ensure that a client application will be connected with an
authoritative master server so that it may obtain up-to-date information.

Within the X.500 model it is possible for either the supplier to initiate a replication data flow, or for the
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consumer to request a replication data flow from the supplier. Replication can occur as soon as a change is
detected in a supplier, called on-change, or according to some periodic schedule. Supplier initiated
replication works best when network links between the supplier and the consumer are reliable, with low
latency and reasonably high bandwidth. Consumer initiated replication is most often used in situations
where the consumer might frequently become disconnected from the network, either due to the
unscheduled network outages or high latency, low bandwidth networks that require potentially large
replication data exchanges to be done during off-peak times as determined by the consumer (e.g., a
consumer on a computer in a submarine).

Replication typically requires that not only directory entries be replicated from a supplier to a consumer,
but also schema and access control information. If not done automatically via a protocol, manual
configuration is required for each consumer, and there could be thousands of consumers in large distributed
directory system (e.g., a directory consumer in every airport in the world holding flight schedule
information). Some directory servers do not implement schema and access control such that it can be
replicated, so manual configuration, or some other out-of-band technique is used to replicate this type of
operational information.

While master-slave replication provides high-availability via geographic distribution of information,
facilitating scalability for search operations, it does not provide high-availability for modify operations. In
order to achieve write-failover, it is necessary to employ systems engineering techniques to enable either a
cluster system running the single master, or enable a hot standby mode so that in the event of the failure of
the single master, the hot standby server can be brought on line without delay. Another technique is to
allow a slave server to become a master server through a process of promotion, which involves special
control logic to allow a slave to begin receiving updates and to notify other slaves that it is now the
authoritative master. Many directory deployments only allow write operations to the master server and
route all search operations, using DNS or an LDAP Proxy server, to one of the slaves so that the load on the
master server is restricted to only modify operations.

A common scenario that is employed in single master, multiple slave, directory deployments is to deploy a
small set of replica hubs, each being a read-only replica from which other slaves may obtain updates. In the
event a master fails, a hub is easily promoted. In this model, depicted in Figure 3, the replica hubs are both
consumers and suppliers, since they consume their updates from an authoritative master server, but also
supply updates to other slaves. This scenario is most useful when a large number of slave servers would put
unnecessary load on a single master, and so a hierarchy of servers is established to distribute the replication
update load from the master to the hubs; otherwise, the master might spend all of its time updating
consumers.
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Figure 3. Master-Slave Replication

5.2.2 LDAP Proxy Server
An LDAP proxy server is an OSI layer 7 application gateway that does LDAP protocol data unit
forwarding, possibly requiring examination, and possibly on-the-fly modification, of the LDAP protocol
message to determine application layer semantic actions. The objective of the LDAP proxy server is to
provide an administrative point of control in front of a set of deployed directories, but does not answer
LDAP queries itself, instead chaining the queries when appropriate to the directory servers. The proxy
allows a degree of transparency to the directory services, in conjunction with DNS maps pointing LDAP
clients to one or more proxy services instead of at the actual directory servers. The LDAP proxy provides a
number of useful functions that are best done outside of the core directory server. These functions include:

1. LDAP schema rewriting to map server schema to client schema in the cases where client schema is
either hard-coded or for historical reasons does not match the extensible schema of the directory
server.  Once thousands of clients are deployed it is difficult to correct the problem, and so server
applications must often adapt for the sake of seamless interoperability.

2. Automatic LDAP referral following on behalf of both LDAPv2 and LDAPv3 clients. The LDAPv2
protocol did not define a referral mechanism, but a proxy server can map an LDAPv2 client request
into an LDAPv3 client request, so that referrals can be used with a mixed set of LDAPv2 and LDAPv3
clients.

3. An LDAP firewall that provides numerous control functions to detect malicious behavior on the part of
clients, such as probing, trawling, and denial-of-service attacks. The firewall functions include rate
limiting, host and TCP/IP-based filters similar to the TCP wrappers package, domain access control
rules, and a number of LDAP-specific features, including operations blocking, size limits, time limits
and attribute filters. The rate limiting feature allows a statistical back-off capability using TCP flow
control so that  clients attempting to overload the directory are quenched.

4. The proxy provides a control point for automatic load balancing and failover/failback capability. It
may also be able to maintain state information about load on a set of directory servers and redirect
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LDAP traffic based on load criteria or other semantic criteria at the LDAP protocol level. In addition,
it can detect the failure of a directory server and rebalance the incoming load to other directory servers,
and detect when a failed directory server rejoins the group.

5. The proxy also provides the  point-of-entry advertised to clients in the DNS to the directory service
thereby providing a level of indirection to client applications that facilitates maintenance, upgrades,
migrations, and other server administrative tasks done on the backend directory servers, in a manner
that is transparent to clients so that a highly available directory service is delivered.

An LDAP proxy is unlike an IP firewall in that it does application layer protocol security analysis. The
proxy is also unlike an HTTP proxy in that it does not do caching of directory data since it is unable to
apply directory access rules to clients. The LDAP proxy is also unlike an IP load balancer in that it is able
to make application level load balancing decisions based on knowledge of directory server topology, query
rates, query types, and load and availability metrics published by the directory servers.

Figure 4 is an illustration of a typical deployment of a pair of LDAP proxy servers that sit behind an IP
firewall and accept LDAP connection requests and operations on port 389.

Figure 4. LDAP Proxy Servers

5.2.3 Multi-Master Replication
Multi-master replication with high-speed RAID storage, combined with multiple LDAP proxy servers and
dynamic DNS provides a very high availability directory service.  In some cases, a clustered operating
system platform may provide additional availability guarantees. There are different techniques for
implementing multi-master replication but they all share in common the goal of maintaining write
availability of a distributed directory service by ensuring that more than one master server is available and
reachable for modifications, that will eventually be synchronized with all of the other masters. As discussed
previously, LDAP replication is based on a weakly-consistent distributed data model, and so any given
master may be in a state of not having processed all updates seen at other master servers.  This feature of an
LDAP directory service is sometimes criticized as a weakness of the LDAP service model, but in well-
designed directory service deployments with high bandwidth, low latency LANs and WANs, it is possible
to have weak consistency and still provide a very high service level for most application environments. In
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loosely coupled distributed systems over WANS, globally consistency is very difficult to achieve
economically. For those environments that require total consistency at any point in time, another network
based distributed data service is probably more appropriate.

Ideally, any directory server in a deployment of a directory service could be a master for some or all of the
data that it holds, thereby providing n-way multi-master replication. In practice however, the masters are
typically placed in a controlled environment like a data center, where the server’s authoritative database
can be properly administered, regularly backed up, etc. In the case of geographically dispersed data centers,
then each data center may contain one or more master servers interconnected by a high-speed LAN that
stay in close synchronization, while masters in another data center are connected by a slower WAN and
might often be out of synchronization. Different high availability goals will dictate how the masters are
deployed, how the data is partitioned, and how proxy servers are deployed to help enable client applications
to get at replicas or the masters themselves.

Whatever the choice of topology, multi-master replication combined with hub and slave replicas, and proxy
servers, offers a highly available directory service. In this scenario, proxy servers provide a critical piece of
functionality since replicas and hubs will often be configured to return referrals to one or more master
servers for a client that requests to do an update on a replica. Alternatively, if the directory server used as a
replica offers chaining, then it may be able to chain the operation to the master. For modifications, it is
often desirable to have the client application authenticate to the master with its own credentials for auditing
purposes, rather than have a replica proxy the modification on behalf of the client applications.

5.2.4 Replication Standardization
There is no official standard for how replication is to be done with LDAP. Each LDAP directory server
vendor has implemented a specialized mechanism for replication. There are many reasons why no LDAP
replication standard was reached within the IETF, but the principal reason was that no consensus could be
reached on standard access control mechanism. A common access control mechanism, or consistent
mapping, is required before LDAP replication interoperability can be achieved between servers from
different vendors. In addition, market politics inhibited the successful definition, as the access control
model and other semantic features implemented as part of a directory service, independent of the LDAP
directory protocol, were viewed as competitive elements of various vendor products.

The question is often asked by the LDAP standards working group did not simply adopt the X.500 access
control model and replication protocol, since they were already standardized.  The reasons are complicated
but there is an important fact about X.500 replication that is often not often well understood. The X.500
replication protocol suffers from numerous flaws itself, and most X.500 products implement proprietary
workarounds in their products to enable replication to work at scale beyond a couple of hundred thousand
directory entries. Briefly, the DISP requires a replication data unit to be sent as a single protocol data unit
for both the total update during initialization, as well as during incremental updates for changes. Using the
OSI upper layer protocols, the DISP protocol is defined in terms of a remote procedure call service and a
session layer service that was not well designed to take procedure arguments that could be on the order of
several megabytes to several gigabytes. Hence, implementations of DISP that use the remote operation
service element (ROSE) of the OSI stack are most often severely limited in their ability to perform
replication updates of any appreciable size. The alternative is to implement DISP in terms of the reliable
transfer service element (RTSE), which is used by X.400, but no two X.500 vendors convincingly
demonstrated interoperability at scale. As a result, X.500 total update replication in practice is neither
scalable nor interoperable as a practical matter between any two X.500 serves from different vendors. Each
vendor had no choice but to  make changes to the protocol  as implemented in their product to achieve
practical replication between their own servers, and those changes usually make all but the most basic level
of interoperability unachievable in practice. Fully interoperable and scalable replication between disparate
directory servers, whether X.500 or LDAP, has not yet been achieved. The replication problem remains an
active area of research, especially with respect to performance and scalability over WANs, and topology
and replication agreement manageability of potentially hundreds-to-thousands of master-master and
master-slave replication agreements.
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6 LDAP PROTOCOL AND C LANGUAGE CLIENT API
The LDAPv3 protocol is defined in [RFC 2251]. Closely related specifications are [RFC 2222] and [RFCs
2252-2256]. Many Internet application protocols, such as SMTP and HTTP, are defined as text-based
request-response interactions; however, LDAPv3 (like SNMP) is defined using Abstract Syntax Notation
One (ASN.1) so that application protocol data units (PDUs) are strongly typed in that structural type
information is sent along with user data in the form of encoded type tags. Clients and servers implementing
LDAPv3 use the Basic Encoding Rules (BER) to encode protocol data units as compact network byte order
binary strings before transmission via TCP.  This encoding/decoding process introduces slight
computational overhead to protocol processing, but processing of LDAP operations is less computational
intensive than other ASN.1 represented protocols such as DAP or XML encoded protocols, and even some
text based protocols that require a lot of string parsing and end-of-message handling. This efficiency is due
to the restricted use of only the basic and efficiently encoded ASN.1 data types in defining the LDAP
protocol structure. Most data elements are represented as strings that easily encoded using BER. This
optimization allows very compact and efficient encoders/decoders to be written.

6.1 LDAPv3 Protocol Exchange
As with typical client-server protocols, the LDAPv3 protocol exchange is initiated by a client application
requesting a TCP connection to a server, typically on reserved TCP port 389. Either endpoint of the
connection can send an LDAPMessage PDU to the other endpoint at any time, although only request
forms of the LDAPMessage are sent by the client and response forms sent by the server. Typically, a
client will initiate a bind, operation1, …, operationN, unbind sequence, where each operation is either a
search, compare, or one of a family of update operations. A client may also choose to abandon an operation
before unbinding and closing or aborting the TCP connection or the client may choose to re-bind on an
existing TCP connection with new credentials.

The LDAPMessage is defined in ASN.1 as follows:

        LDAPMessage ::= SEQUENCE {
                messageID       MessageID,
                protocolOp      CHOICE {
                        bindRequest     BindRequest,
                        bindResponse    BindResponse,
                        unbindRequest   UnbindRequest,
                        searchRequest   SearchRequest,
                        searchResEntry  SearchResultEntry,
                        searchResDone   SearchResultDone,
                        searchResRef    SearchResultReference,
                        modifyRequest   ModifyRequest,
                        modifyResponse  ModifyResponse,
                        addRequest      AddRequest,
                        addResponse     AddResponse,
                        delRequest      DelRequest,
                        delResponse     DelResponse,
                        modDNRequest    ModifyDNRequest,
                        modDNResponse   ModifyDNResponse,
                        compareRequest  CompareRequest,
                        compareResponse CompareResponse,
                        abandonRequest  AbandonRequest,
                        extendedReq     ExtendedRequest,
                        extendedResp    ExtendedResponse },
                  controls       [0] Controls OPTIONAL }

An LDAPMessage is converted to bytes using a BER encoding, and the resulting series of bytes is sent on
the TCP connection.  In LDAP only the BER definite length fields are used, so the receiver of a PDU
knows how long the PDU will be as soon as the type tag and length of the outermost LDAPMessage
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SEQUENCE has been read from the network. The use of definite length encodings allows LDAP PDU
processing on the server side to be done very efficiently, since knowing the full length of the incoming
PDU from reading the first few bytes leads to efficient memory management and minimization of data
copying while reading bytes from the network.

The messageID field is an INTEGER. When the client sends a request it chooses a value for the
messageID, which is distinct from that of any other message the client has recently sent on that connection,
typically by incrementing a counter for each message.  Any LDAPMessage PDUs returned by the server
in response to that request will use the same messageID field.  This enables a client to send multiple
requests consecutively on the same connection, and servers that can process operations in parallel (for
example if they are multi-threaded), will return the results to each operation as it is completed.

Normally the server will not send any LDAPMessage to a client except in response to one of the above
requests.  The only exception is the unsolicited notification, which is represented by an extendedResp
form of LDAPMessage with the messageID set to 0.  The notice of disconnection allows the server to
inform the client that it is about to abruptly close the connection.  However, not all servers implement the
notice of disconnection, and it is more typical that a connection is closed due to problems with the network
or the server system becoming unavailable.

The controls field allows the client to attach additional information to the request, and for the server to
attach data to the response. Controls have been defined to describe server side sorting, paging and scrolling
of results, and other features that are specific to particular server implementations.

In the C API, an application indicates that it wishes to establish a connection using the ldap_init call.

LDAP *ldap_init(const char *host,int port);

The host argument is either the host name of a particular server, or a space-separated list of one or more
host names.  The default reserved TCP port for LDAP is 389.  If a space-separated list of host names is
provided, the TCP port for each host can be specified for each host, separated by a colon, as in "server-
a:41389 server-b:42389". The TCP connection will be established when the client makes the first
request call.

6.2 General Result Handling
The result PDU for most requests that have a result (all but Abandon and Unbind) is based on the following
ASN.1 data type:

        LDAPResult ::= SEQUENCE {
                resultCode      ENUMERATED,
                matchedDN       LDAPDN,
                errorMessage    LDAPString,
                referral        [3] Referral OPTIONAL }

The resultCode will take the value zero for a successfully completed operation, except for the compare
operation.  Other values indicate that the operation could not be performed, or could only partially be
performed. Only LDAP resultCode values between 0 and 79 are used in the protocol, and most indicate
error conditions; for example, noSuchObject indicating that the requested object does not exist in the
directory. The LDAP C API uses resultCode values between 80 and 97 to indicate errors detected by
the client library (e.g., out of memory).

In the remainder of this section, the C API will be described using the LDAP synchronous calls, which
block until a result, if required by the operation, is returned from the directory server. These API calls are
defined by standard convention to have the suffix ‘_s’ appended to the procedure names.  Client
applications that need to multiplex several operations on a single connection, or to obtain entries from a
search result as they are returned asynchronously by the directory server, will use the corresponding
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asynchronous API calls. The synchronous and asynchronous calls generate identical LDAP messages, and
hence are indistinguishable to the server. It is up to the client application to define either a synchronous and
asynchronous model of interaction with the directory server.

6.3 Bind
The first request that a client typically sends on a connection is the bind request, to authenticate the client to
the directory server. The bind request is represented within the LDAPMessage as follows:

        BindRequest ::= [APPLICATION 0] SEQUENCE {
                version                 INTEGER (1 .. 127),
                name                    LDAPDN,
                authentication          AuthenticationChoice }

        AuthenticationChoice ::= CHOICE {
                simple                  [0] OCTET STRING,
                sasl                    [3] SaslCredentials }

There are two forms of authentication: simple password-based authentication and SASL (Simple
Authentication and Security Layer). The SASL framework is defined in [RFC 2222]. A common SASL
authentication mechanism is DIGEST-MD5 as defined in [RFC 2831].

Most LDAP clients use the simple authentication choice.  The client provides the user's distinguished name
in the name field, and the password in the simple field. The SaslCredentials field allows the client
to specify a SASL security mechanism to authenticate the user to the server without revealing a password
on the network, or by using a non-password-based authentication service, and optionally to authenticate the
server as well.

        SaslCredentials ::= SEQUENCE {
                mechanism               LDAPString,
                credentials             OCTET STRING OPTIONAL }

Some SASL mechanisms require multiple interactions between the client and the server on a connection to
complete the authentication process. In these mechanisms the server will provide data back to the client in
the serverSaslCreds field of the bind response.

        BindResponse ::= [APPLICATION 1] SEQUENCE {
             COMPONENTS OF LDAPResult,
             serverSaslCreds    [7] OCTET STRING OPTIONAL }

The client will use the server’s credential to compute the credentials to send to the server in a subsequent
bind request.

In the C API, an application can perform a simple bind and block waiting for the result using the
ldap_simple_bind_s call.

int ldap_simple_bind_s(LDAP *ld,const char *dn,const char *password);

6.4 Unbind
The client indicates to the server that it intends to close the connection by sending an unbind request.
There is no response from the server.

        UnbindRequest ::= [APPLICATION 2] NULL

In the C API, an application can send an unbind request and close the connection using the ldap_unbind
call.
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int ldap_unbind(LDAP *ld);

6.5 ExtendedRequest
The extended request enables the client to refer operations that are not part of the LDAP core protocol
definition.  Most extended operations are specific to a particular server's implementation.

        ExtendedRequest ::= [APPLICATION 23] SEQUENCE {
                requestName      [0] LDAPOID,
                requestValue     [1] OCTET STRING OPTIONAL }

        ExtendedResponse ::= [APPLICATION 24] SEQUENCE {
                COMPONENTS OF LDAPResult,
                responseName     [10] LDAPOID OPTIONAL,
                response         [11] OCTET STRING OPTIONAL }

6.6 Searching
The search request is defined as follows:

        SearchRequest ::= [APPLICATION 3] SEQUENCE {
                baseObject      LDAPDN,
                scope           ENUMERATED {
                        baseObject              (0),
                        singleLevel             (1),
                        wholeSubtree            (2) },
                derefAliases    ENUMERATED,
                sizeLimit       INTEGER (0 .. maxInt),
                timeLimit       INTEGER (0 .. maxInt),
                typesOnly       BOOLEAN,
                filter          Filter,
                attributes      AttributeDescriptionList }

The baseObject DN and scope determine which entries will be considered to locate a match.  If the
scope is baseObject, only the entry named by the distinguished name in baseObject field will be
searched.  If the scope is singleLevel, only the entries immediately below the baseObject entry will
be searched.  If the scope is wholeSubtree, then the entry named by baseObject and all entries in
the tree below it are searched.

The derefAliases specifies whether the client requests special processing when an alias entry is
encountered. Alias entries contain an attribute with a DN value that is the name of another entry, similar in
concept to a symbolic link in a UNIX® file system.  Alias entries are not supported by all directory servers
and many deployments do not contain any alias entries.

The sizeLimit indicates the maximum number of entries to be returned in the search result, and the
timeLimit the number of seconds that the server should spend processing the search.  The client can
provide the value 0 for either to specify "no limit".

The attributes field contains a list of the attribute types that the client requests be included from each
of the entries in the search result.  If this field contains an empty list, then the server will return all
attributes of general interest from the entries. The client may also request that only types be returned, and
not values.

The LDAP Filter is specified in the protocol encoding using ASN.1, however most client APIs allow a
simple text encoding of the filter to be used by applications.  This textual encoding is defined in [RFC
2254].
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In LDAP search processing a filter when tested against a particular entry can evaluate to TRUE, FALSE or
Undefined.  If the filter evaluates to FALSE or Undefined then that entry is not returned in the search result
set.  Each filter is grouped by parenthesis, and the most common types of filter specify the "present",
"equalityMatch", "substrings", "and" and "or" filter predicates. The "present" filter evaluates to TRUE if an
attribute of a  specified type is present in the entry.  It is represented by following the type of the attribute
with "=*", as in (telephoneNumber=*). The "equalityMatch" filter evaluates to TRUE if an attribute
in the entry is of a matching type and value to that of the filter. It is represented as the type of the attribute,
followed by a "=", then the value, as in (cn=John Smith). The "substring" filter evaluates to TRUE by
comparing the values of a specified attribute in the entry to the pattern in the filter.  It is represented as the
type of the attribute, followed by a "=", and then any of following, separated by "*" characters:

• a substring that must occur at the beginning of the value,
• substrings that occur anywhere in the value,
• a substring that must occur at the end of the value.

For example, a filter (cn=John*) would match entries which have a commonName (cn) attribute
beginning with the string "John".  A filter (cn=*J*Smith) match entries which have a value that
contains the letter "J", and ends with "Smith". Many servers have restrictions on the substring searches that
can be performed.  It is typical for servers to restrict the minimum substring length.

An "and" filter consists of a set of included filter conditions, all of which must evaluate to TRUE if an entry
is to match the "and" filter. This is represented using the character "&" followed by the set of included
filters, as in  (&(objectClass=person)(sn=smith)(cn=John*)).

An "or" filter consists of a set of included filter conditions, any of which must evaluate to TRUE if an entry
is to match the "or"filter.  This is represented using the character "|" followed by the set of included filters,
as in (|(sn=smith)(sn=smythe)).

The "not" filter consists of a single included filter, whose sense is inverted: TRUE becomes FALSE,
FALSE becomes TRUE, and Undefined remains as Undefined.  The negation filter is represented using the
character "!" followed by the included filter, as in (!(objectClass=device)).  Note that the
negation filter applies to a single search filter component, which  may be compound. Most LDAP servers
cannot efficiently process the "not" filter, so it should be avoided where possible.

Other filters include the approxMatch filter, the greaterOrEqual, the lessOrEqual, and the
extensible filter, which are not widely used. The approximate matching filter allows for  string
matching based on algorithms for determining phonetic matches, such as soundex, metaphone, and others
implemented by the directory server.

6.7 Search Responses
The server will respond to the search with any number of LDAPMessage PDUs with the
SearchResultEntry choice, one for each entry which matched the search, as well as any number of
LDAPMessage PDUs with the SearchResultReference choice, followed by an LDAPMessage
with the SearchResultDone choice.

        SearchResultEntry ::= [APPLICATION 4] SEQUENCE {
                objectName      LDAPDN,
                attributes      PartialAttributeList }

        SearchResultReference ::= [APPLICATION 19] SEQUENCE OF LDAPURL

        SearchResultDone ::= [APPLICATION 5] LDAPResult

The SearchResultReference is returned by servers which do not perform chaining, to indicate to the
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client that it must progress the operation itself, by contacting other servers. For example, if server S1 holds
dc=example,dc=com , servers S2 and S3 hold  ou=People,dc=example,dc=com and server S4
holds ou=Groups,dc=example,dc=com, then a wholeSubtree search sent to server S1 would
result in the two LDAPMessage PDUs containing SearchResultReference being returned, one
with the URLs:

ldap://S2/ou=People,dc=example,dc=com
ldap://S3/ou=People,dc=example,dc=com

and the other with the URL:

ldap://S4/ou=Groups,dc=example,dc=com

followed by a SearchResultDone.

Invoking a search request in the C API, and blocking for the results, uses the ldap_search_s call.

int ldap_search_s(
                   LDAP            *ld,
                   const char      *basedn,
                   int             scope,
                   const char      *filter,
                   char            **attrs,
                   int             attrsonly,
                   LDAPControl     **serverctrls,
                   LDAPControl     **clientctrls,
                   struct timeval  *timeout,
                   int             sizelimit,
                   LDAPMessage     **res);

The scope parameter can be one of LDAP_SCOPE_BASE, LDAP_SCOPE_ONELEVEL, or
LDAP_SCOPE_SUBTREE.

6.8 Abandoning an Operation
While the server is processing a search operation, the client can indicate that it is no longer interested in the
results by sending an abandon request, containing the messageID of the original search request.

        AbandonRequest ::= [APPLICATION 16] MessageID

The server does not reply to an abandon request, and no further results for the abandoned operation are
sent.

In the C API, the client requests that an operation it invoked on that connection with an earlier
asynchronous call be abandoned using the ldap_abandon call.

int ldap_abandon(LDAP *ld,int msgid);

6.9 Compare Request
The compare operation allows a client to determine whether an entry contains an attribute with a specific
value. The typical server responses will be  the compareFalse or compareTrue results codes,
indicating that the comparison operation failed or succeeded. In practice, few client applications use the
compare operation.

        CompareRequest ::= [APPLICATION 14] SEQUENCE {
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                entry           LDAPDN,
          ava             AttributeValueAssertion}

  AttributeValueAssertion ::= SEQUENCE {
                attributeDesc    AttributeDescription,
                assertionValue  OCTET STRING }

In the C API, the client requests a comparison on an attribute with a string syntax using the
ldap_compare_s call.  Note that a successful comparison is expressed with the result code
LDAP_COMPARE_TRUE rather than LDAP_SUCCESS.

int ldap_compare_s(LDAP *ld,const char *dn,
 const char *type, const char *value);

6.10 Add, Delete, Modify and ModifyDN Operations
The Add, Delete, Modify and ModifyDN operations operate on individual entries in the directory tree.

        ModifyRequest ::= [APPLICATION 6] SEQUENCE {
                object          LDAPDN,
                modification    SEQUENCE OF SEQUENCE {
                        operation       ENUMERATED {
                                                add     (0),
                                                delete  (1),
                                                replace (2) },
                        modification    AttributeTypeAndValues } }

In the C API, the client can invoke the modify operation using the ldap_modify_s call.

int ldap_modify_s(LDAP *ld,const char *dn,LDAPMod **mods);

typedef struct LDAPMod {
int mod_op;

#define LDAP_MOD_ADD 0x0
#define LDAP_MOD_DELETE 0x1
#define LDAP_MOD_REPLACE 0x2
#define LDAP_MOD_BVALUES 0x80

char *mod_type;
union mod_vals_u {

char **modv_strvals;
#define mod_values  mod_vals.modv_strvals

struct berval **modv_bvals;
#define mod_bvalues mod_vals.modv_bvals

} mod_vals;
 LDAPMod;

The mod_op field is based on one of the values LDAP_MOD_ADD, LDAP_MOD_DELETE or
LDAP_MOD_REPLACE.

The Add operation creates a new entry in the directory tree.

        AddRequest ::= [APPLICATION 8] SEQUENCE {
                entry           LDAPDN,
                attributes      SEQUENCE OF AttributeTypeAndValues }

In the C API, the client can invoke the add operation using the ldap_add_s call.
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int ldap_add_s(LDAP *ld,const char *dn,LDAPMod **attrs);

The Delete operation removes a single entry from the directory.

        DelRequest ::= [APPLICATION 10] LDAPDN

In the C API, the client can invoke the delete operation using the ldap_delete_s call.

int ldap_delete_s(LDAP *ld,const char *dn);

The ModifyDN operation can be used to rename or move an entry or an entire branch of the directory tree.
The entry parameter specifies the DN of the entry at the base of the tree to be moved.  The newrdn
parameter specifies the new relative distinguished name (RDN) for that entry.  The deleteoldrdn
parameter controls whether the previous RDN should be removed from the entry, or just be converted by
the server into ordinary attribute values.  The newSuperior field, if present, specifies the name of the
entry that should become the parent of the entry to be moved.

        ModifyDNRequest ::= [APPLICATION 12] SEQUENCE {
                entry           LDAPDN,
                newrdn          RelativeLDAPDN,
                deleteoldrdn    BOOLEAN,
                newSuperior     [0] LDAPDN OPTIONAL }

Many directory servers do not support the full range of capabilities implied by the ModifyDN operation
(e.g., subtree rename) so this  operation is not frequently used by clients.

7 CONCLUSION
This history of the evolution of LDAP technology is indeed a unique and fascinating case study in the
evolution of a key Internet protocol and client-server technology used worldwide. There are many excellent
client and server products based on LDAP available from several companies, each providing its various
advantages and disadvantages. However, it is fair to say that it was through the diligent efforts of a few
dedicated individuals, the emergence of the Internet as a commercially viable technology, and the financial
investment of several research organizations and corporations into this technology that has made directories
based on the lightweight directory access protocol critical components of the world-wide public Internet,
most corporate and organizational wired and wireless intranets, and the global wireless phone network.
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