Comparative Vertebrate Morphology Skeletal System: The Skull

J. Zool., Lond. (2005) 267, 363-369 © 2005 The Zoological Society of London Printed in the United Kingdom doi:10.1017/80952836905007624

Does prey size induce head skeleton phenotypic plasticity during early ontogeny in the snake *Boa constrictor*?

What's on tap today?

Skeletal System - The Skull

- 1. Splanchnocranium
- 2. Chondrochranium
- 3. Dermatochranium
- 4. Cranial Kinesis Functional Morphology of the Skull

The Skeleton: Cranial & Postcranial

Functional Roles

- 1. Provides shape
- 2. Supports body mass
- 3. Coordinated system of levers
- 4. Protection of underlying tissues and viscera

Exoskeleton formed from or within integument

dermal bones, epidermal keratin, scales

Endoskeleton

formed from (primarily) mesoderm

connective tissue, bone, cartilage

Cranium: the vertebrate skull

composed of three phylogenetically distinct parts

- a.k.a. visceral cranium
- support pharyngeal slits in protochordates; ancient
- brain support
- endochondral bone
- cartilage

- outer skull structure
- dermal bone

Chondrocranium development

Cartilages

(anterior to posterior)

Trabeculae
Polar cartilage
Parachordals
Occipitals

Sensory Capsules

(anterior to posterior)

Nasal Optic Otic

Contributors

Neural crest

(nasal/otic capsules, trabeculae)

Mesenchyme

(all other chondrocranium regions)

Ossification

(except elasmobranchs)

Splanchnocranium development

Neural Crest Cell Origins

The Origin of

Rooted in the branchial arches...but how?

Jaw Suspensions

Craniostyly: entire upper jaw incorporated into skull; lower jaw suspended from squamosal bone

Metautostyly: jaw attached to skull via quadrate (the posterior palatoquadrate); hyomandibular becomes the *stapes* involved in hearing (amphibians, birds, reptiles).

Hyostyly: entire mandibular arch connected to skull by hyomandibular (bony fishes); emergence of *symplectic* bone

Amphistyly: 2 articulations of mandibular arch with skull - ligament connecting palatoquadrate to skull and hyomandibular articulating posterior portion (sharks, some other fish)

Euautostyly: mandibular arch suspended from skull w/o help from hyoid arch (placoderms)

Paleostyly: none of arches attach directly to skull (agnathans)

Mammalian Jaws (Craniostyly)

- * Lower jaw consists of dentary bone
- * Palatoquadrate becomes incus
- * Meckel's cartilage becomes *malleus*
- * Splanchnocranium (SC) not associated with jaws or suspension
- * SC provides foundation for dentary, and middle ear bones

Dermatocranium development

Dermal bones of the skull

Derived from withdrawl of external dermal bones (armor) inward

FUNCTIONS & FORMATIONS

- 1. Protective casing of the brain
 - 2. Forms roof of mouth
- 3. Encases splanchnocranium
 - 4. Scaffolding for teeth
- 5. Arises from ossification of dermis

Dermatocranium morphology I

Facial series:

Premaxilla (Pm) Maxilla (M) Nasals (N)

Orbital series:

Lacrimal (L)
Prefrontal (Prf)
Postfrontal (Pf)
Postorbital (Po)
Jugal (J)

Temporal series:

Intertemporal (It)
Supratemporal (St)
Tabular (T)
Quadratojugal (Qj)
Squamosal (Sq)

Please understand Table 7.3

Dermatocranium morphology II

Please understand Table 7.3

Vault series:

Frontal (F)
Parietal (P)
Postparietal (Pp)
Parietal foramen (pineal)

Palatal series:

Pterygoid (Pt)
Vomer (V)
Palatine (Pl)
Ectopterygoid (Ec)
Parasphenoid (Ps)

Mandibular series:

Dentary (D)
Splenials (Sp)
Angular (An)
Surangular (Sa)
Prearticular (Pa)
Coronoids

Movement between upper jaw and braincase via joints

Present in:

fishes, early amphibians, reptiles, birds, therapsids

Absent in:

modern amphibians, turtles, crocodiles, mammals

Functional Aspects in Fish

- * Rapid kinesis involving separation of upper jaw from braincase
- * Kinesis reduces pressure in buccal cavity
- * Negative pressure (relative to ambient) creates vacuum
- * Vacuum sucks water/prey into the mouth
- * Prey capture completed within 1/40 seconds

Fish jaw mechanics #1

Fish jaw mechanics #2

Fish jaw mechanics #3

Functional Aspects in Reptiles

Functional Aspects in Reptiles

Meta- and Mesokinetic articulations

Special Case of Snakes

Prokinesis

"unhinging" is a myth

- * No connections between left and right skull elements
- * Ultrahinging with two connections to braincase (prefrontal and supratemporal)
 - linkage chains

RESULTS

- alternate jaw 'walking' over sometimes large prey items
- extension of fangs during offense, defense, and predation

Cranial Kinesis Prokinesis in Birds

Slider-Crank Mechanism

- Quadrate + Palatine pulled forward by muscles
- -Palatine slides along orbital septum (parasphenoid)
- -Sliding palatine pushes against beak base
- -Beak rotates about nasofrontal hinge to open

Rhynchokinesis in Birds

Unique adaptation for 'probing' birds

