
Parsing Computer Languages with an
Automaton Compiled from a Single Regular

Expression

Adrian D. Thurston

Software Technology Laboratory, Queen’s University, Kingston, Canada
thurston@cs.queensu.ca

When a programmer is faced with the task of producing a parser for a context-
free language there are many tools to choose from. We find that programmers
avoid such tools when making parsers for simpler, domain-specific computer
languages, such as file formats, communication protocols and end-user inputs.
Since these languages often meet the criteria for regular languages, the extra run-
time effort required for supporting the recursive nature of context-free languages
is wasted.

Existing parsing tools based on regular expressions such as Lex, TLex, Re2C,
Sed, Awk and Perl focus on building parsers by combining small regular ex-
pressions using some form of program logic. For example, Lex defines a token
sequence model. None of these tools support the construction of an entire parser
using a single regular expression. Doing so has a number of advantages. From the
regular expression we gain a clear and concise statement of the solution. From
the state machine we obtain a very fast and robust executable that lends itself
to many kinds of analysis and visualization. In this work we present the machine
construction and action execution model of Ragel, which allows the embedding
of user code into regular expressions to support the single-expression model.

The Ragel language provides the regular expression operators union, con-
catenation, kleene star, difference and intersection for constructing parsers. The
full set of operators is given in the manual, available from Ragel’s homepage.

User actions can be embedded into regular expressions in arbitrary places
using action embedding operators. The entering transition operator > isolates the
start state, then embeds an action into all transitions leaving it. The finishing
transition operator @ embeds an action into all transitions going into a final
state. The all transition operator $ embeds an action into every transition. The
pending out transition operator % enqueues an embedding for the yet-unmade
leaving transitions. It allows the user to specify an action to be taken upon the
termination of a sequence, prior to the definition of the termination characters.

When a parser is built by combining expressions with embedded actions,
transitions which need to execute a number of actions on one input character are
often synthesized. To yield an action ordering that is intuitive and predictable
for the user, we recursively traverse the parse tree of regular expressions and
assign timestamps to action embeddings. When the traversal visits a parse tree
node it assigns timestamps to all entering action embeddings, recurses on the

children, then assigns timestamps to the remaining embedding types in the order
in which they appear.

During the composition of a parser, the programmer must be careful to en-
sure that only the intended sub-components of the parser are active at any given
time. Otherwise, there is a danger that actions which are irrelevant to the cur-
rent section of the parser will be executed. In the context of embedded actions,
unintended nondeterminism causes spurious action execution.

In most situations, regular expression operators are adequate for segmenting
the components of a parser, but they sometimes lead to complicated and verbose
parser specifications. In one case, there is no regex-based means of controlling
nondeterminism; when we attempt to use the standard kleene star operator to
parse a token stream we create an ambiguity between extending a token and
wrapping around the machine to begin a new token.

A priority mechanism was devised and built into the determinization pro-
cess, specifically for the purpose of allowing the user to control nondeterminism.
Priorities are integer values embedded into transitions. When the determiniza-
tion process is combining transitions that have different priorities, the transition
with the higher priority is preserved and the transition with the lower priority
is dropped. To avoid unintended side-effects, priorities were made into named
entities; only priority embeddings with the same name are allowed to interact.

Using priority embeddings for controlling nondeterminism can be tedious
and confusing for the programmer. Fortunately, the use of priorities has been
necessary only in a small number of scenarios. This allows us to encapsulate the
priority functionality into a set of operators and hide priority embeddings from
the user.

The left-guarded concatenation operator, given by the <: compound symbol,
places a higher priority on all transitions of the first machine. This is useful if
one must forcibly separate two lists that contain common elements. The entry-
guarded concatenation operator, given by :>, terminates the first machine when
the second machine begins. The finish-guarded concatenation operator, given by
:>>, terminates the first machine when the second machine moves into a final
state. The longest-match kleene star operator, given by **, first embeds a high
priority into all transitions and a low priority into pending out transitions. When
it makes the epsilon transitions from the final states into the start state, they
will be given a lower priority than the existing transitions.

header_list := (lower+ ’:’ ’ ’* <: (

(lower (lower | digit)*) >mark %id |

[\t]+ >mark %ws |

’\n\t’ @cont)** ’\n’)*;

0 1
a..z

4

5

2
:

3

6

a..z

a..z

sp

nl
nl

tab / cont

a..z / mark

nl / id

a..z / mark

nl / ws

tab, sp / mark

0..9, a..z

a..z / ws, mark

tab, sp / id, mark

tab, sp

tab / mark

