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Words from the Editor

Welcome to the first edition of Paradox for 2010. This edition is packed with
useful information and interesting maths, to keep you entertained and up-to-
date on what’s happening in MUMS this semester.

For those interested in taking part in the infamous MUMS Puzzle Hunt, this
edition features a useful introductory guide. The Hunt can be slightly in-
tractable for those who are uninitiated, so we hope that this will give you a
good start on how to attack the puzzles. And since the guide is written by the
chief organiser of this year’s Hunt, it would be wise to pay close attention to
his hints!

This edition also features a return of original comics to the Paradox line-up.
For those not old enough to remember, Paradox has twice had resident car-
toonist on its books, first with the adventures of Paradox Kid (1999 – 2001) and
later with the adventures of Knot Man (2002 – 2004). These can be found on
the Paradox archive on the MUMS website, and are both well worth checking
out. Now another artist has risen to the challenge of these illustrious fore-
bears, with an as-yet-unnamed series of maths-related comics. We wish him
luck, and hope he keeps the comics coming.

Finally, Paradox would like to re-iterate that it is a magazine run for maths
students, by maths students. We encourage contributions from all our read-
ers, no matter how large or small. If you have recently heard a good maths
joke (they all are), seen an interesting article about maths in the news, or have
anything else to tell us, please drop all contributions into the Paradox drop-
box, just inside the door to the MUMS room.

So whether you’re a first year, a final year, a post-grad, or even a professor
checking up on what the young ones are up to these days, and whether you are
interested in how maths can save your life from monsters, or want to find out
how to get (square) roots, Paradox hopes you enjoy this edition.

— Stephen Muirhead
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Words from the President

Once again I’ve been ordered to write some President’s Words: ‘just write
something random like you always do’. Something random eh? Using my
statistical package of choice R, I generated a random number between 0 and
100 and got 56. Now, using my ‘encyclopedia’ of choice, we discover many im-
portant facts about this number. Rather amazingly I managed to get a number
that is the sum of six consecutive primes: (3 + 5 + 7 + 11 + 13 + 17) = 56. But it
doesn’t stop there! Adding up the divisors of 1 through to 8 equals 56 and the
maximal determinant of an 8 x 8 matrix of zeros and ones is also 56. Something
that wasn’t listed in this ‘encyclopedia’ that I discovered purely by myself is
that 56 is also equal to 7x8. Pretty amazing eh?

I suppose I should put in a word here about our annual Puzzle Hunt, but
I’m sure many of you are already gearing up for a week of no sleep. For
those who don’t know what it is, it’s a week long event where we release
puzzles daily, and at the end of the week the solutions of these puzzles will
point towards somewhere on campus where a ‘treasure’ can be found. Did
I mention first prize is $200? Besides the all-mighty Puzzle Hunt, we’ll also
be running our weekly seminars, so please come along to those too. While
it might sound nerdy to tell your friends you’re spending Friday afternoon
listening to a dude talk about maths, trust me, some of the talks coming up
will be crackers. And you can always just lie and say you’re going to go learn
how to skateboard. . . while eating ice cream in a shark tank. Though you may
need to be a little more subtle than me.

Maths in the News:
’The fiancée formula: academics work out best time to pro-
pose’ (The Daily Mail, 27/2/2010). Based on the theory of op-
timum stopping times, a professor of probability from UNSW in
Sydney has worked out that e+0.368 (l − e) is the approximate
optimum age to propose, where e is the earliest age you would
consider getting married, and l is the latest. This balances, on
the one hand, the need to gather experience, and on the other,
the less opportunities you have if you wait too long. Professor
Dooley recognises that ‘probability isn’t the most romantic ba-
sis for a marriage’ but insists the formula ‘does seem to fit a lot
of couples, whether through accident or design.’
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The MUMS Logo

While the exact origin of the MUMS logo is shrouded in mystery, the inspi-
ration it drew on is obvious, merging as it does two of the most well-known
mathematical concepts: the symbol for infinity and the Möbius band. For the
unaware, the Möbius band is a one-sided surface which can be formed by tak-
ing a strip of paper, putting a twist in it, and gluing the ends together.

It’s unsurprising, then, that approximations of the MUMS logo turn up in a
variety of places:

from jewellery to furniture,

and from art to recycling to footwear.

But the MUMS logo also turns up in some very unlikely places. Here are just a
few places the logo has been spotted by Paradox:
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Decoration on the
Paris Métro,

a neck tattoo in
Serbia,

and a take-away
shop in Balwyn.

Paradox would like to hear about other unlikely places you’ve spotted the
MUMS logo; e-mail locations or photos to the Editor. The best ones will get
published in the next edition.

Paradox Wallpaper Challenge

Following up on the challenge set in the last edition, Paradox is pleased to
announce Quynh-Chi Nguyen as the winner of the Wallpaper Challenge and
its $20 prize. Quynh-Chi found examples of nine of the 17 possible wallpaper
groups on the Melbourne Uni campus, as follows:

Group Location on campus
pmm Brickwork on the exterior of the Chemistry building.
cmm Classic alternating style of brickwork, multiple locations.
p4g Thatched style of brickwork, multiple locations.
p2 Brickwork on the north wall of the Biology North Extension, as

well as wire meshing in multiple locations.
p4m Tiled floor in the Richard Berry building.
p1 Tiling in the ground floor café in The Spot (the new Commerce

building across University Square).
pgg Wooden parquetry in the Richard Berry Building.
p6m Covering of an air-vent in the Basement of Union House.
pm Department pigeon holes next to the Front Office in Richard

Berry building.
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Jokes and Trivia

Q: What is the physicist’s definition of a vector space?
A: Any set V satisfying the axiom that for any x in V , x has a little arrow
drawn over it.

It was mentioned on CNN recently that they had just established a new record
for the largest known prime number. They said it was four times bigger than
the previous record.

Q: Why didn’t the Romans find algebra very challenging?
A: Because X was always 10.

Combinatorists do it as many ways as they can.
Algebraists do it with multiple roots.
Topologists do it openly.
Statisticians do all the standard deviations.
Mathematical Analysts do it in π-somes: larger than threesomes and they go
on forever.

Q: What did the logician choose when offered a choice between a sausage roll
and eternal bliss in the afterlife?
A: The sausage roll! He reasoned that nothing is better than eternal bliss in the
afterlife, and a sausage roll is better than nothing.

Q: What does a mathematician call his dog?
A: Cauchy – because it leaves a residue at every pole.

A mathematician organizes a raffle in which the prize is an infinite amount of
money paid over an infinite amount of time. Of course, with the promise of
such a prize, his tickets sell like hot-cakes. When the winning ticket is drawn,
and the jubilant winner comes to claim his prize, the mathematician explains
the mode of payment: one dollar now, half a dollar next week, a third of a
dollar the week after that. . .
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An infinite crowd of mathematicians enters a bar. The first one orders a pint,
the second one a half pint, the third one a quarter pint. . . ‘I understand,’ says
the bartender, who proceeds to pour two pints.

∞

Three professors, a physicist, a chemist, and a statistician, are sitting in the
staff-tea room when the microwave suddenly catches fire.

The physicist says, ‘I know what to do! We must cool down the materials until
their temperature is lower than the ignition temperature and then the fire will
go out.’

The chemist says, ‘No! No! We must cut off the supply of oxygen so that the
fire will go out due to the lack of one of the reactants.’

While the physicist and chemist debate which course to take, they are both
alarmed to see the statistician running around the room starting other fires.
They both scream, ‘What are you doing?’ To which the statistician replies,
‘I’m trying to get an adequate sample size.’

∞

Physicist Max Born is Olivier Newton-John’s grandfather.

Euler and Copernicus both feature on the Lutheran Calendar of Saints, and
both on 24 May.

At age three Erdös could already multiply three digit numbers together in his
head.

Mathematician André Weil was the brother of philosopher Simone Weil.

Reclusive mathematician Alexander Grothendieck has not been seen in public
since 1991.

Henri Poincaré’s cousin, Raymond Poincaré, served as both Prime Minister
and President of France.



Page 10 Issue 1, 2010 Paradox

Review – Incompleteness

I met a woman once. It was at one of those interminable parties.
She remarked that all men are liars. I told her that I agreed. . . she
didn’t seem to understand the joke.

There are very few people whose work challenges the very nature of human
existence. Kurt Gödel (1906-1978), often considered the greatest logician since
Aristotle, is one such person. In demonstrating the incompleteness of ax-
iomatic systems – and hence the existence of statements that can neither be
proved nor disproved – his work places an upper limit on mankind’s capacity
for knowledge, forcing us to confront our shortcomings head-on. Yet interest-
ingly Gödel, too, was in a sense ‘incomplete’: he suffered from paranoia and
hypochondria, spent the later part of his career in isolation, and ultimately
starved himself to death.

Incompleteness (La Mama Courthouse, Carlton, 3rd – 14th March 2010) seeks to
explore the parallels between Gödel’s work and his life, at once immersing the
spectator in the realm of logic and revealing its limitations.

The striking achievement of Incompleteness is its ability to create a tangible at-
mosphere of ‘logic’, which permeates every aspect of the performance. We
open with Gödel (Stephen Phillips), alone on the stage, speaking entirely in
formal logical propositions. Departing from an initial vocabulary of {it, is,
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that, exists, assume, therefore, prove} he progresses, through assumption and
definition, to statements of increasing complexity. His movements are equally
methodical; an alternating array of boxes covers the stage, permitting only de-
liberate steps from one empty space to the next. Here we have, in visual form,
the co-existence of two separate worlds: a surface reality, and a heavily regu-
lated underworld of abstract logic, intermeshed but kept entirely separate.

These devices rapidly become claustrophobic, immediately suggestive of the
restrictiveness of purely logical thought. This plays out through our glimpses
of Gödel’s life, becoming increasingly isolated, shunned by his peers and seek-
ing refuge in his work. At one point he shares his private torments: ’I cannot
stop. I must either go back to the start, or continue onwards.’ Gödel’s so-
cial inadequacies culminate at a party, where he fumbles an explanation of the
‘Liar’s paradox’ (see quote above), humiliating both himself and the logic in
which he places so much faith.

The play concludes with Gödel’s realisation that ‘absence’, both in proof and
in life, ‘weighs heavier than presence’. With this Gödel emerges from the log-
ical underworld, stepping for the first time into the ‘surface’ reality. From
this vantage he realises that there are indeed truths that cannot be derived by
logic alone. Faced with the proposition that humanity has cried a ‘river of
tears’ Gödel proceeds to calculate: roughly 100 billion humans, living for an
average of 50 years, with the volume of a teardrop in the order of 10−7 cubic
metres. Yet his logic fails at the crucial step: it cannot explain how often, and
by implication why, the uniquely human act of shedding tears occurs.

Ultimately Incompleteness is suggesting that humanity transcends reason, and
that the complexity of human interaction is ample evidence of the ‘incomplete-
ness’ of logical thought. Yet Incompleteness does not seek to undermine the im-
portance and ongoing relevance of logic. As Gödel makes clear, ‘though some
of us can hold our breath for longer, we can all go beneath the surface’. The
caveat lies in the logical implication: that from time to time we must all come
up for air.

— Stephen Muirhead
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Paradox Comics

— Tharatorn Supasiti
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Books Every Maths Student Should Read

For this edition Paradox surveyed our learned professors and lecturers about
their favourite books on mathematics and statistics. The resulting list is eclec-
tic, comprising topics ranging from the history of mathematics to brainteasers,
mathematicians’ biographies to seminal textbooks, all of which will provide
hours of amusement. Most of these books are available for borrowing at ei-
ther the Mathematical Sciences Library, the ERC (Eastern Resource Centre) or
the Baillieu Library.

Special thanks go to Barry Hughes, Owen Jones, Jerry Koliha, Guoqi Qian,
Arun Ram and Andrew Robinson for their thoughtful contributions, and happy
reading!

Eric T Bell, Mathematics: Queen and servant of science (1951)

Regarded by some as essential reading for all students of
mathematics, this book is for those interested in a thor-
ough yet engaging story of how the field of mathematics
came to be. From early beginnings with Euclid to more re-
cent applications of mathematics, this classic is filled with
inspiring accounts of how mathematics has buttressed the
scientific and technological development of modern civili-
sation.

Lewis Carroll, Alice’s Adventures in Wonderland / Through the Looking
Glass

Accompanied by Sir John Tenniel’s iconic illustrations, Al-
ice in Wonderland is a classic novel that has enamoured
mathematicians and Common Folk alike for more than a
century. Carroll – a mathematician himself – takes the
reader through a vivid surrealist fantasy brimming with
strange characters in a nonsensical world. And while there
are scores of interpretations of the story, a 2009 article by
New Scientist explores the mathematical allusions in the
book (see Melanie Bayley, ‘Alice’s Adventures in Algebra:
Wonderland solved’, available online). Note: Tim Bur-
ton’s recent film adaptation is no substitute for reading the
book.
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Jean Dieudonné, Foundations of Modern Analysis (1969)

‘It is a book without which I could not imagine my math-
ematical education. The author is the principal founder of
the Bourbaki group, yet the book is un-Bourbaki-like.’ –
Jerry Koliha

William Feller, An Introduction to Probability Theory and its Applications
(1968)

‘Now in its third edition, reprinted in 1971 with minor cor-
rections, this book which first came out in 1950 was prob-
ably the first decent text on probability written in English.
The balance of probabilistic reasoning and analytical tech-
niques is marvellous and though specialists will regard it
as dated, and it probably is, I retain enormous affection for
it. There is a second volume, which came somewhat later
(1st edition 1966; 2nd edition 1971), which contains more
mathematical technicalities and is also excellent.’ – Barry
Hughes

George Gamow, One Two Three. . . Infinity: Facts and speculations of science
(1988)

Written in layman’s English, Gamow’s book has drawn
the curiosities of countless budding mathematicians and
physicists with its exploration of famous unsolved prob-
lems (some of which have been solved since his death) and
accessible explanations of big ideas such as ‘the size of in-
finity’.
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Martin Gardner, Wheels, Life and Other Mathematical Amusements (1983)

Filled with mathematical brainteasers, and spanning a
wide range of topics including chess and electricity, Martin
Gardner’s book is prime entertainment for those who love
engaging in thorny mental gymnastics. Perfect practice for
the MUMS Puzzle Hunt in April!

Gerd Gigerenzer, Reckoning with Risk: Learning to live with uncertainty
(2003)

‘Gigerenzer is at the forefront of statistical reasoning and
cognition. This book is about using statistical tools for
thinking in everyday life.’ - Andrew Robinson

Godfrey H Hardy, A Mathematician’s Apology (1948)

Acclaimed as ‘one of the most eloquent descriptions in our
language of the pleasure and power of mathematical in-
vention’ by the New Yorker, Hardy’s memoir is a poignant
depiction of his fading mathematical abilities at the end
of his career, and his profound passion for the field. An
inspiring book for undergraduates and practicing mathe-
maticians alike.

David Salsburg, The Lady Tasting Tea: How statistics revolutionized science
in the twentieth century (2001)

’[A] pleasant and very readable stroll through statistical
inventions and controversies of the last 100 years.’ – An-
drew Robinson
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A (Rough) Guide to Undergraduate Maths

Well, what sort of mathematician are you?

At Melbourne University, mathematics is broadly split into four fields: pure
mathematics, applied mathematics, statistics and operations research. The
question is, what’s the difference between these fields? If you’re a first year,
fresh out of high school (to whom this article is mostly targeted), there’s a
good chance that the only two fields of mathematics that you’re familiar with
are Specialist Mathematics and Mathematical Methods. Which to be quite frank
are the most useless titles for subjects ever. You might as well have called
them Maths and Harder Maths. There’s nothing particularly special or method-
ical about either. High school has hardly prepared you for the diversity and
broad utility of university mathematics. So here I’ll list just a few basic point-
ers that may help you with deciding just what sort of mathematician you are.

Pure Mathematics

Are you the sort of person who finds the elegance of mathematics attractive?
Do you enjoy proving seemingly useless but nevertheless interesting results?
If you answered yes to these questions, then pure maths may be the way for-
ward for you.

In the pure maths specialisation, more than any other, you’ll discover why
maths is regarded as an art as well as a science (though, quite possibly, only
mathematicians put it like this). Pure mathematics is about studying the un-
derlying concepts that make all maths work. And besides that, it’s just really
cool stuff.

The variety of material in the pure maths specialisation makes it particularly
interesting. You’ll find out that solving polynomials isn’t just as simple as
using the quadratic formula. In fact, you’ll even see why there is no quintic
formula. You’ll discover that a punctured torus (a donut surface with a hole
in it) is essentially the same as two circles joined at a point. Just don’t tell any
bakers that one, it may blow their minds and result in some strange looking
donuts later on. These are just tiny fragments of what you’ll learn studying
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pure maths, but just as a small warning, this specialisation is not for the faint
of heart.

Applied Mathematics

Do you really like formulae? Would you like to see how maths can be used in
the real world? And most importantly, do you really really like calculus? If the
answers to these questions are yes, then you should be looking into applied
maths.

Applied mathematics is about trying to model complicated systems and then
poking around with the inputs to see how things change under certain con-
ditions. Applied mathematics has applications in just about every field you
can think of. In the applied maths specialisation, you learn techniques and
skills that will enable you to solve certain types of equations which commonly
crop up in the real world, such as modeling river flows or how human cells
reproduce. Just be prepared for a lot of calculus.

Probability, Statistics and Stochastic Processes

You see statistics all the time. Figures, percentages and ratios are thrown up all
the time in the modern world. But do you ever wonder how meaningful these
numbers are? When you play a card game, do you ever wonder, “well that
was unlikely, but exactly how unlikely was it?” We all know that smoking is
bad for you, but how exactly do you prove this? If these are things that you’ve
wondered about, then you should be looking into probability, statistics and
stochastic processes.

In probability you’ll learn how to calculate the probability of certain events
happening, and study various distributions occurring naturally in the real
world. An important use of probability is its application to statistics and
stochastic processes. In statistics you’ll learn how to properly analyse a data
set. By creating statistical models you’ll be able to test the effects of certain
variables on others. Stochastic processes is about modeling random processes
that occur in the world. For example, you can model the number of people
who walk into a shopping centre. You can even attempt to make money by
modeling financial markets, though personally I wouldn’t recommend this off
just your undergraduate subjects.
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Discrete Mathematics and Operations Research

So we all spend plenty of time bagging our the government for being slow,
inefficient, wasteful, or more often than not all of the above. But how would
you make it better? Do you spend time thinking about how you could make
processes faster, more efficient and just better in general? If these questions
appeal to you, then you should be looking into discrete mathematics and op-
erations research.

This specialisation is all about decision making. And decision making is hard.
Just think about a can of baked beans, and the path it travels from the farm
where the original beans are grown, to your dinner plate. There’s at least a
dozen different processes that have to happen before it reaches you. Now the
question is, what’s the best way to do this? You’d want to reduce time, but also
costs, and then on top of that increase quality. All of a sudden your choices
aren’t all so clear cut. Operations research deals with these sorts of issues in
a scientific manner to help with decision making. And with society becoming
more complex, and processes becoming more numerous, there’s no doubt that
this field is important.

Now what?

So maybe I’ve given you some idea about what the different specialisation
are. The question that remains is what subjects to do. The best advice I can
give is to pick up a copy of the course advice booklet produced by the maths
department. It’s bright orange and you can pick it up from the front office
in the Richard Berry building. If you’re a first year, the choices are actually
remarkably simple.

First year subjects

In first year, maths students, regardless of your specialisation, will take a first
year mathematics and statistics package. The first year package is a good little
set of subjects that will give you an introductory glimpse into all the fields of
maths. You are then able to narrow your focus on any of the specialisations.
What you pick depends on how you did in high school. Most packages are
two subjects, one in first semester, one in second, and there’s the option of also
taking the breadth subject 800-101 Critical Thinking with Data.
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For students who did Specialist Maths, it depends on what your raw study
score was:

• ≥ 38 – take 620-157 Accelerated Mathematics 1 in semester 1 and 620-158
Accelerated Mathematics 2 in semester 2.

• ≥ 27 – take 620-155 Calculus 2 in semester 1 and 620-156 Linear Algebra
in semester 2.

• < 27 or not Specialist Maths – take 620-154 Calculus 1 before taking 620-
155 Calculus 2 and 620-156 Linear Algebra.

After first year

Once you get into second or third year you’ll need to specialise into one of
the four fields I’ve talked about above. Because I’m lazy, I’m not going to go
into all the subjects but instead refer you to the department’s course advice
booklet.

Disclaimers, advice and conclusion

As I’m sure my law student friends will tell me, I need to put in a disclaimer
thingie here. The material above is all purely my opinion, I can not stress
enough that if you are looking for course advice there are people, very friendly
and nice people even, in the Maths and Stats Learning Centre (MSLC) who
are far more qualified than yours truly to help you out with subject selection.
Understandably, some people find it easier to talk to peers, so while we will
always recommend that you speak with the MSLC, also feel free to drop into
the MUMS room in the maths building and have a chat with some of us. We’re
also very friendly and nice people!

The field of mathematics and statistics is an enormous field with an incredi-
ble variety of content. Hopefully I’ve given some people an insight into how
awesome maths is at uni, and offered some helpful advice. I’ve certainly had
no regrets doing maths at uni, and I encourage you all to do as much maths as
possible, though admittedly, I may be slightly biased.

— Han Liang Gan
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How To Get Roots and Other Things

In this digressive article we shall examine how various entities, sorted in as-
cending order of complexity, compute the humble square root function. We
start with an algorithm done by hand, suitable for a mere human being. Then,
we look at how our future masters – computers and their less-able calcula-
tor cousins – outdo us with fancy technology. Finally, we move on to the
pure mathematician, who prefers a convergent, albeit fairly useless, method to
achieve his noble goal.

Humans

Issue 1 of the 2005 edition of Paradox already describes how to find square
roots by hand (you can download it from the Paradox website, which you
have no doubt bookmarked). But why does the algorithm work? To quickly
recap, here’s an example of how one might find the square root of 2:

1. 4 1 4 2 . . .
1 2. 00 00 00 00 . . .

1
24 1 00

96
281 4 00

2 81
2824 1 19 00

1 12 96
28282 6 04 00

5 65 64
. . . 38 36 . . .

We divide the decimal digits of 2 into pairs, and at each step perform some-
thing akin to a long division. The catch is, the numbers down the left column
are constructed by taking the ‘partial root’ a obtained on the top row, and the
largest integer d such that (20a+d)×d ≤ the last remainder. d is then the new
digit in the partial root and 20a + d is the new entry on the left column.
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For example, 28 (in bold) is obtained by doubling the partial root, 14, and d is
required such that (280 + d)× d ≤ 400. The maximal d is thus 1.

The algorithm works due to the identity (10a + d)2 = 100a2 + (20a + d)d.
Here a is a partial root and d is the next digit, so together they produce a
sequence of digits that approximate

√
2. So in the above, a = 14, (10a + d)2 =

1402 + (280 + d) × d. Now (inductively) 1402 has been calculated by the last
partial root (14), and 20000 − 1402 is precisely the remainder (400). Therefore
we need (280 + d)× d close to the remainder to keep (140 + d)2 close to 20000.
So by induction it works.

How can this algorithm help you in life, you might ask? Only some decades
ago, in many countries it was a part of the high school curriculum to compute
square roots by hand (or on the abacus). In some places the computation of
cube roots by hand was mandatory. This task is not as fearsome as it sounds,
for we can adapt (10a + b)3 along the above lines to derive an algorithm.

More interestingly, it might be handy for ‘problem solving’ or ‘lateral think-
ing’ questions in job interviews by quirky employers. I’m sure you’ve heard
of some of those questions. I was certainly at an interview once and was sud-
denly asked to give a value for the square root of 1000. I was later told that
many applicants responded with ‘100’.

However, its most important application is to combat the many evils of a con-
stantly diminishing high school syllabus. Once I had an evil maths teacher
who, among other things, encouraged the usage of calculators in year 7 maths
classes. When I told her that nothing taught in year 7 required a calculator,
she blurted out some challenge tantamount to finding the square root of 265.
While she gallantly fumbled for a calculator and struggled to press the right
buttons, I was able to produce a few correct digits. So there’s a reason to teach
your kids how to find square roots.

Computers and calculators

Of course I hold no hard feelings against calculators, apart from the fact that
many of them are redundant. Many programmable models capable of sym-
bolic computations are too bulky to be easily portable, their interfaces too con-
voluted for entering commands quickly, and their processors too weak (com-
pared to laptops) to solve many serious problems.
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Nevertheless, some degree of ingenuity is needed to make a hand held calcu-
lator perform a square root computation. One reason different algorithms are
used is because each may suffer from loss of precision in pathological cases.
Many models use the algorithm in the previous section with a few speedups
(for instance, using binary, which makes guessing d easier). Others use the fact
that

√
x = exp(1/2 log x), where both exp and log have fast converging series

(see the next section). This is, of course, similar to what you would do if you
used log tables or slide rules, if you are old enough to remember those things
but not quite old enough to forget them.

Some calculators utilise the CORDIC (coordinate rotation digital computer)
algorithms. Apart from having a horrible acronym, the algorithms are quite
nice, but to see this we first take a detour and see how a calculator may com-
pute sin and cos.

Suppose you want to find cos(t), that is, you want to find the x-coordinate of
a point on the unit circle that makes tc with the x-axis. We can start from the
point (1, 0), rotate it by a suitably chosen angle, then by a smaller angle in the
right direction, etc, until we get very close to t. Rotation by s can be done
easily by matrix multiplication, the matrix used being

(
cos(s) − sin(s)
sin(s) cos(s)

)
=

1√
1 + tan2 s

(
1 − tan(s)
tan(s) 1

)
.

We judiciously pick s to be the sequence arctan(2−k), k = 0, 1, 2, . . ., so the
entries in the matrix become very easy to compute (especially in binary). Also,
the factor at the front can be calculated in advance and stored in a table. As
the set of angles we choose decrease monotonically to 0, we are bound to get
close to t.

If we water down the CORDIC algorithm and only take the ‘rotational’ part,
then we have an algorithm for calculating square roots in binary. Say we want
to know the square root of n = 1000010012. Our first guess is 1000002, which
we square and compare with n. It’s too big, so we step down (‘rotate’) and try
100002, whose square is less than n. We then step up a little, testing 110002,
whose square is too big. We then try 101002, etc, stepping up and down appro-
priately, until we get 10000.01 . . ., which says the square root of 265 is about
16.25. At each stage we get an extra digit, and only need squaring, and this is
fast; it can also be used to quickly test if a number is a perfect square.
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But wait, are multiplications (e.g. squaring) really fast? Well, if you are only
multiplying 2 digit numbers, which algorithm you use makes no practical dif-
ference; but under the standard algorithm, it takes the order of n2 1-digit mul-
tiplications to multiply 2 n-digit numbers. Karatsuba, a Russian mathemati-
cian with a Japanese sounding name, had a better idea:

First note that addition and subtraction are easy. Now observe that, for in-
stance, (10a+ b)× (10c+d) = 100ac+10(ad+ bc)+ bd = 100ac+10((a+ b)(c+
d)− ac− bd) + bd.

All the hard work lies in calculating ac, bd, and (a+b)(c+d) and remembering
each of them. That is, at the cost of extra memory, we can now multiply them
using 3, not 4, 1-digit multiplications. This procedure can be implemented
recursively to multiply two n-digit numbers in the order of nlog2 3 operations.

Now that you are convinced the multiplication algorithm humans regularly
use is not optimal (in fact, we still don’t know what the optimal algorithm is),
you might also believe that our current best method is the fiendishly clever
fast Fourier transform multiplication (FFT). Its full scope is too complicated to
be stated here, but the basic idea is that when two polynomials are multiplied,
the process is very similar to a convolution. Now the Fourier transform of a
convolution is the product of the transforms. But to perform each (discrete)
Fourier transform, we can divide the input into two parts (even and odd in-
dices), effectively making it 2 transforms of half the input size, with an extra
multiplication. Such divide-and-conquer approaches generally have a time of
O(n log n) which also holds here. To apply this to multiplying numbers, just
write the number as a polynomial with the variable set to the base.

We need one more piece of information before we explain how a computer
can take square roots using arbitary precision arithmetic. Newton’s method
(or the Newton-Raphson method) is a good all-purpose root finding algo-
rithm. To numerically solve f(x) = 0, we make a guess x0, and iterate using
xn+1 = xn− f(xn)

f ′(xn) . To see why this works, note that xn+1 is the the x-intercept
of the tangent to f(x) at xn. So if xn lies near a solution, unless the f(x) is
pathological, then graphically we see that xn+1 lies closer to the solution. In
fact, it is routine to see that the convergence is quadratic (so the each error is
approximately the square of the last one).

So if we try f(x) = x2 − a, we quickly see that xn+1 = 1
2 (xn − a/xn). This

converges very quickly to
√

a and was known to the Babylonians. However,
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it is not conducive to FFT because one division per step is required.1 To avoid
this, we find 1/

√
a, using f(x) = 1/x2−a. Now we have xn+1 = xn + 1

2xn(1−
ax2

n), involving only multiplications, and only one division is needed at the
end to get the answer.

The final trick with Newton’s method is this: Suppose we want d digits of pre-
cision in the final answer, should we run each iteration with d digits? Surpris-
ingly, no. The algorithm approximately doubles the number of correct digits
each time, so we can start with very low precision (say 1 digit), and double
the precision each time. It doesn’t matter if we lose some digits in this process,
as the next step of the algorithm sets it right anyway. This reduces the total
precision used from the order of log d to a constant, and makes earlier steps
tremendously fast.

Pure mathematicians

But speed is of no concern to the pure mathematician. From the binomial
theorem, we know that

√
1 + x =

∞∑
k=0

( 1
2

k

)
xk = 1 +

x

2
− x2

8
+

x3

16
− 5x4

128
+ · · · ,

which can be used to compute
√

a for 0 < a < 2. For larger a, we can use the
largest integer n such that n2 ≤ a and look at

√
a = n

√
a/n2 where a/n2 is cer-

tainly less than 2. This is surely the pure mathematician’s algorithm of choice,
for it is elegant, expressible in closed form, convergent, and has a known error
(the error is less than the first unused term in the series). Indeed, haven’t you
come across a first year exercise along the lines of ‘estimate the square root of
26’? We proceed thus:

√
26 = 5

√
1 + 1/25 ≈ 5(1 + 1/25/2) = 5.1.

To approximate how fast the error decreases, we just look at the ratio of the
(k + 1)th term and the kth term, which is | 1/2−k

k+1 |x. For large k this is ap-
proximately x (linear), which is not as good as Newton’s method. Of course,
the pure mathematician is in tune with infinity and does not care about such
trifles.

1Divisions can be done using Newton’s method: to find 1/b, let f(x) = 1/x− b, then xn+1 =
xn + xn(1− bxn).
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Series methods can, however, have occasional uses. There is a story of the
physics Nobel laureate Richard Feynman soundly defeating the abacus. At
a restaurant, a man quite proficient on the abacus came in and challenged
the waiters and customers in a contest of speed addition. Not surprising, the
abacus won, even against Feynman. When the man raised the bar to long
division, he only managed to tie with Feynman. Finally, he made the mistake
of moving up to cube roots, and the number he picked was 1729.03. Now,
Feynman did not miss the convenient series 3

√
1729.03 = 3

√
123 + 1.03 ≈ 12 +

12·1.03
3·123 − · · · . So the great physicist simply sat there and slowly wrote down

the answer correct to 5 decimal places, while the sweating, distaught abacus
operator barely got 12.0.

We shall wrap up with a related story of how Feynman fooled a group of pure
mathematicians from Princeton University. We know that exp(x) = 1 + x +
x2/2!+x3/3!+ · · · , and the radius of convergence is∞. Feynman mumbled to
the mathematical luminaries that it is easy to calculate powers of e using that
series. Not convinced, one of them asked for the value of e3.3. Quickly came
an answer, 27.11. While they looked it up in a table, Feynman produced more
correct digits. Not admitting defeat, they then asked for e3, and Feynman gave
20.085. Still not believing that he could sum a series that fast, they asked for
e1.4. Reluctantly but quickly, the approximation 4.05 was given and Feynman
walked out.

Of course, not even one as smart as Feynman could sum series instantly in his
head (around 15 terms are required to get 4 digits of accuracy for e3.3). He mis-
led them into thinking he was summing the series, while in fact he memorised
a few useful constants: log 10 ≈ 2.3026, log 2 ≈ 0.69315, and e ≈ 2.71828.2

Therefore, e3.3 = e2.3e ≈ 27.18, e3 = e2.3e0.7 ≈ 20, and e1.4 = e0.7e0.7 ≈ 4, and
some quick mental gymnastics made the appropriate corrections possible.

— James Wan

2Not every pure mathematician knows the numerical value of π, e, or γ.
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A Guide to the MUMS Puzzle Hunt

Do you enjoy puzzles? Do you get a thrill when solving them? Do you like
winning prizes? If you answered yes to any of the above, then you might want
to participate in the annual MUMS Puzzle Hunt. This year the Puzzle Hunt
will be held in the week beginning 19th April 2010. It’s going to be a week
involving nothing but puzzles!

But let’s not get ahead of ourselves. First, here’s a complete breakdown on
what the Puzzle Hunt is. And to do that we need to first figure out what a
puzzle is.

Wikipedia defines a puzzle as a problem or enigma that tests the ingenuity of
the solver. Indeed, if you think about the different kinds of puzzles that exist –
brainteasers, sudokus, jigsaws, crosswords, anagrams, sokoban, rubik’s cube,
tetris, etc – the list goes on and on!

Unless you’ve been living inside a black hole for the last twenty years, chances
are you would have heard of or tried at least some of these puzzles. In fact,
there’s a good chance you might even have enjoyed them. Some even go so far
as to grab the daily newspaper just for the puzzles section, choosing to ignore
the news.

Enter the MUMS Puzzle Hunt. The Hunt ties in all kinds of puzzles you can
think of, and then even more, into a week of action-packed puzzle-solving. 25
puzzles will be released throughout the week (five a day), and the objective is
to solve as many of these as possible with minimal hints. You can have up to
ten people on your team to help you with this task, or if you prefer you can
enter by yourself. And the Hunt, except for the final challenge, takes place
entirely online, so you can solve the puzzles in your own time, from wherever
you happen to be.

Sounds simple, you might say, especially if you’re an avid puzzler. But here’s
the twist – these puzzles come with no instructions. It is entirely up to your
lateral thinking processes to decide what steps to take, and how to interpret
the puzzle as intended by the puzzle writer.

Sounds random, you might say. And yet there is method in this madness.
What looks like a bunch of symbols at first could very well turn into something
elegant when viewed in the right perspective. Things will just start to click and
fall into place, and that’s where the thrill comes in.
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Without further ado, let’s jump right into a puzzle! One of my personal favourites
is called Pairs Repaired (2009 Hunt, #5.2). It basically consists of eight boxes ar-
ranged in two rows, and looks something like this:

T R Y S T D I N E D S O U P S M I M E S
A P P L Y B R I A R U D D E R H O O F S
L O O K S G A F F E T A R O T T I G H T

C L O C K F I F E R C R O O N Y E L L S
A N N U L T R U S T A P N E A H O O T S
B U S K S M E M O S C E L L S R A T E R

And that’s the whole puzzle. Yes, it has absolutely no instructions, and your
task as the puzzle solver is to find an answer within it. The answer is always
a word, or bunch of words. But how do you know what the right answer is?
And how would you even begin to solve it?

So stare at the puzzle for a while. Look for things that are unusual, unique, fa-
miliar, or simply out of place. Remember, you are always looking for a pattern
that the puzzle writer intended. And then when you find it, fine-tune it to see
how you might get an answer string out of it.

You might start to notice things, like the fact each box has three 5-letter words
or that they all have a blank row. Now what? Is the blank row meant to be
filled with another 5-letter word? And how? Maybe you stare some more and
notice that all the words have a repeated letter!

At this point you might be tempted to just extract every repeated letter and
see if you can make something out of it:

TPO DRF SDT MOT

CNS FTM OAL LOR

Nope, it doesn’t seem to spell anything useful. Maybe we might want to pair
up the letters again? (Remember, the title is usually a clue, and Pairs Repaired
seems to imply pairing more than once.) Unfortunately, there’s only one P, one
C, and in general it just doesn’t seem to work.
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And then it hits you. You want to pair the letters not only within a word, but
probably between different words in the same box. A quick check reveals that
TRYSTand APPLYshares a Y, TRYSTand LOOKSshares an S, and APPLYand
LOOKSshare an L. Furthermore, this works for all eight boxes!

In fact, you can eliminate all the pairs in this way to leave just three letters
in each box. And then maybe, just maybe, you have to find another five-letter
word that uses these three letters, plus another repeated letter not already used
in the same box. Let’s see how that works:

RAK NBG PEA EFG

OAB IUO RPS YHA

And now, we just find the missing repeated letter in each set, to give us the
following words:

CRACK BONGO LAPEL FUGUE

MAMBO UNION USURP HAPPY

Which you can get by adding the letters C, O, L, U, M, N, U, P respec-
tively. Wait a second, COLUMN UP. Could that be the final answer? It does
look a bit unusual. In fact, you might spend a guess on this answer. Nothing
wrong with that. But you decide to decode it instead.

COLUMN UP. Hmmm. . . could that be telling you to read up a column? Read-
ing up the columns give nonsense six-letter phrases like BACLAT, UNLOPR,
SNOOPY. Hold on, SNOOPYis a real word. And so are MUFFIN, CACTUSand
RHYTHM! We got four new words out of this, but how do we get an answer out
of all this?

Indeed, the idea is to do the exact same thing all over again, except with six-
letter words this time. Removing all duplicate letters gives P, I, A, R . An-
other quick dictionary search reveals PILLAR as the only six-letter word giv-
ing us what we need. (Pillar also means a column standing up, in fact.)

And so you proceed to solve the puzzle with PILLAR as the answer, and the
answer checker warmly congratulates you on solving it correctly. Congrats!
You have just solved a Puzzle Hunt puzzle! As you can see, none of the steps
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are impossible or even that difficult when considered individually, it’s just a
lot of pattern matching.

Now, if you were really going through my entire demonstration of how the
puzzle works, you might have wondered one thing. In fact, you might have
wondered many more things, but there really is one finer point which was just
hand-waved completely. Just like in mathematics.

I’m referring of course, to the part where you find the five-letter words, i.e.
from RAKto CRACK. Any good puzzler always needs a good bag of tools, and
in fact there are quite a number of useful tools that will suit almost every
puzzler: Google, Wikipedia, Babelfish, Wordsmith, Crossword Solver etc.

In this case, you would probably need to use a crossword solver or an ana-
gram finder fairly frequently, just to test whether different sets of letters might
produce valid 5-letter words. Or if you were more technical, you might even
write a script that automatically did all the dictionary checking for you.

In any case, the Puzzle Hunt is an annual event we organise, and is one of the
largest events of the calendar, with hundreds of people participating from all
over the world! For more information regarding the Puzzle Hunt, please visit:
http://www.ms.unimelb.edu.au/˜mums/puzzlehunt/ . The website
also contains all the puzzles from previous Hunts, as well as hints and full
solutions, so if you want to really prepare then this is a great place to start.
Good luck!

— Muhammad Adib Surani

Maths in the News(2):
‘Rom-coms, period dramas are rubbish: mathematical proof’
(The Registry, 24/2/2010). According to James Cuttin of Cor-
nell University, the ability of a film to keep our attention span
is closely linked to the distribution of individual-shot lengths.
Films whose distributions best mirrors the 1

f fluctuations found
in chaos theory are those we find most natural to watch. Ac-
cording to a study of 150 popular films, action films in general
perform better than dramas and rom-coms under the analysis,
and new films in general outdo old films. A Perfect Storm was
the film which best matched natural fluctuations.
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Group theory could save your life

Introduction

Imagine you are walking down the road, not a care in the world. It is a sunny
day – no clouds or thunderstorms to be seen. Out of nowhere, a masked bandit
appears with a gun. Like any normal person you are shocked and scared. You
offer your wallet, thinking that giving money will prevent you from getting
hurt, but the bandit refuses. He wants information. . .

Specifically, he wants to know what the Fisher-Griess Monster looks like. ‘What!?’
You were expecting questions about your bank account, and about your pri-
vate keys (for RSA decryption purposes), but no, it is a question about a mon-
ster. And this monster is not the sort that lurks under your bed or in the closet,
unless you happen to have a book or two about group theory in those places.

Groups

If you have already taken 620-297: Group Theory & Linear Algebra, an equiv-
alent subject, or taught yourself group theory, you can safely skip ahead to
the section about the monster. Otherwise read on for a basic introduction to
groups that should provide the necessary framework for beginning to under-
standing the Monster.

A group is a mathematical object, consisting of a set and an operation, with
a few properties imposed on it. It might sound abstract, and indeed it is, but
we have all encountered groups since primary school. We all learn to count,
1, 2, 3 . . . , but (N,+), the natural numbers with addition is not a group. If we
add the negative numbers too, we get a group (Z,+), the integers under addi-
tion. Likewise, (R \ {0},×), the non-zero real numbers under multiplication is
a group.

In order to qualify to be a group, G, a few properties must be satisfied. For
g1, g2 ∈ G, we demand that g1+g2 ∈ G. We require the existence of an identity
element e ∈ G which has the property g + e = e + g = g. We also desire that
for all g ∈ G, a unique inverse g−1 ∈ G exists which has the property that
g + g−1 = g−1 + g = e.

It should be evident, with a little thought, that the above examples of (R \
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{0},×) and (Z,+) fulfil these requirements and so are groups. Another use of
groups is in describing symmetries of objects. A symmetry can be thought of
in almost the most obvious way, as a manipulation of an object that returns it
unchanged. In order to make the definition consistent with the structure of the
group, we will also include doing nothing as a symmetry (this is the identity
object).

If we have a square, the symmetries consist of a rotation of: 0, 90, 180 and 270
degrees, together with reflections in: the horizontal plane, vertical plane and
two diagonal planes. It should be clear to see that any combination of sym-
metries gives another symmetry, and that there is exactly one way to ‘undo’
each symmetry, satisfying the group properties. There are a total of 8 symme-
tries. This and other groups that describe the symmetries of regular polygons
are known as dihedral groups and identified by Dn, where n is the number of
sides. Groups describing symmetries can also be made for the polyhedra, or
objects such as a Rubik’s Cube.

With this short introduction into what groups are and some of their properties,
I can now introduce the Monster.

The monster

The history is as follows. The Fischer-Griess Monster was constructed in 1982 by
Robert Griess. It was first proposed as being a group nine years beforehand,
in 1973 by Griess and Bernd Fischer. John Conway nicknamed it the Monster.

Now, as far as group sizes go (for finite groups), the Monster is very very large.
It is in fact the largest of the sporadic groups. The number of elements in it is
equal to:

808017424794512875886459904961710757005754368000000000 =

246 × 320 × 59 × 76 × 112 × 133 × 17× 19× 23× 29× 31× 41× 47× 59× 71

In the same way as D4 was a description of the symmetries (rotations and
reflections) of a square, the Monster group can be thought of as the group
of rotations in 196883-dimensional space. Contained within the Monster are
many subgroups, which as the name indicates, are subsections of the group
which are themselves groups, just as (2Z,+), the even numbers under addi-
tion, are a subgroup of Z. Through knowledge of these subgroups (which are
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smaller in size and easier to comprehend), some properties of the Monster can
be identified more easily than if the whole structure were observed directly.

Lifesaving?

So back to the story. You have just been held at gunpoint, and asked to de-
scribe the Fischer-Griess Monster. You tell him that it has a finite number of
members. You tell him that it is the largest of the sporadic groups. But when
the bandit asks you to describe what it looks like, you fail to respond ade-
quately. As a result, you are shot. As blood pools around you, you reach for
your phone and dial 000. You tell the operator that you have been shot, but
unfortunately they too want to know the size of the Monster Group. It seems
that ‘this line is reserved for people who know elementary group theory’.

The scenario is clearly preposterous. One would hope that emergency num-
bers do not require knowledge of maths. But it does illustrate at least two
points. One: there is lots of maths that is unknown in the wider population.
Two: maths can allow us easily (and sometimes not-so-easily) to create objects
that we can’t comprehend. Elementary group theory can be a very visual and
understandable field of maths, one that can work with little more than school-
level knowledge of what symmetries are. But using it creatures can be created
which can’t actually be visualised, even though their construction is known,
that is, unless you have an idea of what 196883-dimensional space looks like.

Post-script

Some readers may note the situation that motivated this article is based on a
cartoon from Abstruse Goose,1 a little-known webcomic with a similar simple-
drawn style and geekish humour to the ever prevalent xkcd.2 If you’re inter-
ested, Abstruse Goose draws lots of its ideas from maths, so the cartoons can
help keep you occupied when you should be studying for vector calculus.
Have fun!

— Mark Kowarsky

1http://www.abstrusegoose.com/96
2Which, we might add, is also similar to the Paradox comics – see page 12
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The Calculus of Variations

Anyone reading this article has probably come across a differential equation
on more than a few occasions. You’re probably also aware how useful a tool
they can be. Solutions to differential equations are some of the most widely
used advanced1 results in mathematics – especially from a scientific perspec-
tive. Sending a person into space, splitting the atom, or even building the
computer that I’m writing this article on, are all developments that owe a large
deal to the solution of ‘DEs’.

Nevertheless, it is perhaps surprising that so many areas of modern devel-
opment are founded on this one method. Without questioning the utility or
soundness of DEs and their solutions, we may validly ask whether DEs are
only so widely used because there is no other similar tool. Perhaps this is a
form of Kaplan’s ‘law of the instrument’: if all you have is a hammer, every-
thing looks like a nail.2 To skip to the chase, there is in fact an alternative way
to doing many DE-based problems, and just like any change in perspective it
makes some problems easier, some harder and provides new insights. As the
title to this article hints, this method is called the calculus of variations.

Motivation: The shortest distance between two points

What is the shortest distance between two points? Don’t scoff too quickly, as
it isn’t always a straight line. For instance, the shortest distance between two
points on a spherical surface like the Earth clearly isn’t a straight line. Even
if the two points are on a flat Euclidean space, how do you show the shortest
distance is a line? Well let’s have a try. Working in Cartesian coordinates let
the two points be A = (x1, y1) and B = (x2, y2). Then the distance, d, between
them is

d =
∫ B

A

ds.

1I use ‘advanced’ to distinguish them from ideas like arithmetic, which are obviously more
widely used. That said, given the number of addition/multiplication errors I still make, perhaps
this distinction is somewhat inappropriate!

2This is the colloquial form; the original phrase is: ‘Give a small boy a hammer, and he will
find that everything he encounters needs pounding’. Abraham Kaplan, The Conduct of Inquiry:
Methodology for Behavioural Science (1964) p 28.
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In Euclidean space we can rewrite ds using Pythagoras’ theorem:

ds =
√

(dx)2 + (dy)2 =

√
1 + (

dy

dx
)2dx.

Subbing this in gives an integral which we want to minimise in order to min-
imise the distance:

d =
∫ x2

x1

√
1 + (y′)2dx, y′ =

dy

dx
.

Our problem has been rephrased in terms of finding a curve y which min-
imises the above integral. In fact there are a large number of problems that can
be phrased in terms of making an integral equation stationary; for example,
I’m sure you can think of how to turn a volume, time or mass into an integral,
much like what was done for distance above. The calculus of variations gives
a way of determining what curve makes these integrals stationary.

The General Problem and the Euler Equation 3

The following derivation of the general solution makes use of integration by
parts. If you don’t know about integration by parts or don’t care how the
result was derived, feel free to skip to the solution – or perhaps refer to old
Wiki for a refresher on integration by parts.4 In general the problem is to find
a curve y(x) that makes the following integral stationary:

I =
∫ x2

x1

f(x, y, y′)dx.

In order to find a curve that minimises this, it seems reasonable to see how
the integral changes if y(x) changes a small amount. In order to do this we

3Sometimes called the Euler-Lagrange Equation.
4This derivation was based on that in M. Boas, Mathematical Methods in the Physical Sciences

(2006 3rd ed), Ch 9. For a more elegant and rigorous derivation see L Landau and E Lifshitz,
Mechanics (1976 3rd ed), 2.
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introduce an arbitrary continuous function η(x) such that η(x1) = η(x2) = 0,
a small parameter ε and a new function Y (x):

Y (x) = y(x) + εη(x) =⇒ dY

dε

∴ Y ′ = y′ + εη =⇒ dY ′

dε
= η′.

These last properties will be used shortly. This new function Y has the same
values as y at the endpoints by construction and differs from y only by a small
amount in between. Thus by changing ε the behaviour of the integral for
different y values can be determined. Using this logic, we proceed as follows
with a new integral:

I(ε) =
∫ x2

x1

f(x, Y, Y ′)dx

∴
dI

dε
=

∫ x2

x1

(
∂f

∂Y

∂Y

∂ε
+

∂f

∂Y ′
∂Y ′

∂ε

)
dx

=
∫ x2

x1

(
∂f

∂Y
η(x) +

∂f

∂Y ′ η
′(x)

)
dx.

Now in order to make the integral stationary, from elementary calculus this
means setting dI

dε = 0. To get y(x) and not Y (x) requires setting ε = 0 (and
hence Y = y). Thus this becomes

dI

dε

∣∣∣∣
ε=0

=
∫ x2

x1

(
∂f

∂y
η(x) +

∂f

∂y′
η′(x)

)
dx = 0.

Applying integration by parts to the second half of this integral and remem-
bering that η(x1) = η(x2) = 0 yields

dI

dε

∣∣∣∣
ε=0

=
∫ x2

x1

(
∂f

∂y
− d

dx

∂f

∂y′

)
η(x)dx = 0.

But as η(x) was a completely arbitrary function, the only way to ensure that
this is true (i.e. the integral is stationary in general) is to require the term in
brackets to vanish:
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∂f

∂y
− d

dx

∂f

∂y′
= 0.

This is the famous Euler equation. On a historical note the calculus of varia-
tions was first motivated by the Brachistochrone5 problem. Galileo was one
of the first to consider it, but he arrived at the wrong solution. Later on, in
solving the Brachistochrone problem, Jacob Bernoulli created a method that
was refined by Euler into the calculus of variations.

Finding the Shortest Distance

Let’s try applying this solution to the integral for the shortest distance between
two points, written above. Here

f(x, y, y′) =
√

1 + (y′)2.

Subbing this into the Euler equation:

0− d

dx

(
y′√

1 + (y′)2

)
= 0.

Now
y′√

1 + (y′)2
= c,

a constant, so

y′ = ±
√

c2

1− c2
= m,

another constant. Finally,

dy

dx
= m =⇒ y(x) = mx + b,

for constants m, b.
5This ungainly word has its origins in Greek: brachistos (shortest), and chronos (time); or so

Wikipedia tells me.
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Thus the shortest distance in flat space really is a straight line and we’ve
shown it via a somewhat long-winded derivation. Nevertheless the general
solution we’ve obtained, namely the Euler equation, is a very powerful tool.
If we had inserted the ds for a spherical surface,6 we would have found that
the shortest distance between two points is a great circle: a circle on the sphere
whose centre coincides with the centre of the sphere. This is why when you
look at the path an airplane takes on a flat map of the world, it appears to be
curved and not straight. The route it’s taking is actually the shortest distance.7

Conclusion

I can imagine some might complain that the calculus of variations is just an-
other hammer, in that we’ve gone from making an integral stationary to solv-
ing a DE. But to see that this isn’t the case, consider what information is put
into the problem to get a solution. In a heuristic sense, for a DE we input some
initial conditions and then the solution is created by infinitesimal iterations:
the DE takes the input values a differential amount forward, which creates
new values to put into the DE, and the process is repeated to get a solution.
On the other hand, the calculus of variations asks for the start and endpoint of
the problem (for example, the endpoints A and B above) and then fills in what
happened in the middle.

In this sense you can see that the calculus of variations is indeed a different
way of solving such problems. The fact the problem is converted into a DE is
more of a pragmatic matter – it allows us to bring to bear all the tools we have
developed for solving DEs.

Unfortunately there isn’t room for me to explore many of the other problems
that are simplified by the calculus of variations – to give an example, in some
areas of modern theoretical physics it is used even more than DEs. But if you
found the calculus of variations interesting and wonder where else it could
lead then you are in good company. The last of David Hilbert’s twenty-three
open problems in mathematics of 1900 was: further development of the calcu-
lus of variations.8

— Nick Rodd
6ds depends on the shape of the surface under investigation. It is rarely as simple as the

Euclidean space example given above and the spherical derivation is somewhat more involved.
7Unless they’re making use of jet streams, but this is not something I want to go into here.
8See the Wikipedia article on Hilbert’s problems for more information: http://en.

wikipedia.org/wiki/Hilbert’s_problems
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Solutions to Problems from Last Edition

We had a number of correct solutions to the problems from last issue. Below
are the prize winners. The prize money may be collected from the MUMS
room (G24) in the Richard Berry Building.

Adrian Khoo solved problem 1 and may collect $1.

Carol Badre solved problem 4 and may collect $3.

Natalie Aisbett solved all the problems and may collect $15.

Christopher Chen solved all the problems and may collect $15.

1. What is the minimum number of snaps needed to break a nxm choco-
late bar into individual pieces, assuming that a snap cannot act on two
disconnected portions of the chocolate bar at the same time?

Solution: Each snap increases the total number of pieces by exactly 1.
Therefore exactly nm− 1 snaps are required.

2. Let a, b, c be distinct integers, and let P be a polynomial having integer
coefficients. Show that it is impossible to have P (a) = b, P (b) = c, and
P (c) = a.

Solution: Since x − y|xn − yn for all integers x, y, n, we have that x −
y|P (x)−P (y) for any polynomial P . Thus a−b|P (a)−P (b) =⇒ a−b|b−c.
Similarly, b− c|c− a and c− a|a− b. Therefore |a− b| = |b− c| = |c− a|.
Without loss of generality we assume a ≥ b, a ≥ c. Then a−b = a−c =⇒
b = c, which is a contradiction.

3. Consider an nxnxn cube as built from n3 basic 1x1x1 cubes. Let a 2x2x2
cube with one basic cube missing be called a block. Prove that a 2nx2nx2n

cube with any basic cube removed (including in the interior) can be con-
structed entirely from blocks.

Solution: We prove by induction. For n = 1 the cube is by definition a
block. Assume the claim is true for n = k. Consider a 2k+1x2k+1x2k+1

cube with a basic cube removed. This can be broken up into eight pieces
by slicing the cube in half in each dimension. Seven of these pieces are
2kx2kx2k cubes. The eighth piece is a 2kx2kx2k cube with a basic cube
removed, which by the inductive assumption can be constructed from
blocks. For the remaining seven pieces, if we remove the corner block
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closest to the centre of the original cube these too, by the assumption,
can be constructed from blocks. Lastly, the seven basic cubes around the
centre form another block. Thus the claim is true for n = k + 1, and by
induction is true for all n.

4. Prove that x2 + 3 = 4y(y − 1) has no solutions in the integers.

Solution: We rearrange the equation to produce (2y − 1)2 − x2 = 4. If x
and y are both integers then so are x and 2y − 1. Since the only squares
that differ by four are 0 and 4, we have x2 = 0 and (2y − 1)2 = 4. Thus
2y − 1 is either -2 or 2, which yield sa contradiction if y is an integer.

5. Each square of a 8x8 grid contains either a 1 or a 0. On this grid, you
may choose any 3x3 or 4x4 subgrid to invert (swap all 0s to 1s, and all
1s to 0s). Using this operation repeatedly, can you always remove all the
ones from the grid?

Solution: The operation of 3x3 or 4x4 inversions are commutative, asso-
ciative, and have order two (they square to produce the identity). Since
there are 36 3x3 subgrids and 25 4x4 subgrids contained within an 8x8
grid, we have at most 236+25 = 261 distinct combinations of invesions
(each base inversion is either switched on or off ). Since there are 264

possible arrangements of the 8x8 grid, there exist grids which cannot be
solved by combining inversions.

6. Find the smallest n such that given any n distinct integers one can always
find 4 different integers a, b, c, d such that a + b− c− d is divisible by 20.

Solution: We consider the problem modulo 20. Any collection of nine
integers has either; a) four congruent integers (a ≡ b ≡ c ≡ d), b) two
sets of two congruent integers (a ≡ c, b ≡ d), or c) ≥ 7 distinct integers.
In both case a) and b) we have a + b − c − d ≡ 0. In case c), since(
7
2

)
= 21 > 20, by the pigeon hole principle at least two of the pairs sum

to the same value. Thus either a + b ≡ c + d or a + b ≡ a + c. In the first
case we have a + b− c− d ≡ 0, and in the latter we have b ≡ c, which is
a contradiction. Thus any set of nine integers has the required property.
Since the set 0, 0, 0, 1, 2, 4, 7, 12 does not, n = 9 is the minimum such n.

7. Prove that
∑∞

n=1
1

(n+1)
√

n
< 2.

Solution:
∑∞

n=1
1

(n+1)
√

n
=

∑∞
n=1(

√
n

n −
√

n
n+1 ) = 1 +

∑∞
n=2

√
n−

√
n−1

n <

1+
∑∞

n=2

√
n−

√
n−1√

n
√

n−1
= 1+

∑∞
n=2(

1√
n−1

− 1√
n
) = 1+ 1√

2−1
= 2(telescoping).
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Paradox Problems

Below are some puzzles and problems for which cash prizes are awarded.
Anyone who submits a clear and elegant solution may claim the indicated
amount (up to a maximum of four cash prizes per person). Either email the
solution to the editor (see inside front cover for address) or drop a hard copy
into the MUMS room (G24) in the Richard Berry Building; please include your
name.

1. ($2) Prove that the sum of the 2009th powers of the first 2009 positive
integers is divisible by 2009.

2. ($2) Two bikers, Sam and Steve, simultaneously set off from one end of
a road, cycle back and forth along the road (turning instantaneously at
the end-points), and stop when they arrive simultaneously at the end
opposite from where they started. At this point Sam has travelled the
length of the road nine times, and Stephen 13. How many times did
they pass each other going in opposite directions?

3. ($3) Prove that a set of size n has no more that n! partitions into disjoint
subsets.

4. ($3) If you place twenty-one 3x1 blocks on a chessboard, so that there is
one square not covered, what are the possible positions for this square?

5. ($4) If n + 1 is a multiple of 24, show that the sum of divisors of n is also
divisible by 24.

6. ($4) Prove that for every positive integer n, there is an integer x such that
x2 − 17 is divisible by 2n.

7. ($6) For a 5x5 array of 1s and 0s, a move consists of choosing a square to
change state (from 0 to 1 or 1 to 0), which causes each adjacent square in
the same row or column to also change state. If the grid starts off contain-
ing 24 0s and a solitary 1, for which positions of this 1 can a combination
of moves reduce the grid to all 0s? (Partial credit may be awarded.)

Paradox would like to thank Han Liang Gan, Mark Kowarsky,
Nick Rodd, Tharatorn Supasiti, Muhammad Adib Surani,
James Wan and Jiaying Zhang for their contributions to this
issue.


