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Summary. A wide variety of similarity indices for comparing two assemblages based on species incidence
(i.e., presence/absence) data have been proposed in the literature. These indices are generally based on
three simple incidence counts: the number of species shared by two assemblages and the number of species
unique to each of them. We provide a new probabilistic derivation for any incidence-based index that is
symmetric (i.e., the index is not affected by the identity ordering of the two assemblages) and homogeneous
(i.e., the index is unchanged if all counts are multiplied by a constant). The probabilistic approach is further
extended to formulate abundance-based indices. Thus any symmetric and homogeneous incidence index can
be easily modified to an abundance-type version. Applying the Laplace approximation formulas, we propose
estimators that adjust for the effect of unseen shared species on our abundance-based indices. Simulation
results show that the adjusted estimators significantly reduce the biases of the corresponding unadjusted
ones when a substantial fraction of species is missing from samples. Data on successional vegetation in six
tropical forests are used for illustration. Advantages and disadvantages of some commonly applied indices
are briefly discussed.
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1. Introduction
In comparing species composition and biodiversity of two or
more assemblages in taxonomic and ecological research, simi-
larity (or overlap) or dissimilarity (complementarity, turnover,
beta diversity, or distance) indices provide quantitative bases
of assessment (Magurran, 2004). In this article, we focus on
similarity indices for comparing two assemblages. All deriva-
tions and arguments can be readily applied to dissimilarity
indices as well.

A large number of similarity indices based on pres-
ence/absence (incidence) data have been proposed in the
literature. The two classic and the most widely used ones
are the Jaccard and Sørensen indices (Ludwig and Reynolds,
1988; Magurran, 2004). Hubalek (1982) and Gower (1985)
provided comprehensive reviews. Lennon et al. (2001) have
given new interpretation and application to an old index orig-
inally proposed by Simpson (1943). For simplicity, this index
hereafter is referred to as the Lennon et al. index. The Jac-
card, Sørensen, Lennon et al., and many other incidence-type
indices for comparing two assemblages are generally func-
tions of three incidence counts: the number of species shared
by two assemblages and the number of species unique to
each.

Despite their simplicity and wide application in ecologi-
cal studies, the incidence-based indices do not take species
abundance into account, thus abundant and rare species are

treated equally. These indices, when estimated from sam-
ples, do not perform well (Wolda, 1981, 1983; Colwell and
Coddington, 1994; Fisher, 1999; Plotkin and Muller-Landau,
2002). The estimates are generally biased downward and the
bias increases when sample sizes are small or species richness
is large. A major statistical concern is that, based on inci-
dence data, bias correction and measurements of variances are
impossible. (See Section 4.1 for details.) Consequently, the in-
terpretation of any incidence-based index becomes especially
difficult for comparing two (or more) diverse assemblages that
contain numerous rare species, particularly when limited to
analysis of data from small samples. More discussion follows
in Sections 4 and 6.

Abundance-type indices of compositional similarity have
received relatively less attention by researchers in biodiversity
research. A modified version of the Sørensen index was devel-
oped by Bray and Curtis (1957), based on abundance data
(also known as the Sørensen abundance index; Magurran,
2004). The Bray–Curtis similarity index is widely used to
generate distance matrices in vegetation ordination studies
(Gotelli and Ellison, 2004). Another widely used abundance-
based index is the Morisita-type index (Magurran, 2004,
p. 175). The Bray–Curtis and Morisita indices will be further
discussed in Section 4. A generalized form of the Morisita in-
dex was proposed by Grassle and Smith (1976). Smith, Solow,
and Preston (1996) considered a Jaccard-type abundance
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index using a modified beta-binomial model. Yue, Clayton,
and Lin (2001) subsequently extended it to a general case.
Plotkin and Muller-Landau (2002) developed a Sørensen-type
similarity index for abundance counts using a parametric ap-
proach that relies on a gamma distribution to characterize
species abundance structure. To our knowledge, the effect of
unseen shared species on any index has not previously been
addressed in the literature.

This research was motivated by analyzing plant data to
compare tree and seedling (or tree and sapling) size classes in
successional rain forest plots in Costa Rica. The abundance
data were collected by Chazdon and colleagues as part of a
larger study of secondary succession of tropical rain forests
following pasture abandonment (Redondo, Vilchez, and
Chazdon, 2001; Chazdon, Redondo, and Vilchez, 2005). Dur-
ing early stages of succession, a forest site is usually dom-
inated by fast-growing and shade-intolerant colonizing tree
species that are abundant in all size classes (trees, saplings,
and seedlings). As the forest canopy is established, these
shade-intolerant tree species drop out of the seedling and
sapling pool, and some shade-tolerant species begin to col-
onize. The late colonizing tree species are represented by
seedlings and saplings, but have few or no canopy trees
present, gradually augmenting tree species richness as the for-
est matures (Guariguata et al., 1997, Table 4). As secondary
forests mature, we would therefore predict that compositional
similarity between tree species and seedling or sapling species
would initially be high, but would quickly decline to a mini-
mum during intermediate stages of succession and then begin
to increase later in succession as shade-tolerant trees reach re-
productive maturity and produce seedlings that can establish,
grow, and survive. The detailed abundance data and analysis
will be discussed in Section 5.

It is clear that abundance counts play important roles in de-
scribing forest compositional changes with time. Also, due to
sampling limitation, complete inventories are impractical and
even impossible, especially for smaller size classes (seedlings
and saplings) (Chazdon et al., 1998), and similar limitations
apply to many animal studies, especially in the tropics (e.g.,
Longino, Coddington, and Colwell, 2002). It can be expected
that some species that are present in a forest stand will be
missing from the samples. In such incomplete surveys, no ex-
isting abundance-based index incorporates the effect of unseen
species to adjust for this undersampling bias. We were thus
motivated to derive abundance-based indices that incorporate
the effect of unseen shared species. See Chao et al. (2005) for
the ecological counterpart paper.

We begin by reviewing a class of incidence-based similar-
ity indices that are symmetric (i.e., the index is not affected
by the identity ordering of the two assemblages) and homo-
geneous (i.e., the index is unchanged if all counts are mul-
tiplied by a constant). We then develop a new probabilistic
approach that can be applied to any member of the class.
This approach is further extended to formulate abundance-
based indices that do not require any assumptions about the
statistical distribution of species abundance. Thus any sym-
metric and homogeneous incidence index can be generalized to
an abundance-type version. Using the Laplace approximation
formulas, we propose estimators that adjust for the effect of

unseen shared species for the abundance-based indices. Simu-
lations from known plant assemblages are used to demonstrate
that the adjusted estimators work well for inferring similarity
between hyper-diverse assemblages for which a large portion
of species might not be seen in samples.

In Section 2.1, a class of incidence-based indices is reviewed.
In Section 2.2, we provide a probabilistic approach to inter-
preting the incidence indices. The approach is extended in
Section 3.1 to formulate the corresponding abundance-based
version. The estimation of the proposed abundance-based in-
dices when there are unseen species in samples is briefly de-
scribed in Section 3.2. (Derivation details are given on the
Biometrics website.) Discussion of the pros and cons of some
commonly used indices is provided in Section 4. Application
to the rain forest data is presented in Section 5. Simulation
results based on generated data from plant assemblages are
reported in Section 6 to investigate the performance of our
estimators. Concluding remarks and discussion are provided
in Section 7.

2. A Probabilistic Approach to Incidence-Based
Indices

2.1 A Class of Incidence-Based Indices
Most incidence-based indices for comparing two assemblages
depend on three incidence counts: the number of species
shared by two assemblages and the number of species unique
to each of them. In the ecological literature, it has become
traditional to refer to these counts as a, b, and c, respectively
(Table 1). Assume that there are S1 > 0 species in Assem-
blage 1 and there are S2 > 0 species in Assemblage 2. Let the
number of shared species be S12. As shown in Table 1, the in-
cidence counts a, b, and c correspond to a = S12, b = S1 − S12,
and c = S2 − S12.

Based on Gower (1985), Wolda (1981), Hubalek (1982), and
Lennon et al. (2001), we select in the second column of Table 2
a class of similarity indices that satisfy

(i) Symmetry: b and c are interchangeable in the index;
and

(ii) Homogeneity: if all counts (a, b, c) are multiplied by
a constant K, then the index for the counts (Ka, Kb,
Kc) is exactly the same as that for the counts (a, b,
c). See Janson and Vegelius (1981) for discussion of this
property.

All these incidence indices can be reexpressed as functions
of S1, S2, S12 as shown in the third column of Table 2. This
type of expression has the advantage of linking incidence and
abundance indices, as will be seen in Section 3.

Table 1
Species classification counts used in incidence indices

Assemblage 2

Presence Absence

Assemblage 1 Presence a = S12 b = S1 − S12
Absence c = S2 − S12 –
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Table 2
A class of incidence- and abundance-based indices and their relations

Incidence based Incidence based Abundance based
Index in terms of a, b, c in terms of S1, S2, S12 (see Section 3)

Jaccard a
a+ b+c

S12
S1 +S2 −S12

UV
U +V −UV

Sørensen; Dice 2a
(2a+ b+c)

2S12
S1 +S2

2UV
U +V

Ochiai a

[(a+ b)(a+c)]1/2
S12

(S1S2)1/2 (UV )1/2

Anderberg a
a+ 2(b+c)

S12
2S1 + 2S2 − 3S12

UV
2U + 2V − 3UV

Kulczynski a
b+c

S12
S1 +S2 − 2S12

UV
U +V − 2UV

Kulczynski; Cody a
2(a+ b) + a

2(a+c)
1
2

(
S12
S1

+ S12
S2

)
1
2 (U +V )

Lennon et al. (2001) a
a+ min(b,c)

S12
S12 + min(S1 −S12,S2 −S12)

UV
UV + min(U −UV ,V −UV )

2.2 A Probabilistic Approach to the Incidence-Based Indices
To extend the incidence indices to take account of the rela-
tive abundance of species, we must first provide a probabilistic
derivation for incidence indices. Suppose we randomly select
one species from Assemblage 1 and one species from Assem-
blage 2 and then classify each member of the pair according
to whether it is a shared species or not. The corresponding
probabilities are specified in Table 3.

Comparing Tables 1 and 3, we note the following relations:
Table 3 is obtained by first interchanging b(= S1 − S12) and
c(= S2 − S12) in Table 1 and then multiplying all counts by
a constant K = S12/(S1S2) provided that S12 > 0. Then any
symmetric and homogeneous index based on the counts (a,
b, c) in Table 1 is exactly the same as that based on the
counts (A, B, C) in Table 3. This can also be verified by direct
calculations. For example, for the Jaccard index, we have

A

A + B + C

=

S12

S1

S12

S2
S12

S1

S12

S2
+

S12

S1

(
1 − S12

S2

)
+

(
1 − S12

S1

)
S12

S2

=
S12

S1 + S2 − S12
=

a

a + b + c
.

Similar verification applies to the other indices. This
probabilistic approach lays the groundwork for developing
abundance-based indices, which in turn allow for the esti-

Table 3
Probabilistic derivation of the incidence indices

Select any species
from Assemblage 2

Shared Nonshared

Select any Shared A = S12
S1

× S12
S2

B = S12
S1

species from ×(1 − S12
S2

)
Assemblage 1 Nonshared C = (1 − S12

S1
)

×S12
S2

mation of indices that adjust for the effect of unseen shared
species.

3. Extension to Abundance-Based Indices
and Estimation

3.1 Abundance-Based Indices
Let the probabilities of species discovery in Assemblages 1
and 2 be denoted, respectively, by (p1, p2, . . . , pS1) and

(π1, π2, . . . , πS2), where pi > 0, πi > 0, and
∑S1

i=1 pi =∑S2
i=1 πi = 1. We no longer treat all species equally because

some species are common and some are rare. Instead, the ba-
sic idea for handling abundance counts is that we treat all
individuals equally. Adapting the approach in Section 2, we
randomly select one individual from Assemblage 1 and also
one individual from Assemblage 2. For each selected individ-
ual of the pair, note whether it is a shared species or not.

Without loss of generality, we assume the first S12 species
are shared species, that is, the shared species are indexed
by 1, 2, . . . , S12. In Assemblage 1, let U denote the to-
tal relative abundances associated with the shared species,
U = p1 + p2 + · · · + pS12 . Likewise, in Assemblage 2, let V de-
note the total relative abundances of the shared species, V =
π1 + π2 + · · · + πS12 . Then Table 3 for incidence-type indices
can be generalized to Table 4 for abundance-type indices.

As we construct the class of incidence-based indices from
Tables 1 and 3, now we can formulate the corresponding
abundance-based indices from Tables 1 and 4. By replacing
a, b, and c in Table 2 with UV, U(1 − V ), and V (1 − U), we
obtain abundance-based indices as given in the last column
of Table 2. For example, the Jaccard abundance-type index is
UV/(U + V − UV ) and the Sørensen abundance-type index
becomes 2UV/(U + V ). Similarly for the other indices, their

Table 4
Probabilities for individual-based counts

Select any individual from
Assemblage 2

Shared Nonshared

Select any Shared A = U × V B = U × (1 − V )
individual from Nonshared C = (1 − U) –
Assemblage 1 ×V



364 Biometrics, June 2006

corresponding abundance-based indices are directly formu-
lated in Table 2. Since U and V represent the total abundances
of the shared species in Assemblages 1 and 2, respectively, it is
clear that all abundance indices in Table 2 yield a maximum
value of 1 when all species are shared (i.e., no unique species
in both assemblages; U = V = 1). Also, all indices tend to a
minimum value of 0 for disjoint assemblages (i.e., no shared
species in both assemblages); e.g., for the Jaccard abundance
index, we have UV/(U + V − UV ) = 1/{(1/V ) + (1/U) − 1},
which tends to 0 if both U and V tend to 0 (i.e., disjoint
assemblages).

From Table 2, we can see that there is a nice link be-
tween the proposed abundance index (in terms of U, V, and
UV) and the incidence form (in terms of S1, S2, S12). That
is, our abundance index is directly obtained by replacing S1,
S2, S12, respectively, by U, V, and UV. In the special case of
equal abundance, that is, p1 = p2 = · · · = pS1 = 1/S1 and π1 =
π2 = · · · = πS2 = 1/S2, then U = p1 + p2 + · · · + pS12 = S12/S1

and V = π1 + π2 + · · · + πS12 = S12/S2. It is clear that each
cell in Table 4 is a generalization of that in Table 3. Conse-
quently, in the special case of equal abundance, our abundance
indices are reduced to their corresponding incidence indices.

3.2 Estimation When There Are Unseen Species
Assume that a random sample of n individuals (Sample 1)
is taken from Assemblage 1 and a random sample of m in-
dividuals (Sample 2) is taken from Assemblage 2. Samples
are taken with replacement. Denote the species frequencies
in the samples by (X1,X2, . . . ,XS1) and (Y1, Y2, . . . , YS2), re-
spectively. Assume that D1 and D2 species are respectively
observed in samples 1 and 2. (If a species is missing from a
sample, then Xi or Yi will be zero.) Thus, the pair frequencies
for the S12 shared species are (X1, Y1)(X2, Y2) . . . (XS12 , YS12).
Assume that D12 of the S12 shared species are actually ob-
served, and their frequencies are the first D12 pairs. Note that
an additional S12 − D12 species are shared by the two assem-
blages, but absent from one or both of the samples. We refer
to these as unseen shared species, even if present in only one
of the two samples.

Recall that U and V denote, respectively, the total rel-
ative abundances associated with the shared species in As-
semblages 1 and 2. A direct approach to obtaining an es-
timator that is unadjusted for the effect of unseen shared
species, for any index, is to replace U and V, respectively,
by Ũ =

∑D12
i=1 Xi/n and Ṽ =

∑D12
i=1 Yi/m (i.e., replace each

species abundance by its sample abundance). Because E(Ũ) =∑S12
i=1 pi{1 − (1 − πi)

m} <
∑S12

i=1 pi = U , it implies that Ũ un-

derestimates U. Similarly Ṽ underestimates V. Therefore, it
follows from the well-known multivariate Jensen’s inequality
that the bias of an unadjusted estimator for any index listed
in the last column of Table 2 is always negative, as will also
be seen in the simulations. This underestimation arises be-
cause unseen shared species are ignored. Correction for the
effect of unseen shared species leads to significant bias reduc-
tion when there are unseen shared species in samples. The
key idea for bias correction is based on the boundary-mode
Laplace approximation formula (Erkanli, 1994, 1997; Goutis
and Casella, 1999). It turns out that we can use the frequen-
cies of observed rare shared species to obtain an appropriate
adjustment term for U and V to account for the effect of un-

seen shared species and thus remove the first-order bias. The
assumptions and conclusion are outlined as follows. (A sketch
of the detailed derivation is given on the Biometrics website.)

We assume that the number of species in each assemblage
is finite and the discovery probabilities are assumed to be
bounded below. Otherwise, if there were infinitely many un-
detectable or “invisible” shared species in hyper-diverse as-
semblages, then it would be impossible to obtain an accurate
estimate of similarity indices. The bounded-below assumption
is critical for dealing with heterogeneous assemblages; see,
e.g., Huggins (2001, 2002). Let f1+ =

∑D12
i=1 I(Xi =1, Yi ≥ 1)

be the observed number of shared species that occur once
(Xi =1) in Sample 1 (these species must be present in Sam-
ple 2, but may have any frequency). Now, let f 2+ be the ob-
served number of shared species that occur twice (Xi = 2)
in Sample 1. Similarly, we define f+1 and f+2 to be the ob-
served number of shared species that occur, respectively, once
(Yi = 1) and twice (Yi = 2) in Sample 2. Then the proposed
estimator for U is

Û =

D12∑
i=1

Xi

n
+

(m− 1)

m

f+1

2f+2

D12∑
i=1

Xi

n
I(Yi = 1). (1)

Note that the first term in the right-hand side of equa-
tion (1) is Ũ , the unadjusted estimator; the second term cor-
rects for the effect of unseen shared species. Similarly, we have

V̂ =

D12∑
i=1

Yi

m
+

(n− 1)

n

f1+

2f2+

D12∑
i=1

Yi

m
I(Xi = 1). (2)

When f+2 = 0 or f 2+ = 0, we suggest replacing f+2 and f 2+

by f+2 + 1 and f 2+ + 1, respectively. If the value of Û or V̂
is greater than 1 (which occasionally happens for highly over-
lapped communities), then it is replaced by 1. Replacing U
and V in Table 2 by estimators Û and V̂ given in (1) and (2),
we obtain our adjusted estimators for all indices. For example,
the proposed abundance-based Jaccard and Sørensen estima-
tors are, respectively, Û V̂/(Û + V̂ − Û V̂ ) and 2Û V̂/(Û + V̂ ).
The variances for the adjusted estimators are derived by
a bootstrap method; details are given on the Biometrics
website.

4. Pros and Cons of Some Indices
4.1 Incidence-Based Indices
When species inventories or surveys are nearly complete,
incidence-based indices provide simple and intuitive overlap
measures to compare two species lists, disregarding species
abundance. Only species presence/absence data are required.
When sample size is not sufficiently large to observe all
species, it is well known (e.g., Wolda, 1981, 1983; Magurran,
2004, p. 175) that all incidence-based indices are biased and
the biases are likely to be substantial for assemblages with
high species richness and a large fraction of rare species. The
widely used Jaccard and Sørensen indices are generally biased
downward (e.g., Fisher, 1999 and this study). These indices
become upward biased for the following situations: (i) shared
species are relatively abundant whereas endemic species are
rare; and (ii) one assemblage contains only a few or no en-
demic species but the other assemblage contains many rare
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endemic species. Until now, we have found only one case of
upward bias in our tested data sets.

One might suppose that, as long as the sampling fractions
(the proportion of the total number of individuals present in
an assemblage that actually appear in the samples) for two as-
semblages are equal, the biases associated with all incidence-
based indices should be negligible. This supposition is not
true, however. Theoretical bias formulas will be given below
to justify our statement. We will also show by simulation (Sec-
tion 6) that the biases do not diminish under equal sampling
fractions. One might also conjecture that all incidence indices
should work satisfactorily for the special case of equal abun-
dance. This conjecture is not true, either. For example, the
Sørensen index based on a sample is 2D12/(D1 + D2); see
Table 2 and Section 3 for notation. Equal abundance means
that p1 = p2 = · · · = pS1 ≡ p and π1 = π2 = · · · = πS2 ≡ π. If
we approximate the expectation of a ratio by the ratio of ex-
pectations and ignore smaller-order terms, then

E
(

2D12

D1 + D2

)
≈ 2E(D12)

E(D1) + E(D2)

=
2S12{1 − (1 − p)n}{1 − (1 − π)m}

S1{1 − (1 − p)n} + S2{1 − (1 − π)m} <
2S12

S1 + S2
.

The last inequality can be easily checked. Therefore, the
Sørensen index underestimates even in the simplest case when
all species are equally abundant. The bias cannot be reduced
or removed for equal sampling fractions, neither for equal sam-
ple sizes nor for equal effort. Similarly, the Jaccard index and
all the other five incidence indices listed in Table 2 exhibit
the same behavior in the equal-abundance case.

For general heterogeneous cases, the bias formula for the
Sørensen index is

Bias ≈
2

S12∑
i=1

{
1 − (1 − pi)

n
}{

1 − (1 − πi)
m

}
S1∑
i=1

{
1 − (1 − pi)

n
}

+

S2∑
i=1

{
1 − (1 − πi)

m
}

− 2S12

S1 + S2
. (3)

It can be shown that this bias is negative under several species
abundance models listed by Magurran (2004, Table 2.1). Not
only the bias but also the variance formulas depend on species
abundances (not incidence alone) and on the true index; thus,
it is impossible to correct for the bias or to estimate errors
without using abundance data. Even when abundance data
are available, finding accurate estimators for the bias in (3)
and variance is not easy. Except for the Lennon et al. (2001)
index, the bias formulas for the other incidence-based indices
in Table 2 can be analogously derived for heterogeneous cases
and similar difficulty arises in assessing variances. The theo-
retical bias for the Lennon et al. (2001) index is analytically
intractable. This index is not meaningful when there are no
unique species in one of the two samples, because it always
yields a maximum value of 1 no matter how many shared
species are observed.

4.2 Abundance-Based Indices
The widely used Morisita-type abundance-based index
(Krebs, 1999, p. 390) for a complete assemblage can be writ-
ten as the following function of discovery probabilities:

CM =

S12∑
i=1

piπi

1

2

(
S1∑
i=1

p2
i +

S2∑
i=1

π2
i

) . (4)

Morisita’s original index based on pair frequency data (Krebs,
1999, p. 391) has been found to be nearly independent of sam-
ple size (e.g., Wolda, 1981), but it may exceed 1 and in such
cases may lead to misleading interpretation. For example, two
identical communities might yield an index value less than 1
whereas two different communities might result in a value
greater than 1. To eliminate this drawback, Horn (1966) pro-
posed the following Morisita–Horn index:

ĈMH =

2

D12∑
i=1

Xi

n

Yi

m

D1∑
i=1

(
Xi

n

)2

+

D2∑
i=1

(
Yi

m

)2
, (5)

which is always between 0 and 1 with the maximum value
attained by two identical communities.

The index in (4) has an important probabilistic interpre-
tation. Note that if one individual is selected randomly from
each assemblage, then the probability that the two selected
individuals belong to the same shared species is

∑
piπi, the

numerator in (4). The denominator in (4) represents a nor-
malized constant, which is the average of two such prob-
abilities for two individuals drawn from the same assem-
blages. In contrast, our probabilistic approach (see Tables
3 and 4) is concerned with a (normalized) probability that
both individuals, one from each of the two assemblages, be-
long to shared species (not necessarily to the same shared
species).

Our extensive simulation has shown that the Morisita–
Horn index systematically underestimates similarity (see also
Ricklefs and Lau, 1980), whereas the Morisita original index
slightly overestimates it. When sample sizes are sufficiently
large, both indices generally perform satisfactorily. Never-
theless, a major drawback for the Morisita-type index (for
many studies) is that it is highly sensitive to the most abun-
dant species (Wolda, 1983; Magurran, 2004, p. 174). This is
intuitively understandable from the preceding probabilistic
interpretation because the most abundant species would con-
tribute the major part of the probability that two randomly
selected individuals belong to the same species. As a result, in
a hyper-diverse assemblage, the index is dominated by a few
abundant species and the relatively rare species (even if there
are many of them) have little effect. In this case, while being
relatively insensitive to compositional differences due to rarer
species, the index is likely to be resistant to undersampling,
because the influential abundant species are always present in
samples.
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Denote the total number of individuals for each species
in the two complete assemblages by (N1, N2, . . . , NS1) and
(M1,M2, . . . ,MS2), respectively. The Bray–Curtis index is

CBC =

2

S12∑
i=1

min(Ni,Mi)

S1∑
i=1

Ni +

S2∑
i=1

Mi

(6)

and the sample version is

ĈBC =

2

D12∑
i=1

min(Xi, Yi)

D1∑
i=1

Xi +

D2∑
i=1

Yi

. (7)

This index is also called the “quantitative Sørensen index”
because it reduces to the Sørensen incidence index if for all i,
Ni = Mi = 1. From (6), it is interesting to note that there is
a probabilistic interpretation for 0.5CBC as follows. Assume
that all

∑
Ni +

∑
Mi individuals from the two complete as-

semblages are pooled and one individual is randomly drawn
from the pool. The index 0.5CBC is exactly the probability
that this individual belongs to a shared species and is from
the assemblage in which this species has fewer individuals
than in the other assemblage. When the index is applied to
samples, the observed number of individuals for any species de-
pends on the sampling fraction, so this index becomes mean-
ingless for unequal sampling fraction cases. To further justify
our claim, assume the sampling fraction is, respectively, α
and β in Assemblages 1 and 2. Then we have E(Xi ) = αNi

and E(Yi ) = βMi . Comparing (6) and (7), it is readily seen
that the sample Bray–Curtis makes sense only if the same
sampling fractions are equal. Otherwise, the index performs
erratically. Consider an extreme case in which the two as-
semblages are nearly identical (i.e., Ni ≈ Mi for all i), leading
to ĈBC = 2min(α, β)/(α + β), which is surprisingly dependent
only on sampling fractions, not on data at all. In general, this
index has very large bias under unequal sampling fractions,
as will be shown in simulations. For these reasons, from a sta-
tistical viewpoint, this index cannot be recommended unless
sampling fractions are known to be equal. Given the unlikely
prospect of establishing such conditions for field data, the
Bray–Curtis index seems rarely to be an acceptable choice
for such data. Note that equalizing the number of individu-
als in two or more samples by rarefaction before calculating
the Bray–Curtis index, as suggested by Horner-Devine et al.
(2004), does not equalize sampling fractions unless the as-
semblages themselves can be reasonably assumed to have the
same total number of individuals susceptible to sampling.

5. Application to Rain Forest Succession Data
We apply our proposed indices and estimators to compare four
second-growth forests and two old-growth forests in Costa
Rica based on abundance data collected in 2000. The com-
plete names, acronyms, and ages of the six forests are shown in
Table 5, in which the observed species richness along with the
corresponding number of individuals is also given. The sum-

Table 5
The observed species richness in four second-growth and two
old-growth sites. Forest names: Lindero Sur (LSUR), Lindero

El Peje (LEP), Tirimbina (TIR), and Cuatro Rios (CR)
(numbers in parentheses denote the number

of individuals).

Canopy
Site Age Seedlings Saplings trees

LSUR second growth 15 45 (421) 68 (1917) 12 (88)
TIR second growth 18 49 (817) 74 (1003) 16 (99)
LEP second growth 23 47 (551) 67 (1199) 24 (169)
CR second growth 28 57 (699) 91 (1297) 33 (211)
LSUR old growth >200 47 (300) 101 (508) 37 (119)
LEP old growth >200 69 (557) 102 (729) 43 (111)

mary data in Table 5 include records for canopy tree species
only; shrubs, treelets, and midstory trees were excluded.

As briefly described in the Introduction, the aim is to com-
pare compositional similarity between different tree sizes as
measured by diameter at breast height (DBH). Three sizes
are considered: trees (≥25 cm in DBH), saplings (1–5 cm in
DBH), and seedlings (>20 cm in height, but <1 cm in DBH).
All trees and saplings were marked and measured for diame-
ter within a 1 ha plot in each forest. Seedlings were sampled
in 144 1 × 5 m quadrats within the 1 ha plot, for a total area
sampled of 0.072 ha. Table 5 shows that young sites have
fewer canopy tree species per hectare and fewer tree sapling
species compared to old-growth forests, but differences in tree
seedling species richness were less pronounced. We focus here
on comparing species composition between trees and saplings
(or seedlings). Table 6 shows the paired abundance counts for
the LEP old-growth site only. Data for the other five sites are
given on the Biometrics website.

Various similarity indices/estimates between seedlings and
trees are shown in Table 7 and the corresponding results be-
tween saplings and trees are given in Table 8. In each table, we
present three incidence-based indices (classic Jaccard, classic
Sørensen, and Lennon et al.) and six abundance-based in-
dices (Bray–Curtis, Morisita–Horn, unadjusted and adjusted
Jaccard, and unadjusted and adjusted Sørensen). Except for
our proposed adjusted indices, all the others ignore the effect
of missing species. The estimated SEs based on 200 boot-
strap replications are shown only for the adjusted abundance
indices.

The classic Jaccard and Sørensen indices show low composi-
tional similarity between trees and seedlings (Table 7) for the
four second-growth forests compared to tree–seedling similar-
ity for old-growth forests, with similarity decreasing slightly
with forest age among the four second-growth forests. Simi-
larity between trees and saplings (Table 8), in contrast, show
gradual increases from the youngest forest to the older second-
growth forest, continuing the trend to old-growth forests.

In both tables, the Lennon et al. (2001) index gener-
ally (except for the CR site in Table 8) decreases across
the four second-growth forests. The youngest forest has the
highest index. In all sites, there are always fewer unshared
species among the trees than among individuals of smaller
size classes. The Lennon et al. (2001) index thus becomes the
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Table 6
Abundances of shared and unique species in the LEP old-growth
(>200 years) site (69 seedling species, 102 sapling species, and

43 tree species)

(a) Abundance vectors for seedlings versus trees
26 shared Xi 17 121 16 6 6 1 4 17 5 1 7 7

species Yi 7 31 6 2 3 1 2 3 2 2 4 1
20 5 3 1 1 3 1 2 3 1 2 1
2 2 3 2 2 1 1 1 1 1 1 3
1 3
1 1

43 unique Xi 14 10 5 73 2 11 4 9 2 4 6 17
seedlings 6 2 2 1 1 29 3 1 2 1 7 5

1 1 1 5 3 3 1 1 1 1 1 1
54 3 3 2 1 1 1

17 unique Yi 5 1 1 1 3 1 1 1 1 2 2 1
trees 1 1 1 1 1

(b) Abundance vectors for saplings versus trees
32 shared Xi 48 37 30 23 21 19 17 17 16 15 14 12

species Yi 7 31 6 2 3 1 2 3 2 2 4 5
11 11 9 9 8 7 6 5 5 5 4 4
1 2 1 2 1 3 2 1 2 1 1 1
2 2 2 2 1 1 1 1
3 1 1 1 1 1 1 1

70 unique Xi 38 27 24 19 19 16 16 15 14 13 9 8
saplings 8 8 8 7 7 6 6 5 5 5 4 4

4 4 3 3 3 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

11 unique Yi 2 2 1 1 1 1 1 1 3 1 1
trees

ratio of shared species richness to tree species richness. Among
the four secondary forests, this ratio decreases almost mono-
tonically with forest age. The number/proportion of unshared
seedlings or saplings is completely ignored, though it is part
of the hypothesis about succession.

Table 7
Various similarity indices/estimates for seedlings versus trees (SE are given only for the adjusted

abundance-based Jaccard and Sørensen indices)

Second-growth forest Old-growth forest

LSUR TIR LEP CR LSUR LEP
Index (15 years) (18 years) (23 years) (28 years) (>200 years) (>200 years)

Incidence based
Jaccard 0.19 0.16 0.16 0.14 0.25 0.30
Sørensen 0.32 0.28 0.28 0.24 0.40 0.46
Lennon et al. (2001) 0.75 0.56 0.42 0.33 0.46 0.60

Abundance based
Bray–Curtis 0.13 0.11 0.16 0.12 0.40 0.24
Morisita–Horn 0.19 0.34 0.28 0.53 0.89 0.74
Unadjusted Jaccard 0.42 0.29 0.20 0.26 0.45 0.40
Adjusted Jaccard 0.45 0.37 0.22 0.44 0.50 0.48
(SE) (0.18) (0.19) (0.11) (0.23) (0.16) (0.14)
Unadjusted Sørensen 0.59 0.44 0.33 0.41 0.62 0.58
Adjusted Sørensen 0.62 0.54 0.36 0.61 0.66 0.65
(SE) (0.19) (0.19) (0.14) (0.22) (0.15) (0.13)

The Bray–Curtis index for the four secondary forests shows
little successional trend. From our arguments in Section 4
regarding the Bray–Curtis index, we have reservations about
the use of this index here because the sampling fractions are
unknown for these data.

For comparing seedlings versus trees (Table 7), the
Morisita–Horn index yields very high similarity estimates
(0.89 and 0.74) for the two old-growth forests because they
are both dominated by a single, very abundant, shared species
(Pentaclethra macroloba, the second species in the shared list
in Table 6a). For example, in the LSUR old-growth site, the
relative seedling abundance for this shared species is 36%
and for trees is 48%, i.e., nearly half of the tree individu-
als belong to this species. Similarly, in the LEP old-growth
site, the relative abundance for seedlings of the same species
is 22% and for trees is 28%. As discussed in Section 4, the
Morisita–Horn index is highly dependent on this highly domi-
nant species. In contrast, between saplings and trees (Table 8)
in the LSUR and LEP old-growth sites, no such dominant
species exist, so the Morisita–Horn index drops, respectively,
to 0.17 and 0.45. None of the three incidence-based nor either
of the two previously published abundance-based indices (the
Bray–Curtis and Morisita–Horn) exhibit the expected trend.

For our abundance-based Jaccard and Sørensen indices, the
adjusted estimate is always higher than the corresponding
unadjusted one because of the presence in sample pairs of
observed, shared, rare species. In the old-growth sites, more
data and more shared information are available than for the
second-growth sites, so the adjusted effects are relatively more
precise, as reflected by the smaller estimated SEs. For the sec-
ondary forests, due to less shared information, the estimated
SEs are relatively large and the adjusted effects in some cases
are less precise, especially in the CR site in Table 7 and the
TIR site in Table 8. In these two sites, we note f 2+ = f+2 =
0. More discussion is given in Section 7.

Except for the adjusted estimates in the TIR site in Table 8,
both the unadjusted and adjusted Jaccard and Sørensen in-
dices generally follow the expected pattern across the six for-
est stands. Compositional similarity between seedling and tree
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Table 8
Various similarity indices/estimates for saplings versus trees (SEs are given only for the adjusted

abundance-based Jaccard and Sørensen indices)

Second-growth forest Old-growth forest

LSUR TIR LEP CR LSUR LEP
Index (15 years) (18 years) (23 years) (28 years) (>200 years) (>200 years)

Incidence based
Jaccard 0.14 0.15 0.20 0.22 0.27 0.28
Sørensen 0.25 0.27 0.33 0.35 0.42 0.44
Lennon et al. (2001) 0.83 0.75 0.63 0.67 0.78 0.74

Abundance based
Bray–Curtis 0.07 0.11 0.09 0.10 0.20 0.23
Morisita–Horn 0.19 0.14 0.15 0.30 0.17 0.45
Unadjusted Jaccard 0.39 0.20 0.17 0.24 0.33 0.46
Adjusted Jaccard 0.41 0.49 0.20 0.40 0.45 0.55
(SE) (0.18) (0.27) (0.13) (0.21) (0.14) (0.11)
Unadjusted Sørensen 0.56 0.33 0.29 0.38 0.50 0.63
Adjusted Sørensen 0.58 0.66 0.34 0.57 0.62 0.71
(SE) (0.20) (0.24) (0.16) (0.20) (0.13) (0.09)

assemblages and between sapling and tree assemblages was
initially high in the youngest stand. As the forest matures,
tree seedling and sapling pools become enriched by shade-
tolerant species not represented as canopy trees, resulting
in a decreasing compositional similarity between trees and
younger stages that reached a minimum in the 23-year-old
LEP stand. This minimum similarity represents a point in
forest succession of maximum recruitment limitation for both
seedlings and saplings. In the oldest second-growth plot, CR,
our indices began to increase, reflecting the maturity and re-
production of shade-tolerant species. For comparing seedlings
and trees (Table 7), the LSUR old-growth stand has the max-
imum similarity among the six forests, whereas the LEP old-
growth attains the maximum similarity between saplings and
trees (Table 8).

Based on the proposed adjusted estimates we find, except
for the TIR site in Table 8, that old-growth forests have higher
Jaccard and Sørensen similarity between trees and younger
stages than any of the secondary sites. The compositional
similarity in the 28-year-old second-growth forests is compa-
rable to that observed within a 15-year-old second-growth for-
est; both are slightly less than those for old-growth sites but
higher than those of intermediate ages.

6. Simulation
A simulation experiment was conducted to investigate the
performance of the proposed indices and to compare them
with the existing ones. We selected individuals with replace-
ment from the abundance vectors. Table 6 shows the vec-
tors for the LEP old-growth site. The abundance records are
regarded as complete assemblages for the purposes of these
simulations. We carried out a total of 12 simulation studies
(seedlings versus trees and saplings versus trees for each of the
six forests). The conclusions based on all studies are generally
consistent and thus only results of seedlings versus trees for a
site with more data (the LEP old-growth forest) are presented
in Table 9.

From Table 5, in the LEP old-growth site, there were
69 seedling species (represented by 557 individuals) and 43
tree species (represented by 111 individuals). There were
26 species in common between seedlings and trees. We re-
port here 10 combinations of sampling fraction. The first
five are equal sampling-fraction cases (10% versus 10%, 30%
versus 30%, . . . , 90% versus 90%) and the others are un-
equal sampling-fraction cases (10% versus 60%, 20% versus
70%, . . . , 50% versus 100%). All subsampling was done by
selecting individuals with replacement. For example, in the
case of 10% versus 10%, we randomly selected 56 individuals
(557 × 10% = 56) from the seedling abundances and 11 indi-
viduals (111 × 10% = 11) from the tree abundances. Sim-
ilarly for the unequal sampling fraction 50% versus 100%
for comparing seedlings versus trees, we randomly selected
279 individuals (557 × 50% = 279) from the seedling abun-
dances and 111 individuals (111 × 100% = 111) from the tree
abundances. In each case, the two sets of selected individuals
were then classified by species identity.

For each fixed sampling fraction, 5000 simulated sets
of sample data were generated. Then for each simulated
set, we calculated three incidence-based indices (Jaccard,
Sørensen, and Lennon et al.) and six abundance-based indices
(Bray–Curtis, Morisita–Horn, and unadjusted and adjusted
Jaccard and Sørensen). Because each index is designed to
measure different aspects of “similarity” and each has its
own true value, comparison of the absolute magnitude un-
der some traditional comparison criteria (bias, variance, and
mean squared error) is statistically and biologically meaning-
less. Also, as will be discussed later, most indices are biased,
thus comparison based on sample coefficient of variation is not
statistically valid either. In this article, we adopt a percentage
relative bias (relative to each true value) as our comparison
criterion.

For each index/estimate, the average percentage of relative
bias over 5000 simulation trials was calculated and given in
Table 9. Also, the averages of the observed number of seedling,
tree species, and the shared species are also shown in the
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Table 9
Percentages (%) of average relative bias over 5000 simulation trials generated from the LEP old-growth data of seedlings versus
trees (the two assemblages include 69 seedlings, 43 trees, and 26 shared species; the three numbers under each fraction denote

the average of observed saplings, trees, and shared species in samples)

Sampling fraction

True 10% versus 10% 30% versus 30% 50% versus 50% 70% versus 70% 90% versus 90%
Index value (23, 8, 3) (40, 18, 8) (48, 24, 12) (54, 29, 15) (57, 32, 17)

Incidence based
Jaccard 0.30 −63.6 −44.0 −31.7 −24.1 −19.0
Sørensen 0.46 −58.0 −38.0 −26.6 −19.8 −15.5
Lennon et al. (2001) 0.60 −36.0 −21.7 −15.0 −11.2 −8.8

Abundance based
Bray–Curtis 0.24 −35.3 −20.4 −14.0 −11.2 −9.4
Morisita–Horn 0.74 −37.7 −16.3 −10.3 −7.3 −5.4
Unadjusted Jaccard 0.40 −47.6 −28.3 −18.9 −13.5 −10.2
Adjusted Jaccard 0.40 −30.2 0.6 3.9 3.7 2.7
Unadjusted Sørensen 0.58 −40.1 −22.3 −14.4 −10.1 −7.6
Adjusted Sørensen 0.58 −26.1 −1.3 1.7 2.0 1.6

Sampling fraction

True 10% versus 60% 20% versus 70% 30% versus 80% 40% versus 90% 50% versus 100%
Index value (23, 27, 7) (33, 29, 10) (40, 30, 13) (45, 32, 14) (48, 33, 16)

Incidence based
Jaccard 0.30 −42.7 −32.3 −26.4 −22.5 −19.6
Sørensen 0.46 −36.9 −27.2 −21.9 −18.5 −16.0
Lennon et al. (2001) 0.60 −47.1 −38.9 −30.1 −24.1 −20.1

Abundance based
Bray–Curtis 0.24 38.3 58.7 51.8 44.8 38.6
Morisita–Horn 0.74 −15.1 −10.1 −8.3 −7.0 −6.4
Unadjusted Jaccard 0.40 −29.1 −21.4 −17.2 −14.2 −12.1
Adjusted Jaccard 0.40 −5.3 0.0 1.4 2.2 2.6
Unadjusted Sørensen 0.58 −23.0 −16.5 −13.1 −10.7 −9.0
Adjusted Sørensen 0.58 −5.3 −0.9 0.3 1.0 1.4

same table. Note that our sampling was conducted with re-
placement, so there were some unseen species even in the case
of 100% sampling fraction. For example, in the case of 100%
fraction for trees (the last case in Table 9), there were, on av-
erage, only 33 tree species observed, out of 43 species in the
sampling pool.

Based on Table 9 and on unreported simulation results for
the other five sites, we summarize the following findings:

1. In the most severe undersampling case (10% versus 10%),
all indices perform badly due to sparse information, as
anticipated. The performance of each index improves
when the sampling fraction is increased.

2. We confirmed previous findings that the three incidence-
based indices typically underestimate the true values, es-
pecially for smaller sample sizes for which more species
were missed in samples. Although the magnitude of bi-
ases decreases as more species are observed, it is clear
that an equal-sampling scheme does not eliminate biases,
as indicated in Section 4.

3. The Bray–Curtis index performs well when sampling
fractions are equal, as the theory predicts in Section 4.
However, this index exhibits unreasonably large positive
biases when sampling fractions are not equal. It is sug-
gested that this index be used with caution.

4. The results are consistent with the conclusion of Ricklefs
and Lau (1980) that the Morisita–Horn index is nega-

tively biased by undersampling. Setting aside our ad-
justed estimators, we see that this index is the least sensi-
tive to sample size and performs well in terms of relative
biases. Its general performance is superior to our unad-
justed indices (at the expense of insensitivity to rarer
species), but inferior to the adjusted ones.

5. In all cases, the adjustment for both Jaccard and
Sørensen indices significantly reduces the bias of the cor-
responding unadjusted ones, especially for smaller sam-
pling fractions. The improvement is evident for all sam-
pling fractions. Except for the 10% versus 10% case, the
adjusted estimates are generally resistant to undersam-
pling as the relative biases are quite stable for all the
other cases.

6. The two adjusted estimators on average have low relative
biases. They are negatively biased in severe undersam-
pling situations, whereas they are slightly positively bi-
ased as data improve. The adjusted Sørensen index tends
to have smaller relative bias than the adjusted Jaccard
index.

7. Concluding Remarks and Discussion
We have presented a class of abundance-based indices (in
Table 2) based on a probabilistic approach. For these indices,
estimators that adjust for the effect of unseen shared species
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are proposed. Simulation results have generally shown that
the adjustment is essential and significantly reduces bias as-
sociated with the corresponding unadjusted index when there
is a large proportion of unseen shared species in samples, as
in the tropical successional vegetation data set. Although we
specifically deal with the selected indices listed in Table 2, our
approach can be directly applied to generalize any symmet-
ric and homogeneous incidence-based index to an abundance-
based counterpart.

We remark that sufficient shared information is required
to make a stable adjustment. How large should the samples
be to provide sufficient information? Our experiences suggest
that (1) the data should have at least 10 shared species and
(2) there should be at least one shared species that occurs
twice in one assemblage (i.e., data with f 2+ = f+2 = 0 would
generally lead to unstable estimates as these two statistics ap-
pear in the denominators of the adjusted effects; see equations
(1) and (2)). Otherwise, the effect of unseen species cannot
be accurately estimated and more data should be collected.

The advantages and disadvantages of some existing indices
have also been briefly discussed in this article (Section 4).
We emphasize that each index is derived from different the-
oretical justifications and each measures different aspects of
assemblages. The incidence-based indices are useful for sim-
ply comparing species lists and are valid when samples are
nearly complete. A simple stopping rule for a complete census
is that all observed species occur at least twice (Colwell and
Coddington, 1994). However, this requires more information
than presence/absence only. For incomplete surveys, the in-
cidence indices are typically biased downward. Accurate bias
correction and variance assessment are generally impossible
based on incidence data alone. Contrary to one’s expectation,
biases exist even under an equal-sampling scheme, under equal
sampling effort, or for equal-abundance assemblages.

The Morisita-type and Bray–Curtis indices focus on com-
paring abundances, species by species, from the probabilistic
interpretations provided in Section 4. The Morisita–Horn in-
dex has the advantage that it is not strongly sensitive to
species richness and sample sizes. The Bray–Curtis index be-
haves satisfactorily for equal-sampling situations, but this in-
dex is not statistically meaningful in unequal-sampling cases.
These two abundance-based indices primarily measure sim-
ilarity in the composition of dominant species, so they are
unavoidably strongly affected by a few dominant species and
actually ignore the effect of rare species. Our proposed abun-
dance indices are formulated by pooling shared abundances
and are, thus, less likely to be dominated by particular species,
but detailed species by species composition is not accounted
for. We recommend that biologists consider carefully what it
is that they mean by “similarity” or “overlap” and select an
index accordingly, taking into account the nature and limita-
tions of their data.

In this article, our estimation procedure for any abundance-
based index is based on abundance data from each assem-
blage. With slight modification in model formulation and
arguments, our procedure can be extended to deal with repli-
cated incidence data. Assume that we take a set of repli-
cated incidence samples from each assemblage. By replacing
abundance frequencies and sample size by incidence frequen-
cies and the number of replicated samples, generally parallel

derivations yield the same types of estimators as those pre-
sented in this article (Section 3.2). Details are provided in the
ecological counterpart paper (Chao et al., 2005).

The new similarity index estimators presented in this ar-
ticle (and their bootstrap variance estimators) are included
in Version 7.5 of EstimateS (Colwell, 1994–2005), and in pro-
gram SPADE (Species Prediction And Diversity Estimation);
see Chao and Shen (2003–2005).
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