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1 Introduction

Interplanetary gravitational assisted trajectories appear when a spacecraft, on
its way from one celestial body to another, approaches a third attracting body
which produces a significant change in the trajectory of the spacecraft.

Due to the large distances between the attracting masses in the solar sys-
tem, as well as the values of the ratios between the masses of the planets and
the sun, in a first approximation the gravity field in the solar system can be
decoupled. When the motion takes place far from a planet (heliospheric region)
the dominant effect is due to the Sun, while the dominant term of the equations
of motion corresponds to the planet when the spacecraft moves in the so called
planetary gravispheres. The boundaries of the gravispheres can be defined in a
number of different ways, such as: spheres of gravitation, Laplace’s spheres of
influence, Hill’s regions, Belbruno’s weak stability boundaries, etc.

According to this, the motion of the spacecraft can be expressed as a se-
quence of perturbed keplerian arcs. In the first order approximation, the trajec-
tory is represented by a series of segments of undisturbed keplerian motion. In
a further step, asymptotic expansions can be obtained for the so called “inner”
and “outer” solutions, corresponding to the motion inside or outside a grav-
isphere. Of course, matching conditions on both kinds of solutions must be
added at the boundaries.

The analytical solutions obtained with the above approximations are used
as initial guesses in the determination of the trajectory, or the domain of ad-
missible trajectories, to be used by a spacecraft in order to accomplish a certain
interplanetary mission. For this purpose, the use of numerical nonlinear pro-
gramming procedures are required, in order to take into account the restrictions
required for the mission.

Within this frame of reference, the objectives of the course will be:

• To explain and analyse the concepts and techniques, both analytical and
numerical, related to gravity assist,

• To illustrate the gravitational assist procedures with some spacecraft mis-
sions developed by ESA.

1.1 Transfers within the Solar System

Assume that we want to reach, from one circular orbit around the Sun, another
circular orbit of different radius but in the same plane. Let the radii of the two
circular orbits be r1 and r2 as shown in Fig. 1.

From the energy integral

v2

2
− µS

r
= −µS

2a
,

where µS = GmS (mS is the mass of the Sun and G the gravitation constant)
and a = (r1 + r2)/2 (the semi-major axis of the transfer orbit), one easily gets

r1
v2
1

µS
=

2σ
1 + σ

,
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Figure 1: Transfer between circular coplanar orbits.

with σ = r2/r1. Since the velocity in the inner circular orbit is
√
µS/r1, the

required change of velocity at the periapsis of the transfer ellipse is

∆v1 = v1 −
√
µS/r1 =

√
µS/r1

(√
2σ

1 + σ
− 1

)
.

As we are only interested in an encounter with the outer planet (or inner if
r2 < r1), we are not going to compute the second ∆v completing the Hohmann
transfer.

Consider now how injection into the interplanetary orbit is achieved from a
circular parking orbit around the Earth. Relative to the Earth, the interplan-
etary orbit is initially a hyperbola and becomes subsequently an elliptic orbit
relative to the Sun. Again, from the energy first integral

v0 =
√
v2
∞ + 2µE/r0, with v2

∞ = −µ/ah,

where now µE = GmE (see Fig. 2).

vc

v0

oo

ahr0

v

Earth

Figure 2: Hyperbolic escape.
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Since the velocity in circular orbit is vc =
√
µE/r0, the required increment

of velocity to escape is

∆v0 =
√
v2
∞ + 2µE/r0 −

√
µE/r0. (1)

In this way, we can compute the ∆v required to inject a spacecraft (initially
in a circular orbit about the Earth) into a heliocentric orbit with an aphelion
equal to that of a planet, i.e. the minimum energy to encounter that planet.

The required hyperbolic escape velocity v∞ is equivalent to the ∆v1 and the
velocity increment ∆v0 to be applied from the circular Earth orbit to achieve a
given v∞ is given by (1). Departing from circular orbit around the Earth, at an
altitude of 185 km, The velocity increments are

Planet v∞ ∆v0
Mercury –7.533 5.556
Venus –2.495 3.507
Mars 2.945 3.615
Jupiter 8.793 6.306
Saturn 10.289 7.284
Uranus 11.280 7.978
Neptune 11.654 8.247
Pluto 11.813 8.363

Table 1: Minimum ∆v requirements (in km/s) to encounter the planets.

From the above Table it is seen that only Venus and Mars have low re-
quirements and that the exploration of the outer planets is difficult in terms of
conventional chemical propulsion.
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2 Equations of motion

2.1 The n-body problem as a perturbation of the Kepler
problem

In an inertial reference frame, and according to Newton’s laws, the equations of
motion of n punctual masses m1,m2,...,mn are

mkr̈k = G
n∑

j=1, j 6=k

mjmk

r3jk

(rj − rk), k = 1, 2, ..., n, (2)

where rjk = |rj − rk|. For k = 1, 2 we have

d2r1

dt2
= G

m2

r321
(r2 − r1) +G

n∑
j=3

mj

r3j1
(rj − r1),

d2r2

dt2
= G

m1

r312
(r1 − r2) +G

n∑
j=3

mj

r3j2
(rj − r2).

(3)

Subtracting these two equations we get the one corresponding to the relative

P   (m  )j j 

P   (m  )1 1 

rj

r2r1

x
y

z

P   (m  )2 2 

r

ρ

d j 

j

Figure 3: Inertial and relative coordinates.

motion of m2 with respect to m1

d2r
dt2

+ µ
r
r3

= −G
n∑

j=3

mj

(
dj

d3
j

+
ρj

ρ3
j

)
, (4)

where we have defined, as is shown in Figure 3, r = r2 − r1, ρj = rj − r1,
dj = r− ρj and µ = G(m1 +m2). If m3 = ... = mn = 0, then either (3) as (4)
are the equations of the two body problem.
Is easy to verify that

dj

d3
j

+
ρj

ρ3
j

= − ∂

∂r

(
1
dj
−

r · ρj

ρ3
j

)
.

So, defining

Vj = Gmj

(
1
dj
−

r · ρj

ρ3
j

)
, (5)
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as the disturbing potential associated to mj , the equation of relative motion (4)
becomes

d2r
dt2

+ µ
r
r3

=
n∑

j=3

∂Vj

∂r
. (6)

2.1.1 Developments of the disturbing function

Next we are going to develop Vj as a power series in r/ρj . To simplify the
notation we will remove the subindex j in Vj , so

V = Gm

(
1
d
− r · ρ

ρ3

)
= Gm

(
1
d
− r cosα

ρ2

)
=
Gm

ρ

(
ρ

d
− r

ρ
cosα

)
, (7)

where α is the angle between r and ρ, as is shown in Figure 4.

P   (m  )1 1 P   (m  )2 2 

P   (m  )3 3 

d= d3

ρ
3 

ρ =

β

r
α

Figure 4: Relative coordinates.

If r = (x, y, z) and ρ = (ξ, η, ζ), then

d2 = (x− ξ)2 + (y − η)2 + (z − ζ)2 = ρ2 − 2ρ r cosα+ r2,

and so
ρ

d
=
[
1− 2

r

ρ
cosα+

r2

ρ2

]−1/2

= (1 + q)−1/2, (8)

with q = r2/ρ2 − 2 (r/ρ) cosα. Using Taylor’s formula

(1 + q)−1/2 =
∑

k≥0

−1/2(−3/2)(−5/2)...((1− 2k)/2)
k!

qk

=
∑

k≥0(−1)k (2k − 1)!!
2kk!

qk =
∑

k≥0(−1)k (2k)!
(2k k!)2

qk,
(9)

where the equality between the coefficients in the last two summations is easily
proved by induction. On the other hand, defining t = r/ρ, qk = (t2 − 2t cosα)k

and using the binomial formula, we get

qk =
k∑

l=0

k!
l! (k − l)!

tk+l(−2)k−l cosk−l α. (10)

Substituting (10) in (9) we get

(1 + q)−1/2 =
∑
k≥0

k∑
l=0

(−1)l (2k)!
2k+l k! (k − l)! l!

cosk−l α tk+l.
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In order to write this development as a power series in t, we change the sum-
mation index by defining n = k + l and replacing k by n − l. In this way we
get

(1 + q)−1/2 =
∑
n≥0

[n/2]∑
l=0

(−1)l (2n− 2l)!
2n (n− l)! (n− 2l)! l!

cosn−2l α tn.

where [ ] denotes the integer part. The coefficients of tn are polynomials in
cosα, which are denoted by Pn(cosα). Summarising, we have seen that

ρ

d
= (1 + q)−1/2 = 1 +

∑
n≥1

(
r

ρ

)n

Pn(cosα), (11)

where

Pn(z) =
1
2n

[n/2]∑
l=0

(−1)l (2n− 2l)!
l! (n− l)! (n− 2l)!

zn−2l,

are the Legendre polynomials, which are usually defined as

Pn(z) =
1

2n n!
dn

dzn
(z2 − 1)n.

The equivalence between the two definitions follows from

dn

dzn
(z2 − 1)n =

dn

dzn

[
n∑

l=0

(−1)l n!
l! (n− l)!

z2n−2l

]
(12)

=
[n/2]∑
l=0

(−1)l n!
l! (n− l)!

(2n− 2l)!
(n− 2l)!

zn−2l.

The first Legendre polynomials are P0(z) = 1, P1(z) = z, P2(z) = 1
2 (3z2 − 1),

P3(z) = 1
2 (5z3 − 3z).

Using (11), we can write the disturbing function as

V =
Gm

ρ

(
ρ

d
− r

ρ
cosα

)
=
Gm

ρ

1 +
∑
n≥2

(
r

ρ

)n

Pn(cosα)

 .

If r/ρ is small, this series converges quite rapidly and only a few terms are
required for satisfactory accuracy in many applications. In order to use these
developments in the equations of motion (6) we need to compute ∂V /∂r. We
have that

∂Pn(cosα)
∂r

= Pn
′(cosα)

∂ cosα
∂r

.

If r = (x, y, z)T , ρ = (ξ, η, ζ)T , one can easily compute

∂ cosα
∂x

=
∂

∂x

(
r ρ

rρ

)
=
ξrρ− r ρ ρ (x/r)

r2ρ2
=

ξ

rρ
− x cosα

r2
.

The derivatives with respect to y and z can be computed in a similar way. Using
the equality cosαP ′

n(cosα) = nPn(cosα) + P ′
n−1(cosα), we get

∂Pn(cosα)
∂r

=
1
r
P ′

n(cosα)
(

ρ

ρ
− cosα

r
r

)
=

1
r

(
P ′

n(cosα)
ρ

ρ
− nPn(cosα)

r
r
− P ′

n−1(cosα)
r
r

)
.
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Using this last formula and introducing the unit vectors ir = r/r, iρ = ρ/ρ we
finally obtain

∂V

∂r
=

Gm

ρ

∑
n≥2

∂

∂r

[(
r

ρ

)n

Pn(cosα)
]

=
Gm

ρ

∑
n≥2

[
n

ρ

(
r

ρ

)n−1

Pn(cosα) ir +
(
r

ρ

)n
∂Pn(cosα)

∂r

]

=
Gm

ρ

∑
n≥2

[
n

ρ

(
r

ρ

)n−1

Pn(cosα) ir +
1
r

(
r

ρ

)n

P ′
n(cosα) iρ

−n
r

(
r

ρ

)n

Pn(cosα) ir −
1
r

(
r

ρ

)n

P ′
n−1(cosα) ir

]

=
Gm

ρ2

∑
n≥1

(
r

ρ

)n [
P ′

n+1(cosα) iρ − P ′
n(cosα) ir

]
.

So, the equation of motion (6) can be written as

d2r
dt2

+ µ
r
r3

= G
n∑

j=3

mj

ρ2
j

∑
k≥1

(
r

ρj

)k [
P ′

k+1(cosα) iρj
− P ′

k(cosα) ir
]
. (13)

2.2 The restricted three body problem

According to (2), in an inertial reference frame, the equations of the three body
problem are

r̈1 = −Gm2
r1 − r2

r321
−Gm3

r1 − r3

r331
,

r̈2 = −Gm1
r2 − r1

r312
−Gm3

r2 − r3

r332
, (14)

r̈3 = −Gm1
r3 − r1

r313
−Gm2

r3 − r2

r323
,

where rjk = |rj − rk|. If one of the masses can be neglected, in front of the
other two, the above equations can be simplified. Taking, for instance, m3 = 0
we get

r̈1 = −Gm2
r1 − r2

r321
,

r̈2 = −Gm1
r2 − r1

r312
, (15)

r̈3 = −Gm1
r3 − r1

r313
−Gm2

r3 − r2

r323
.

The first two equations of this system describe the Keplerian motion of m1 and
m2, which are usually known as primaries. Assuming some fixed motion for the
primaries (circular, elliptic,..) the third equation defines the restricted three
body problem (RTBP).
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Figure 5: Barycentric coordinates.

To study the RTBP, is useful to write the equations in a synodic reference
system which rotates about the barycenter. Let’s first consider the third body
acceleration as seen from the barycenter. Denoting by ri = ri − rB , i = 1, 2, 3,
the positions of the three bodies in this frame (where rB is the position vector
of the barycenter) and taking into account that

rjk = rj − rk = rj − rk = rjk, r̈k = r̈k − r̈B = r̈k,

due to conservation of linear momentum, we see that the equations of motion
(14) and (15) are independent of any particular inertial frame. From now on, we
will assume that (15) are the equations of the RTBP in an inertial barycentric
reference frame.

One particular case of the RTBP is the circular restricted three body prob-
lem, in which m1 and m2 describe circular orbits around their barycenter. For
this problem we will use a synodic reference system in which the two primaries
remain at rest on the x–axis. If R(t) is the transformation between both ref-
erence frames, defined by the constant angular velocity ω = (0, 0, n)T of the
rotating frame with respect to the fixed one, we have

ρ = R(t)r,

where ρ denotes the synodical position and r the corresponding barycentric one.
Recall that

d2r
dt2

=
d2ρ

dt2
+ 2ω ∧ dρ

dt
+ ω ∧ (ω ∧ ρ), (16)

Denoting by ρ = (x, y, z)T the synodic position of m3, its Coriolis and cen-
tripetal accelerations are

ω ∧ dρ

dt
= n

 ẏ
−ẋ

0

 , ω ∧ (ω ∧ ρ) = n2

 x
y
0

 ,

and the synodic equations of the RTBP become

ẍ− 2nẏ − n2x = −Gm1
(x− x1)
r313

−Gm2
(x− x2)
r323

=
∂

∂x

(
Gm1

r13
+
Gm2

r23

)
,

ÿ + 2nẋ− n2y = −Gm1
y

r313
−Gm2

y

r323
=

∂

∂y

(
Gm1

r13
+
Gm2

r23

)
,

z̈ = −Gm1
z

r313
−Gm2

z

r323
=

∂

∂z

(
Gm1

r13
+
Gm2

r23

)
.
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where (x1, 0, 0) and (x2, 0, 0) denote the two fixed synodic positions of m1 and
m2, respectively.

It is useful to introduce a suitable set of units in such a way that the distance
between the two primaries is equal to one, n = 1 and the unit of mass such that
the sum of the masses of the primaries is also one, so

m1 = 1− µ, m2 = µ,

with µ ∈ [0, 1]. With this choice G = 1 and we can set ρ1 = (µ, 0, 0)T , ρ2 =
(µ− 1, 0, 0)T so

r13 =
√

(x− µ)2 + y2 + z2, r23 =
√

(x− µ+ 1)2 + y2 + z2.

Using the auxiliary function

Ω =
1
2
(x2 + y2) +

1− µ

r1
+
µ

r2
,

where r1 = r13 and r2 = r23, the RTBP equations become

ẍ− 2ẏ =
∂Ω
∂x

,

ÿ + 2ẋ =
∂Ω
∂y

, (17)

z̈ =
∂Ω
∂z

.

System (17) has a first integral, the Jacobian integral, which can be obtained
multiplying equations (17) by ẋ, ẏ and ż, adding the results and integrating; in
this way we get

ẋ2 + ẏ2 + ż2 − 2Ω(x, y, z) = CJ . (18)

2.3 The n-body problem as a perturbation of the restricted
three body problem

Consider Newton’s equation for the motion of an infinitesimal body in the force
field created by n punctual masses. These masses can be assumed to be the
bodies of the Solar System, which will be denoted by S. In an inertial reference
frame, the equation of motion of the infinitesimal particle is

r′′ = G
∑
i∈S

mi
ri − r

‖r− ri‖3
,

where ri are the inertial coordinates of the bodies in S and r the ones of the
infinitesimal body. The prime denotes derivative with respect to some dynamical
time t∗.

The above system can be written in Lagrangian form with Lagrangian func-
tion

L(r, r′, t∗) =
1
2
r′ · r′ +

∑
i∈S

Gmi

‖r− ri‖
,

where · stands for the Euclidean scalar product.

11



In order to write the previous system as a perturbed restricted three body
problem, we first choose two bodies I, J ∈ S, with mI > mJ , which will play the
role of primaries. In this way, the mass parameter, µ, is defined as µ = mJ/(mI+
mJ). Next, we must introduce the synodic reference frame. Recall that the
origin of this system is set at the barycenter of I, J and that the positions of
the primaries are fixed at (µ, 0, 0) and (µ − 1, 0, 0). The transformation from
synodical coordinates ρ = (x, y, z)T to inertial (sidereal) ones, r, is defined by

r = b + kCρ, (19)

where

• The translation b, given by

b =
mIrI +mJrJ

mI +mJ
,

puts the barycenter of the primaries at the origin.

• The orthogonal matrix C = (e1, e2, e3), sets the primaries on the x-axis
and turns the instantaneous plane of motion of the primaries into the xy
plane (by requiring that the relative velocity of one primary with respect
to the other has its third component equal to zero). The columns of C are

e1 =
rJI

‖rJI‖
, e3 =

rJI × r′JI

‖rJI × r′JI‖
, e2 = e3 × e1,

being rij = rj − ri.

• k = ‖rJI‖ is a scaling factor which makes the distance between the pri-
maries to be constant and equal to 1.

Note that the previous change of coordinates is non-autonomous, because b, k
and C depend on time.

Additionally, we want to use the same time units as the one usual for the
RTBP, where 2π time units correspond to one revolution of the primaries. If
t∗ is the dynamical time and n is the mean motion of J with respect to I, we
introduce the adimensional time t by

t = n(t∗ − t∗0), (20)

where t∗0 is a fixed epoch.
If we denote by a dot the derivative with respect to t, then the Lagrangian

can be written as

L(ρ, ρ̇, t) = n2
(1

2
ḃ · ḃ + k̇ḃ · s + kḃ · ṡ +

1
2
k̇2ρ · ρ + kk̇s · ṡ +

1
2
k2ṡṡ

)
+

+
GmI

k[(x− µ)2 + y2 + z2]1/2
+

GmJ

k[(x− µ+ 1)2 + y2 + z2]1/2
+

+
∑
i∈S∗

Gmi

k‖ρ− ρi‖
,

where s = Cρ, ρi is the position of the body i ∈ S in dimensionless coordinates
and S∗ represents the Solar System bodies considered without the two primaries
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I, J . To get the above expression we have used that C is an orthogonal matrix
and, hence, it preserves the scalar product and the Euclidean norm.

Removing from the above function the term ḃ · ḃ (which does not affect the
equations of motion), multiply by a/(G(mI +mJ)) = 1/(n2a2) (where a is the
mean semi-major axis of the orbit of one primary around the other computed
using Kepler’s third law G(mI +mJ) = n2a3) and using the properties of the
orthogonal basis ei, we get

L(ρ, ρ̇, t) = a1(ẋ2 + ẏ2 + ż2) + a2(xẋ+ yẏ + zż) + a3(xẏ − ẋy) +
+a4(yż − ẏz) + a5x

2 + a6y
2 + a7z

2 + a8xz +
+a9ẋ+ a10ẏ + a11ż + a12x+ a13y + a14z +

+a15

(
1− µ

[(x− µ)2 + y2 + z2]1/2
+

µ

[(x− µ+ 1)2 + y2 + z2]1/2
+

+
∑
i∈S∗

µi

[(x− xi)2 + (y − yi)2 + (z − zi)2]1/2

)
,

where the ai, i = 1, ..., 15 are time dependent functions depending on k, C, b
and a (see [7]).

¿From the above Lagrangian we can write the second-order differential equa-
tions of motion as

ẍ = b1 + b4ẋ+ b5ẏ + b7x+ b8y + b9z + b13
∂Ω
∂x

ÿ = b2 − b5ẋ+ b4ẏ + b6ż − b8x+ b10y + b11z + b13
∂Ω
∂y

(21)

z̈ = b3 − b6ẏ + b4ż + b9x− b11y + b12z + b13
∂Ω
∂z

being

Ω =
1− µ√

(x− µ)2 + y2 + z2
+

µ√
(x− µ+ 1)2 + y2 + z2

+
∑
i∈S∗

µi√
(x− xi)2 + (y − yi)2 + (z − zi)2

.

where

b1 =−1
k

b̈ · e1, b2 =−1
k

b̈ · e2, b3 =−1
k

b̈ · e3,

b4 =−2k̇
k
, b5 =2 ė1 · e2, b6 =2 ė2 · e3,

b7 = ė1 · ė1 −
k̈

k
, b8 =

2k̇
k

ė1 · e2 + ë1 · e2, b9 = ė1 · ė3,

b10 = ė2 · ė2 −
k̈

k
, b11 =

2k̇
k

ė2 · e3 + ë2 · e3, b12 = ė3 · ė3 −
k̈

k
,

b13 =
a3

k3
.

We note that setting bi = 0 for i 6= 5, 7, 10, 13, b5 = 2, b7 = b10 = b13 = 1
and skipping the sum over S∗ in Ω, the equations of motion become the usual

13



RTBP equations with mass parameter µ. Therefore, we can see equations (21)
as a perturbation of the RTBP equations. Once the primaries have been fixed,
we will get an idea of the order of magnitude of he perturbation by looking at
the first coefficient of the Fourier expansions of the bi functions. The Fourier
analysis of this functions is done in [7] for different systems.
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3 Gravispheres

3.1 Spheres of gravitation

Consider three mass points m1, m2 and m3. We will assume that m3 < m2 <
m1. The modulus of the gravitational forces acting on m3 towards m1 and m2

are
F13 = G

m1m3

r213
, F23 = G

m2m3

r223
.

The locus of points where F13 < F23 defines the sphere of gravitational at-
traction of m2 with respect to m1. The location and radius of this sphere is
determined by

F13 = G
m1m3

r213
= G

m2m3

r223
= F23,

this is
r23
r13

=
√
m2

m1
< 1. (22)

The locus of points defined by this equation is a sphere, whose diameter is
defined by points A and B, as shown in Figure 6. According to (22), when m3

r12 

  3 m

  1 m   2 m

r23 

r13 

O

r

sA B

Figure 6: Sphere of gravitation.

is located at the collinear points A and B we have

r − s

r12 − (r − s)
=
√
m2

m1
=

r + s

r12 + r + s
,

from which we get the radius r and the displacement s of the centre of the
sphere of gravitation as a function of the distance r12

r =

√
m2/m1

1−m2/m1
r12, s =

m2/m1

1−m2/m1
r12.

The spheres of gravitation are not of much interest since, for instance, the
Moon is not inside the sphere of gravitation of the Earth. Denoting by S, E and
M the Sun, the Earth and the Moon, respectively, the Moon should be inside
the Earth’s sphere of gravitation if

G
mSmM

r2SM

< G
mEmM

r2EM

, ⇔ rEM <

√
mM

mS
rSM ,
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When the Moon is between the Sun and the Earth (at point A of Figure 6) we
have that rSM +rEM = 1 AU = 1.5×108 km, and the above inequality becomes

rEM <
(mE/mS)1/2

1 + (mE/mS)1/2
AU ≈ 2.5× 105 km,

since mS/mE ≈ 3 × 105. In this way, the Moon which is at a mean distance
from the Earth of 3.85 × 105 km is clearly outside the sphere of gravitation of
the Earth.

3.2 Spheres of influence

The concept of sphere of influence was introduced by Laplace in his work on the
motion of a comet when it approaches Jupiter. It is useful to establish a criteria
to choose the origin of coordinates along the different stages of the motion.

According with Laplace, in order to fix which body (Sun or Jupiter) has
a dominant effect on the motion of a third body (comet), it is necessary to
calculate the quotients of the disturbing force with respect to the Keplerian
force (4) for both systems: Sun–comet–Jupiter and Jupiter–comet–Sun. The
system with the smallest quotient will be the most suitable for describing the
motion of the third body. Supposing r much less than ρ, the surface where both
quotients are equal is almost spherical. For this reason, the limiting surface is
called sphere of influence.

In order to settle the sphere of influence, we consider the motion of a body
of mass m3 (comet) under the influence of two bodies of masses m1 (Sun) and
m2 (Jupiter). Next we are going to write the equations of the relative motion of
m3 with respect to m1 and m2 and to compare the magnitude of the disturbing
forces. We write the equation (4) of the relative motion of m3 with respect to

  1 m   2 m

  3 m

r23 d = 
r13 

r = 

ρ = 

r12 

α β

Figure 7: Sphere of influence.

m1, taking into account the effect of m2, as

d2ρ

dt2
= −G(m1 +m3)

ρ

ρ3
−Gm2

(
r
r3
− d
d3

)
= Fk

1 + Fp
1,

Similarly, the equation of motion of m3 with respect to m2, taking into account
m1, can be written as

d2d
dt2

= −G(m2 +m3)
d
d3
−Gm1

(
r
r3
− ρ

ρ3

)
= Fk

2 + Fp
2.

In both equations, the superscript k denotes the Keplerian term and p the
disturbing one. The quotients between the modulus of the Keplerian and the

16



disturbing components of the acceleration are

F p
1

F k
1

=
m2

[(
r
r3
− d
d3

)
·
(

r
r3
− d
d3

)]1/2

m1 +m3

ρ2

,

F p
2

F k
2

=
m1

[(
r
r3
− ρ

ρ3

)
·
(

r
r3
− ρ

ρ3

)]1/2

m2 +m3

d2

.

(23)

If α is the angle between r and ρ and β the angle between r and d (see Figure
4), r can be expressed as

r = ρ cosα+ d cosβ,

and
cosα =

r

ρ
− d

ρ
cosβ.

Using this equality in (23), we obtain

F p
1

F k
1

=
m2

m1 +m3

ρ2

d2

[
1− 2

d2

r2
cosβ +

d4

r4

]1/2

,

F p
2

F k
2

=
m1

m2 +m3

d2

ρ2

[
1− 2

ρ

r

(
1− d

r
cosβ

)
+
ρ4

r4

]1/2

.

(24)

In order to determine the sphere of influence, we equate both expressions, ob-
taining(

d

ρ

)4

=
m2(m2 +m3)
m1(m1 +m3)

[
1− 2 (d/r)2 cosβ + (d/r)4

1− 2 (ρ/r) (1− (d/r) cosβ) + (ρ/r)4

]1/2

(25)

Let us suppose that the mass of one primary is much greater than the other
(m1 >> m2), and at the same time m3 is much smaller than m1 and m2. In
this situation, if the third body is on the sphere of influence of m2, then d >> r.
In fact, we would like to know of which order is the quotient d/r, so we will
expand the right side of (25) in powers of d/r. First, we rewrite (25) as(

d

r

)4

=
m2(m2 +m3)
m1(m1 +m3)

(ρ
r

)4
[

1− 2 (d/r)2 cosβ + (d/r)4

1− 2 (ρ/r) (1− (d/r) cosβ) + (ρ/r)4

]1/2

(26)

Then, using the relation

ρ2

r2
= 1 +

d2

r2
− 2

d

r
cosβ (27)

(see Figure 4), we can expand the denominator of (26) in powers of (d/r),
obtaining[
1− 2

ρ

r

(
1− d

d

r
cosβ

)
+
(ρ
r

)4
]1/2

=
(
d

r

)(
1 + 3 cos2 β − 4 cosβ

d

r
+O

(
(d/r)2

))
.
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Substituting this expression and expanding the numerator in (26) and using
(27), we get(
d

r

)5

=
m2(m2 +m3)
m1(m1 +m3)

[
1√

1 + 3 cos2 β
− 2

cosβ(1 + 6 cos2 β)
(1 + 3 cos2 β)3/2

d

r
+O((d/r)2)

]
,

and, therefore,

d

r
=
(
m2(m2 +m3)
m1(m1 +m3)

)1/5( 1
(1 + 3 cos2 β)1/10

+O(d/r)
)
. (28)

Finally, if we neglect the terms of order d/r on the right side, m3 in front of
m1 and m2 and use the fact that

1 < (1 + 3ν2)−1/10 < 1.15,

we get, approximately,
d

r
≈
(
m2

m1

)2/5

.

The last expression defines a sphere around m2 such that on its surface the
quotient between the disturbing acceleration and the acceleration due to the
primary are equal for both descriptions of the motion. Inside this sphere, called
sphere of influence of m2 with respect to m3, we will consider the motion of m3

taking m2 as a origin of coordinates, while in the exterior of the sphere will be
better to take m1 as the origin.

Planet Rsph (AU) m2/m1 d (km)
Mercury 0.387099 0.000000164 112,000
Venus 0.723322 0.00000245 616,000
Earth 1.000000 0.00000304 929,000
Mars 1.523691 0.000000324 578,000
Jupiter 5.202803 0.000954786 48,200,000
Saturn 9.538843 0.000285584 54,500,000
Uranus 19.181951 0.000043727 51,900,000
Neptune 30.057779 0.000051776 86,800,000
Pluto 39.481687 0.0000000074 3,300,000

Table 2: Radius of the spheres of influence of planets

Next we will see a different approach to obtain the same equalities. As we
have already seen, the terms Fk

1 and Fp
1 of the motion of m3 under the influence

of m1 and considering m2 as a perturbation can be written as

Fk
1 = −G(m1 +m3)

ρ2
iρ, Fp

1 = −Gm2

d2

(
d2

r2
ir − id

)
,

where ir, iρ, id are unitary vectors in the directions of r, ρ and d, respec-
tively. For the motion of m3 considering m2 as the principal body and m1 the
perturbing one, we use (13) to obtain

Fk
2 = −G(m2 +m3)

d2
id, F

p
2 = −Gm1

r2

∞∑
k=1

(
d

r

)k (
P ′

k+1(cosβ)ir − P ′
k(cosβ)id

)
,
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where Pn(z) are the Legendre’s polynomials. If we compute the quotients of the
components of the accelerations

F p
1

F k
1

=
m2

m1 +m3

( r
d

)2
(
ρ2

r2

)[
1− 2

d2

r2
cosβ +

d4

r4

]1/2

F p
2

F k
2

=
m1

m2 +m3

(
d

r

)3√
1 + 3 cos2 β

[
1 +

6 cos3 β
1 + 3 cos2 β

(
d

r

)
+O

(
d

r

)2
]
.

Equating these quantities, using (27) and that d/r is small, we get again the
equation (28).

3.3 Hill’s spheres

Together with the above two mentioned types of spheres, another type, namely,
the Hill sphere, can also be distinguished. This concept appeared in connection
with the restricted three body problem. It was shown by Hill that, at given
values of the ratios of the masses of the two primaries m1/m2 and there is a
definite zone (sphere) with radius RH around m2 (or m1) within which the third
body of small mass can stay for an infinitely time, initially with a closed orbit
around the given body m2 (or m1). The radius of Hill’s sphere RH cannot be
represented by a simple formula depending on the configuration of the masses.
However, the computations lead to an important conclusion: the radius of Hill’s
sphere exceeds the radii of both spheres for any values of m1 and m2. Thus,
e.g. in the case of the Moon Hill’s sphere lies at RH = 700 000 km from the
Earth, whereas the distance between the Moon and the Earth varies between
the limits 364 000 km and 402 000 km, being 384 000 km on average. Hence,
the Moon lies deeply within Hill’s sphere surrounding the Earth, and cannot
leave this sphere.

The Jacobian integral of the RTBP, equation (18), can be used to obtain the
velocity V = ẋ2 + ẏ2 + ż2 of the third body at an arbitrary position. Therefore,
for various values of CJ one can have different values of V at the same position
of the small particle. As a matter of fact, equation (18) is nothing other than
the equation of a surface on which the small body has a fixed velocity. In the
case when V = 0 this equation becomes

x2 + y2 +
2(1− µ)

(x− µ)2 + y2 + z2)1/2
+

2µ
(x− µ+ 1)2 + y2 + z2)1/2

= CJ , (29)

and gives the geometrical location of points at which the velocity of the in-
finitesimal body is zero. Obviously, on one side of this surface the velocity will
be real and on the other complex. Though, when the velocity is real, we can say
nothing about the orbit, at least we can be sure that, in that region, motions
are possible.

The form of the family of zero velocity surfaces defined by equation (29) and
corresponding to different values of CJ and µ should be rather complicated. To
reveal the geometry of these surfaces, we can study their intersections with the
coordinate planes. The forms of these intersections should reveal the structure
of the surfaces.
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If we set z = 0 in (29) we obtain

(x2 + y2) +
2(1− µ)

(x− µ)2 + y2)1/2
+

2µ
(x− µ+ 1)2 + y2)1/2

= CJ . (30)

We consider two limit cases:

1. The motion takes place far from the primaries.

In this case x and y will be large and the second and third terms in (30)
small, so the equation can be written in the form

x2 + y2 = CJ − ε(x, y), (31)

where ε(x, y) is a small quantity. This equation defines a curve rather
close to the circle of radius (CJ − ε(x, y))1/2. At large values of the Ja-
cobi constant CJ , the curves tend to the circle of radius

√
CJ . With the

decrease of CJ , the curves will be ovals within the mentioned circles and
on decreasing the Jacobi constant the ovals contract.

2. The motion takes place close to the primaries.

In this case x and y will be small and the first term of (30) is small
compared with the second and third terms, so that we have

2(1− µ)
(x− µ)2 + y2)1/2

+
2µ

(x− µ+ 1)2 + y2)1/2
= CJ − ε(x, y), (32)

which is the equation of the equipotential curves for two gravitating cen-
tres. For large values of CJ the zero velocity curves are the two relatively
lesser circles, which are slightly deformed. On increasing CJ the small
ovals increase simultaneously deforming more and more.

In Fig. 8, the shape of the zero velocity curves for different values of the Jacobi
constant are displayed. For large values of the Jacobi Constant the regions
where the motion is possible are not connected, while for CJ < 3 the surfaces
do not intersect the plane z = 0 and planar motion is possible everywhere.

The equilibrium points of the RTBP play an important role in the shape
of the zero velocity surfaces. The equilibrium points (also called Lagrangian
points) are the solutions of the equations

∂Ω
∂x

= 0,
∂Ω
∂y

= 0,
∂Ω
∂z

= 0,

where Ω(x, y, z) is the function involved in the equations of motion (17). If the
third particle is place in an equilibrium point with zero velocity, its acceleration
will be zero as well, so it will stay there. There are five equilibrium points,
all of them in the z = 0 plane, usually labelled L1, L2, L3, L4 and L5. The
first three points, also called collinear points, are on the horizontal synodical
axis, while the last two, called triangular points, form equilateral triangles with
the primaries. The collinear equilibrium points are situated at (xi, 0, 0), for
i = 1, 2, 3, and it can be shown that

x1 = −1−
(µ

3

)1/3

− 1
3

(µ
3

)2/3

+
28
9

(µ
3

)
+O(µ4/3),

x2 = −1 +
(µ

3

)1/3

− 1
3

(µ
3

)2/3

+
26
9

(µ
3

)
+O(µ4/3),

x3 = 1 +
5
12
µ+O(µ3)

(33)
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(see, for instance, [11]).
The shape of the zero velocity surfaces depends on the value of the Jacobi

constant. There exists three critical values of the Jacobi constant for which the
shape of the zero velocity surfaces change, which are the values of CJ at the
collinear equilibrium points Li, i = 1, 2, 3. Using the expressions (33) and (18),
the values of the Jacobi constant at the equilibrium points are

CJ1 = 3 + 9
(µ

3

)2/3

− 11
(µ

3

)
+O(µ4/3),

CJ2 = 3 + 9
(µ

3

)2/3

− 7
(µ

3

)
+O(µ4/3),

CJ3 = 3 + 2µ− 49
48
µ2 +O(µ3).
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Figure 8: Zero velocity curves (the intersection of the zero velocity surfaces with
the z = 0 plane) for µ > 0. The motion is forbidden in the filled areas. The tick
marks on the horizontal axis show the position of the primaries.

In Fig. 9, the shape of the zero velocity surfaces for the same range of values
of the Jacobi constant are shown. As it can be seen, for CJ < 3, they do not
intersect the plane z = 0.
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Figure 9: Zero velocity surfaces for µ > 0.
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4 Patched conics

The patched conics method allows the design of missions in which a spacecraft
visits several bodies, such as planets or natural satellites, in the solar system.
In a first approximation the mission analysis is done considering the trajectory
of the spacecraft as a sequence of Keplerian orbits.

When approaching a mission by a sequence of two body problems, we can
use conics for the different phases. For instance, for a Earth-Mars mission, the
spacecraft starts its motion inside the gravisphere of the Earth and leaves this
sphere following an hyperbolic trajectory with respect to the Earth. Once is out
the sphere of influence of the Earth, the spacecraft follows an elliptic orbit with
respect to the Sun until its close enough to Mars so us to be inside its sphere of
influence. Once inside this sphere, its orbit with respect to Mars is hyperbolic.

When in the vicinity of a planet, a vehicle in a solar orbit experiences velocity
perturbations. The velocity changes depend on the relative velocity between
the vehicle and the planet and the distance separating the two at the point of
closest approach. If only the gravitational field of the planet affected the motion
of the spacecraft, the vehicle would make its approach along a hyperbolic path.
Actually, the period time for which the planet’s gravitation is significant is small
when compared with the total time of the mission. Furthermore, during this
time, the distance between the planet and the spacecraft is small when compared
with its distance from the Sun. As a consequence, for the brief period of contact,
solar gravity effects both the planet and the vehicle in essentially the same way.
Therefore, in the discussion of planetary approach, solar gravity may be ignored
with the assurance that its effects would not alter the results significantly.

4.1 Passage near a planet

We can view the effect of a planetary contact as an impulsive change in the veloc-
ity. At a sufficiently great distance, the motion of the space vehicle with respect
to a target planet is essentially along the asymptotes of the approach/departure
hyperbola and the velocity change corresponds to a rotation of its velocity vector
with respect to the planet.

Let R(t), V(t) be the heliocentric position and velocity of the spacecraft at
the epoch t, and r(t), v(t) the corresponding values with respect to a certain
planet. This is, if Rpl(t) and Vpl(t) are the heliocentric position and velocity
of the planet at the epoch t, then

r(t) = R(t)−Rpl(t),
v(t) = V(t)−Vpl(t). (34)

After the hyperbolic fly-by of the planet, the gravity assist manoeuvre results
in a rotation of the spacecraft velocity vector v around the angular momentum
axis c = (c1, c2, c3)T = r(t) ∧ v(t). The rotation matrix of angle α around c is
given by

R(α) =



cosα
c3
c

sinα −c2
c

sinα

−c3
c

sinα cosα
c1
c

sinα

c2
c

sinα −c1
c

sinα cosα


. (35)
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We define ν, as is shown in Figure 10, as the angle between the asymptote and
the conjugate axis of the hyperbolic path of approach. In this way, if r(t1),
v(t1), r(t2) and v(t2) are the input and output positions and velocities of the
spacecraft at the sphere of influence of a certain planet (|r(t1)| = |r(t2)| = Rsph),
we have that in the planetocentric reference system

r(t2) = R(π − 2ν + 2γ)r(t1), v(t2) = R(2ν)v(t1),

where, according to Figure 10,

sin γ =
d∞
Rsph

, d∞ =
r(t1) ∧ v(t1)

v(t1)
. (36)

sphR

(t  )
1

v

(t  )
2

v

(t  )
2

r

(t  )
1

r

d  οο

π−2ν

2ν

γ

ν

Figure 10: Gravity assist rotation of the spacecraft velocity in the sphere of
influence of a planet (|r(t1)| = |r(t2)| = Rsph).

In order to compute the angle ν, recall that the modulus of the velocity for
the hyperbolic motion is given by

v2 = µ

(
2
r

+
1
a

)
,

where a is the eccentricity and semi-major axis of the hyperbolic orbit. So, since
Rsph is large

v2
∞ =

µ

a
, (37)

from which we can compute a if the values of the gravitational constant of the
planet µ = Gmpl and v∞ = v(t1) are known.

If e is the eccentricity of the hyperbola and rp the distance from the vertex
(point of closest approach of the spacecraft to the planet) to the focus, we have
that

rp = a(e− 1) =
µ

v2
∞

(e− 1).
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Figure 11: Hyperbolic motion.

Taking into account that (see Fig. 11)

e =
d

a
=

1
sin ν

, (38)

we can compute ν as

sin ν =
1

1 + rpv2
∞/µ

, (39)

from which we get that the eccentricity of the hyperbolic orbit is

e = 1 + rp
v2
∞
µ
. (40)

For some applications, it can be useful to compute ν as a function of the
distance d∞, where d∞ is a vector from the focus of the hyperbola and perpen-
dicular to one asymptote of the hyperbola. Since, according to Figure 11 and
equation (38)

d∞ = a e cos ν =
a

tan ν
, (41)

we get, using (37), that
tan ν =

µ

d∞v2
∞
. (42)

Also, by eliminating ν between (39), (41) and (42) we get the value of the
distance d∞ as a function of rp

d∞ = rp

√
1 +

2µ
rpv2

∞
. (43)

The duration of the spacecraft motion inside the sphere of influence of the
planet, ∆t, will be computed in the next section.

Summarising: If t1 and t2 = t1 + ∆t are, respectively, the epochs at which
the spacecraft enters and exists the sphere of influence; R(t), V(t) denote the
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heliocentric position and velocity of the spacecraft at the epoch t, and Rpl(t)
and Vpl(t) are the heliocentric position and velocity of the planet, then

R(t2) = Rpl(t2) +R(π − 2ν + 2γ)r(t1),
V(t2) = Vpl(t2) +R(π − 2ν)v(t1).

(44)

where
r(t1) = R(t1)−Rpl(t1), v(t1) = V(t1)−Vpl(t1),

and the rotation matrix R as well as the angles ν and γ are given by (35), (39)
and (36), respectively.

4.2 Hyperbolic motion inside the sphere of influence

In general it can be assumed that the time spent in the passage close the planet,
∆t, is small when compared with the total time of the mission, so it can be
considered that the spacecraft performs an instantaneous change of the in-bound
velocity to the out-bound velocity. Nevertheless, this assumption cannot be
always done. For example, in circumlunar trajectories the time spent within
the sphere of influence is significant when compared with the total time.

rp

r(t   ) 1

v(t   ) 1

ah

Sphere of influence

Planet
ν

dοο

Figure 12: Hyperbolic motion inside the sphere of influence of a planet.

Let us suppose that the spacecraft follows an elliptic trajectory until it
reaches the sphere of influence of a planet. Let r(t1) and v(t1) be the incoming
position and velocity (at the sphere of influence) with respect to the planet (see
Fig. 12). These vectors determine the hyperbolic trajectory with the planet at
the focus. We want to calculate the elements of the hyperbolic orbit, ah and
eh, as well as the minimum distance to the planet rp and the time of flight from
the incoming to the outgoing point.

First, using the energy of the orbit, the semi-major axis ah of the hyperbola
is

ah =
(
v(t1)2

µp
− 2
r(t1)

)−1

, (45)

where µp is the gravitational constant of the planet.
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Using that the radius vector magnitude for a hyperbolic orbit can be ex-
pressed in terms of the hyperbolic eccentric anomaly F as

r = ah(eh coshF − 1),

the minimum distance to the planet is rp = ah(eh − 1) or, using (38)

rp = ah(csc ν − 1). (46)

Finally, to calculate the time spent inside the sphere of influence, ∆t, we use
the Kepler’s equation

n(t− Tp) = eh sinhF − F, (47)

where n2a3
h = µp and Tp is the epoch at pericenter. Using the symmetry of the

orbit, t = Tp −∆t/2 at the incoming point, so

∆t = −2

√
a3

h

µp
(eh sinhF − F ), (48)

where F is obtained from r(t1) = ah(eh coshF − 1), so

coshF =
(
r(t1)
ah

− 1
)

1
eh
.

4.3 A simplified model for the gravity assist

Relations (44) represent the dynamic model of the spacecraft perturbation ma-
noeuvre taking into account the size of the gravisphere of the planet as well as
its motion during the perturbation manoeuvre.

The comparison of the size of the attracting planet with the radius of its
orbit allows the following significant assumption: the sphere of influence of the
attracting body can be considered infinitesimal as compared to the radius of its
orbit and infinitely large relative to the size of the attracting body itself.

In accordance with the above assumption, the gravity assist manoeuvre can
be approximated by an instantaneous rotation of the arrival velocity vector (at
infinity) v∞ with respect to the centre of the fly-by body and can be represented
in accordance with the vector diagram of the velocities of the spacecraft and the
attracting body (see Figure 13). In this case, the duration of the gravity assist
manoeuvre is ∆t = t2 − t1 = 0.

In the Figure 13, V(t1) is the incoming inertial velocity of the spacecraft
towards the fly-by body; V(t2) is its outgoing velocity after the gravity assist
manoeuvre; v∞1, v∞2 are respectively the initial and final hyperbolic velocities
excesses of the spacecraft (directed along the incoming and outgoing asymptotes
of the fly-by hyperbola) and

‖v∞1‖ = ‖v∞2‖ = v∞.

The efficiency of the gravity assist manoeuvre depends on the rotation of
the velocity vector v∞1 by the angle 2ν that is determined by the gravitational
constant of the fly-by body and the fly-by altitude relative to its surface. Ac-
cording to (39), for a fixed value of v∞, the angle ν increases as the distance
rmin decreases, so we can write that the maximum value of ν is

νmax = arcsin
(

µ

µ+ rminv2
∞

)
, (49)
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Figure 13: Vector diagram of the gravity assist manoeuvre.

where rmin is the minimum admissible distance to the centre of the planet at
the pericenter of the fly-by hyperbola (which must be equal or greater than the
radius of the planet plus the height of its atmosphere).

As can be seen from the diagrams in Figure 13, the rotation of v∞1 may
produce either an increase ‖V(t2)‖ > ‖V(t1)‖ (acceleration perturbation ma-
noeuvre) or a decrease ‖V(t2)‖ < ‖V(t1)‖ (deceleration perturbation manoeu-
vre) in the spacecraft outgoing velocity. In the case where the spacecraft passes
through the point of intersection of the orbits before the fly-by body, angles ν
and γ add up (v∞1 rotates counter-clockwise) and the spacecraft velocity de-
creases (case a). If the spacecraft flies behind the fly-by body, the angles ν and
γ are subtracted (v∞1 rotates clockwise) and the spacecraft velocity increases
(case b).

¿From Figure 13 it can be seen that the minimum value of the outgoing
velocity V(t2) can be attained when 2ν+γ = π and the maximum value can be
reached when the angles are subtracted γ−2ν = 0. In both cases, the spacecraft
post-perturbation velocity will be collinear to the planet’s velocity vector

Vmin(t2) = Vpl(t2)− v∞1, Vmax(t2) = Vpl(t2) + v∞1.

It should be noted that there are cases for which the change in the spacecraft
velocity (increase or decrease) is the same whatever the direction of rotation of
v∞1. This takes place when the spacecraft incoming velocity vector is collinear
(or almost collinear) to the velocity vector of the fly-by body. If V (t1) < V pl,
then only acceleration perturbation manoeuvres can occur. If V (t1) > V pl a
deceleration manoeuvre takes place. This is illustrated in Figure 13 (c and d
respectively).

When analysing such cases, one should take into account that, depending
on altitude of the spacecraft fly-by relative to the planetary surface, the angle
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Mercury 3.01 Mars 3.55 Uranus 15.18
Venus 7.33 Jupiter 42.73 Neptune 16.75
Earth 7.91 Saturn 25.62 Pluto 1.10

Table 3: Maximum possible variations of the spacecraft velocity due to planetary
fly-bys (in km/s).

of vector rotation v∞1 can vary from 0 to 2νmax (according to Eq. 49).

4.3.1 Maximum velocity variation

As it has been shown, a fly-by manoeuvre produces changes in both the modulus
and direction of the spacecraft velocity. One of the criteria in assessing such
manoeuvres is the value of the maximum change in velocity that can be obtained
in a fly-by of a given body in the solar system.

The spacecraft velocity change is equal to

∆V = V(t2)−V(t1).

In accordance with Figure 13 and using (39), we can write

∆V = ‖∆V‖ = 2v∞ sin ν =
2v∞µ

µ+ rpv2
∞
,

where µ is the gravitational constant of the fly-by body and rp is the pericentral
distance of the fly-by hyperbola.

The maximum change in the modulus of the velocity ∆V , for a given value
of v∞ in the fly-by of a given body (e.g. a planet), is attained when rp is equal
to the minimum admissible distance to the centre of the planet (rmin). It is
clear that one can not choose rp equal to the radius of the planet rpl, since this
manoeuvre is impossible to implement, but it is of certain interest in assessing
the potentialities of the fly-by body.

One can also study the values of hyperbolic velocity excess v∞ that provide
maximum possible change in the module of the spacecraft velocity vector for
any fly-by body. From the condition

∂∆V
∂v∞

∣∣∣∣
rp=rpl

= 0,

it can be established that ∆Vmax is attained when

v∞ =
( µ

rpl

)1/2

,

this is, the hyperbolic velocity excess should be equal to the velocity of the
planet (assumed to be in circular motion). Table 3 gives the values of ∆Vmax

for all nine planets of the solar system to show the perturbation potentialities
of the planets
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4.4 Effect of perturbation manoeuvres on the spacecraft
orbital characteristics

When analysing interplanetary missions with planetary fly-bys, it is of interest
to estimate the effect of perturbation manoeuvres on the flight trajectory pa-
rameters (orbital constants or elements of the post-perturbation orbit) which
determine the further motion of the spacecraft. With this knowledge, a gravity
assist manoeuvre at an attracting body can be used to implement a controlled
change of the spacecraft characteristics.

Generally speaking, the elements of post-fly-by spacecraft orbit can be esti-
mated directly using the relations (44) which give R(t2) and V(t2). Obviously,
such an estimate can be made only based on numerical calculations taking into
account all the factors affecting the motion of both the spacecraft and the fly-by
planet.

The simplified model of the preceding section, in which the gravisphere of
the fly-by body is assumed to have zero radius, makes it easier to assess the
perturbation effect of a planet on the characteristics of spacecraft post-fly-by
orbit. In this case, the perturbation effect on the trajectory is a rotation of
the spacecraft planetocentric velocity by an angle 2ν within the plane of the
spacecraft fly-by hyperbola, which is uniquely determined by the incoming and
outgoing spacecraft velocity vectors at the fly-by body. This makes it possible
to conduct analysis on a vector diagram of velocities (see Figure 14).
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Figure 14: Schematic diagram of gravity assist manoeuvre.

Thus, the parameters of the post-fly-by orbit (both angular parameters and
those determining the size and form of the spacecraft new orbit) will depend
only on the parameters of the spacecraft hyperbolic velocity being formed in
the gravitational field of the fly-by body. By varying the arrival angles and
velocities, as well as the altitude at the fly-by body, the parameters of the post-
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fly-by orbits can cover a relatively wide range.

4.4.1 Variations of the energy, angular momentum and line of ap-
sides

The scheme of perturbation manoeuvre will be considered within the framework
of the model described above. Suppose that a spacecraft and an attracting
body with a gravitational constant µp move along coplanar orbits in the central
gravitational field of a body (with a gravitational constant µ). Denote their
locations and velocities at the moment of perturbation manoeuvre by Rpl and
Vpl for the celestial body and by R(t1) and V(t1) for the spacecraft. After
the gravity assist manoeuvre, V(t1) transforms into V(t2) (outgoing spacecraft
velocity) as a result of an instantaneous rotation of the hyperbolic velocity excess
v∞1 by an angle 2ν. In this case ‖v∞1‖ = ‖v∞2‖ = v∞. Projections of the
spacecraft incoming and outgoing velocities onto the x and y axis (see Figure
14) can be written as(

v∞ cos f + V pl cosχ
v∞ sin f + V pl sinχ

)
,

(
v∞ cos(π − f) + V pl cosχ
v∞ sin(π − f) + V pl sinχ

)
,

where V pl = ‖Vpl‖, χ is the angle between the x axis (in the direction of the
axis of the hyperbola) and Vpl, f is the angle between the asymptote and the
x-axis, which is related with ν by

f =
π

2
− ν,

Since the rotation of the velocity vector in the fly-by point is assumed instan-
taneous, then R(t1) = R(t2), and the change in the integral of the spacecraft
energy resulting from the fly-by manoeuvre is determined only by the variation
of the kinetic energy

∆h = V 2(t2)− V 2(t1) = −4v∞V pl cos f cosχ.

Two cases can be considered:

1. A fly-by before the attracting body χ = f−γ (the perturbation manoeuvre
reduces the spacecraft energy).

2. A fly-by behind the attracting body χ = f +γ (the perturbation manoeu-
vre increases the spacecraft energy).

We can write the change in the integral of the spacecraft orbital energy as

∆h = −4v∞V pl cos f cos(f ∓ γ). (50)

¿From the triangles of velocities we can determine the angle γ between the
velocity vectors of the fly-by body Vpl and v∞:

sin γ =
V (t1) sinα1

v∞
, cos γ =

V (t1) cosα1 − V pl

v∞
.
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Here α1 is the angle between Vpl and V(t1). Using equation (39) for the rotation
angle 2ν, we write

cos f = sin ν =
1

1 + rpv2
∞/µ

=
1

1 +mn2
,

sin f =
n(m2n2 + 2m)1/2

1 +mn2
,

v∞ =
[
V 2(t1) + (V pl)2 − 2V (t1)V pl cosα1

]1/2
.

Here, m = rp/r
pl is the relative pericentral distance of the hyperbola expressed

in terms of radii of the fly-by body, n = v∞/vcr is the relative hyperbolic excess
of the spacecraft velocity (in terms of local circular velocity at the surface of
the fly-by body vcr = (µ/r)1/2.

Returning to equation (50) and using the relationships obtained, we can
write the expression for the spacecraft post-fly-by energy for any values of the
initial energy h1 and the spacecraft incoming angle α1 as follows

h2 = h1−4V pl(1+mn2)−2
(
V (t1) cosα1 − V pl ± V (t1) sinα1(2mn2 +m2n4)1/2

)
.

(51)
Here, the upper sign refers to the decrease and the lower sign to the increase of
the spacecraft energy.

The change in the angular momentum of the orbit, as a result of the pertur-
bation manoeuvre, in the coplanar model considered here is determined as

∆C = R [V (t1) cosα1 − V (t2) cosα2] ,

where R = ‖R(t1)‖ = ‖R(t1)‖. Determining cosines of the spacecraft incoming
and outgoing angles from velocity triangles

cosα1 =
V 2(t1) + (V pl)2 − v2

∞1

2V (t1)V pl
, cosα2 =

V 2(t2) + (V pl)2 − v2
∞2

2V (t2)V pl
,

we get

∆C = R
V 2(t1)− V 2(t2)

2V pl
= −R ∆h

2V pl
= 2Rv∞ cos f cosχ. (52)

The sum of the collinear vectors C(t1) and ∆C yields the post-fly angular
momentum C(t2).

Using equations (51) and (52) we write the final expression for the post-
fly-by constant of areas of the spacecraft orbit for any values of the spacecraft
initial velocity V(t1) and in-going angle α1 as follows

C(t2) = C(t1) +
2R

(1 + mn2)2

“
V (t1) cos α1 − V pl ± V (t1) sin α1(2mn2 + m2n4)1/2

”
.

(53)

Finally, we determine the perturbation change in the Laplace (eccentricity)
vector controlling the location of the apsides of the spacecraft orbit in the plane
of its orbital movement

∆e = e(t2)− e(t1) = −C(t2) ∧V(t2)−
µR(t2)
R(t2)

+ C(t1) ∧V(t1) +
µR(t1)
R(t1)

.

Since, as we have already said, R(t1) = R(t2) we have that

∆e = C(t1) ∧V(t1)−C(t2) ∧V(t2).
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Therefore, the angle of rotation of apsides line δ of the orbit resulting from
the perturbation manoeuvre is equal to the angle of rotation of the spacecraft
velocity vector, and can be found as follows:

cos δ =
V 2(t1) + V 2(t2)−∆V 2

2V (t1)V (t2)
.

Using that

∆V = 2v∞ cos f =
2v∞

1 +mn2
,

we get

cos δ =
(V 2(t1) + V 2(t2))(1 +mn2)− 2v∞

2V (t1)V (t2)
.

It is evident from (51) and (53) that with the use of the well known relationship
we can obtain the value of the post-fly-by Laplace integral for any values of the
spacecraft initial energy and incoming angles

λ(t2) = (µ2 + h(t2)C2(t2))1/2.

Using the obtained values of constants h, C and e at t = t2, it is easy to obtain
the Keplerian elements of the post-fly-by orbit for the well-known relationships
of celestial mechanics.

As can be seen from relationships (50) and (52), the conditions of maximum
change in the constants of integrals of energy and areas are satisfied at the same
value v∞ =

√
µ/rpm and f = 60o. In this case, the values of the angle χ are

1. χ = 0 in the case of decrease in ∆h and increase in ∆C,

2. χ = π in the case of increase in ∆h and decrease in ∆C.

The optimal angles αopt(t1) for approaching the attracting mass at a given value
of the spacecraft orbital energy h(t1) can be selected based on the condition of
maximising the increment of the energy constant

∆hmax = max
α(t1)

∆h(µ, r,R, V (t1), α(t1),m), (54)

with V (t1) = ctant and m = ctant.
The computation of the optimal angles for the spacecraft to approach the

fly-by body and to determine the maximum spacecraft energy change for in-
coming orbits bust be done numerically. Figures 15 and 16 represent the curves
∆hmax(h(t1)) which characterise the maximum spacecraft energy increase at-
tainable from perturbation manoeuvres at each of the solar system planets.
The corresponding optimal changes αopt(h(t1)) of the spacecraft approaching
the planet are shown in Figures 17 and 18 for m=1.

The given results show that Jupiter has the highest potentialities of all the
planets (∆hmax ≈ 1100 km2/s2). Venus, Saturn and Earth display lesser poten-
tialities (∆hmax ≈ 400 to 500 km2/s2), and even lower potentialities are typical
of Mercury, Mars, Uranus and Neptune (∆hmax ≈ 150 to 250 km2/s2). It is
worth mentioning that for the planets of the Jovian group, the values of ∆hmax

lie in the zone of high-energy incoming orbits (hyperbolic or parabolic) and their
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Figure 15: Maximum change in the spacecraft orbital energy constant at planets.
1 = Mercury, 2 = Venus, 3 = Earth, 4 = Mars.

Figure 16: Maximum change in the spacecraft orbital energy constant at planets.
1 = Jupiter, 2 = Saturn, 3 = Uranus, 4 = Neptune, 5 = Pluto.

peaks are not distinct. For the planets of the Earth group, these maxima are
more clearly defined, and are located in the zone of elliptic incoming orbits.

The optimal angles of the spacecraft approaching the fly-by planet are rather
high for the planets of the Jovian group (αopt ≈ 1.5 to 2.0 rad) and show small
variations within a wide range of incoming energies. The planets of Earth’s
group have clearly defined minima (0.1–0.2 irad) in the zone of extreme change
in spacecraft energy and increase drastically (up to 1 rad) especially in the case
of a shift into the zone of orbits with low incoming energies.

The above results were obtained by numerical solution of equation (54) and
refer to the fly-by where the pericentral altitude of the fly-by hyperbola coincides
with the radius of the fly-by body. This obviously limiting case cannot be
accomplished in practice (that is, the condition m > 1 must hold). An increase
in the relative pericentral altitude m obviously results in a reduction in the
efficiency of the gravity assist manoeuvre (in accordance with equation (51).
An examination of the effect of changes in m on the maximum values of the
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Figure 17: Optimal angle of approaching planets to perform a gravity assist
manoeuvre. 1 = Mercury, 2 = Venus, 3 = Earth, 4 = Mars.

Figure 18: Optimal angle of approaching planets to perform a gravity assist
manoeuvre. 1 = Jupiter, 2 = Saturn, 3 = Uranus, 4 = Neptune, 5 = Pluto.

perturbation increment in energy showed that throughout the range of incoming
energies, there is virtually no change in the pattern curves (the growth in m
results in a monotonic decrease in max ∆h, while the peaks of the curves move
slightly toward lower incoming energies. The behaviour of the curves αopt is
similar. The optimal angles of the spacecraft approaching the fly-by body show
insignificant variations (not more than 1o− 2o) as the relative fly-by altitude m
increases from 1 to 2. Thus, the values of αopt show almost no dependence on
deviations of m from its minimum value.

4.4.2 Variation of the semi-major axis

Assume that, before the close encounter, the spacecraft is moving in a Keplerian
orbit of semi-major axis a1, eccentricity e1 and energy h1, neglecting the influ-
ence of the planet. As always, we also assume that the planet fly-by performs
an instantaneous change in velocity and it occurs at the periapsis (periapsis
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vector rp and phase angle η, see Fig. 19). After the fly-by, the spacecraft will be
again on a Keplerian trajectory with respect to the Sun of semi-major axis a2,
eccentricity e2 and energy h2. We will also assume that the planet moves in a
circular orbit, so that its orbital velocity Vpl is perpendicular to the Sun-planet
radius Rpl.

rp

vp οο

οο

Vpl

v

r

sphere of
influence

departure
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η=  +χ

χ

f
f

Figure 19: The phase angle η.

Using the expression of the energy, in terms of the semi-major axis of the
spacecraft or in terms of its velocity and position with respect to the Sun, we
can write

h2 − h1 = −µS

2

(
1
a2

− 1
a1

)
=
V 2(t2)− V 2(t1)

2
− µS

R(t1)−R(t2)
R(t1)R(t2)

, (55)

where µS = GmS , being mS the mass of the Sun. Assuming, as before, that
R(t1) = R(t2), we get

1
a2

− 1
a1

=
V 2

1 − V 2
2

µS
. (56)

Now, we want to express V 2
1 −V 2

2 in terms of rp and the phase angle η = f +χ.
Obviously

V 2
2 − V 2

1 = (V2 + V1) · (V2 −V1) = 2Vpl · (v2 − v1). (57)

Where we have used that v2
2 − v2

1 = 0, since the modulus of both the incoming
and outgoing velocities is equal to v∞. As the angle between v1 and v2 is 2ν
(see Fig. 10), we have

‖v1 − v2‖2 = v2
1 + v2

2 − 2v1v2 cos(2ν) = 4v2
∞ sin2 ν,

and using (39) and (40) we get that

‖v1 − v2‖ =
2v∞

1 + rpv2
∞/µp

=
2v∞
ep

, (58)

where µp = Gmp and ep = 1 + rpv
2
∞/µp is the eccentricity of the hyperbolic

orbit. Due to the symmetry, the unity vector ip in the periapsis direction can
be written as

ip =
v1 − v2

‖v1 − v2‖
. (59)
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Substituting (58) and (59) in (57) we obtain that

V 2
2 − V 2

1 = −2‖v1 − v2‖Vpl · ip = −4v∞V pl cos η
ep

. (60)

Then, replacing the expression (60) in (56) and (55) we obtain an analytical
expression for the semi-major axis a2

1
a2

=
1
a1

+
4
µS

v∞V
pl cos η
ep

. (61)

¿From the expression obtained, we can observe how the semi-major axis
changes depending on whether the planet is moving away or towards the space-
craft when it performs the fly-by. In the first case, π/2 < η ≤ π and cos η < 0,
so the semi-major will decrease (and the energy increase). In the second case,
0 ≤ η < π/2 and cos η > 0, so the semi-major axis will increase (and the energy
decrease). The maximum decrease and minimum increase will take place when
η = π and η = 0 respectively and rp is minimum. For η = π/2 there will be not
any change.

4.4.3 Variation of the eccentricity

Next, we will derive final eccentricity e2 in terms of e1, a1, Rpl, rp, η and v∞.
The initial and final eccentricity vectors are given by

ej =

(
V 2

j

µS
− 1
Rj

)
Rj −

1
µS

(Rj ·Vj)Vj ,

for j = 1, 2. Using again that R1 ≈ Rpl and R2 ≈ Rpl, as well as the relation

1
aj

=
2
Rj

−
V 2

j

µS

we can write

e2j =
(

1
Rpl

− 1
aj

)2

(Rpl)2 +
1

aj µS
(Rpl ·Vj)2 (62)

for j = 1, 2. We substitute (61) in (62) for j = 2 and we get that

e22 =
(

1
Rpl

− 1
a1

− q

)2

(Rpl)2 +
(

1
a1

+ q

)
(Rpl ·V2)2

µS
, (63)

where q =
4v∞V pl cos η

µSep
. The first term in (63) is already expressed in terms of

the initial values. For the second term, we write V2 −V1 = v2 − v1 and using
(57) and (59) we get that

V2 −V1 = −2v∞
ep

ip.

Therefore

Rpl ·V2 = Rpl ·V1 −
2v∞Rpl

ep
ξ, (64)
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where ξ is the defined by Rpl · ip = Rplξ. From one hand,

Rpl ·V1 = Rpl · (v1 + Vpl) = Rpl · v1 = Rplv∞β, (65)

and from the other, the same product can be obtained from (62) for j = 1 as

(Rpl ·V1)2 = µS(a1e
2
1 − a1 + 2Rpl − (Rpl)2/a1), (66)

so that

β = ±
√
µS(a1e21 − a1 + 2Rpl − (Rpl)2/a1)

Rplv∞
. (67)

Finally, substituting (64), (65) and (66) in (63) we will get the final expression
for e2:

e2
2 = 1− 2Rpl

„
1

a1
+ q

«
+ (Rpl)2

„
1

a1
+ q

«2

+

+

„
1

a1
+ q

«
1

µS

„
Rpl · v1 −

2v∞Rpl

ep
ξ

«2

= 1 +

„
1

a1
+ q

« „
−2Rpl +

(Rpl)2

a1
+ q(Rpl)2 + a1e

2
1 − a1 + 2Rpl − (Rpl)2

a1

«
+

1

µS

„
1

a1
+ q

« „
−4v2

∞(Rpl)2β

ep
ξ +

4v2
∞(Rpl)2

e2
p

ξ2

«
= e2

1 + q

„
(Rpl)2

„
1

a1
+ q

«
+ a1(e

2
1 − 1)

«
+

4v2
∞(Rpl)2

epµS

„
1

a1
+ q

« „
ξ

ep
− β

«
ξ.

(68)

4.4.4 Variation of the inclination

Suppose that the spacecraft approaches the fly-by body, whose velocity is Vpl

within the body’s orbital plane. Let the spacecraft velocity by V(t1). The
gravity assist manoeuvre transforms the incoming spacecraft hyperbolic velocity
excess v∞1 into the outgoing hyperbolic velocity v∞2. Figure 20 shows the
sphere of possible locations of v∞2 after the manoeuvre. From the Figure it
follows that the change in the angle of inclination, ∆i, of the spacecraft orbital
plane, after a single fly-by, can be written as

sin∆i =
v∞ sin 2ν
V pl

.

Recall that the angle of rotation can be found from the formula

sin ν =
1

1 + rpv2
∞/µ

,

and that for a fixed value of v∞, ν is maximum when rp is minimum, for instance
if rp = rpl where rpl is the radius of the planet.

For a fixed value of v∞, the maximum increment in the angle of inclination
of the spacecraft orbital plane is given by

sin∆i =
v∞
V pl

. (69)
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Figure 20: Changes in the inclination angle of the spacecraft orbit as a result
of gravity assist manoeuvre.

Figure 21 gives the curves of maximum change in the spacecraft orbital plane
inclination resulting from a single fly-by of different planets in the solar system.
The data show that the highest potentialities for changing the spacecraft orbital
plane in a single fly-by is typical of those large planets of the Jovian group –
Jupiter, Saturn, Uranus, Neptune and Pluto. The potentialities of the Earth
group planets –Earth, Venus, Mars and Mercury– are somewhat lower.

Multiple fly-bys of the attracting body allow a greater increase in the in-
clination angle of the spacecraft orbital plane by way of additional rotation of
v∞2 during each fly-by.

It is evident that orbits with large inclination angles can be obtained. To
do this, it is necessary to perform fly-bys with large v∞, though the efficiency
of the gravity assist manoeuvre in this case will decrease (in accordance with
equation (49), growth in v∞ results in a reduction in the rotation angle 2ν).
This, in turn, will require the number N of fly-bys of the attracting body to be
increased so as to attain the necessary ∆i.

Gravity assist manoeuvres in space make it possible to significantly change
the inclination of the spacecraft orbital plane. This can be particularly impor-
tant in exploration beyond the ecliptic plane (e.g. in flights over the Sun) or in
flights to celestial bodies whose orbits are notably inclined to the ecliptic plane.

4.5 Numerical estimations for close encounters

In a previous section, we have seen how the energy of the interplanetary trajec-
tories with respect to the Sun changes after a close encounter with a planet. The
effect caused by the encounter with the planet can be studied numerically using
the Circular Restricted Three Body problem as a model. As the trajectory can
be approximated by a hyperbola during the close approach, we can also restrict
our attention to the planar case.

The aim is to classify a large variety of initial conditions of orbits with a
close encounter with the small primary (the planet), according to the effects
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Figure 21: Maximum changes in the inclination angle of the spacecraft orbit
as a result of gravity assist manoeuvre. In the top figure 1 = Mercury, 2 =
Venus, 3 = Earth, 4 = Mars. In the bottom figure 1 = Jupiter, 2 = Saturn, 3
= Uranus, 4 = Neptune, 5 = Pluto.

due to the encounter with the planet. The classification are done evaluating
the energy and the angular momentum of the third body before and after the
passage near the planet. The orbits are identified by the Jacobi constant CJ

of the third body, the angle ψ between the primaries line and the pericenter
direction of the trajectory and the pericenter distance rp (see Fig. 22).

Then, given arbitrary values for the Jacobi constant CJ , the minimum dis-
tance rp and the angle ψ, the procedure has the following steps:

1. The position and the velocity at pericenter in the rotating synodical sys-
tem (x, y) is given by

rp = (1− µ+ rp cosψ, rp sinψ), ṙp = (−vp sinψ, vp cosψ),

where vp, the modulus of the velocity, can be calculated from the Jacobi
first integral.

2. Taking rp as initial conditions, the equations of motion are integrated for-
ward and backward until the distance between the third body and the
planet is bigger than a certain fixed distance. For bigger distances, the
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Figure 22: Close encounter in a rotating system. The passage near the planet
has been magnified for greater clarity.

effect of the planet can be neglected and the energy and the angular mo-
mentum can be considered constants.

3. The energy and the angular momentum at final points of both integrations
are computed.

The energy and the angular momentum (relative to the non-rotating sidereal
system) can be expressed using the synodical coordinates (x, y, ẋ, ẏ) as

E =
1
2
((x+ ẏ)2 + (ẋ− y)2)− 1− µ

r1
− µ

r2
,

c = x2 + y2 + xẏ − yẋ,
(70)

and then, the Jacobi constant can be written as CJ = E − wc (w the angular
velocity of the system). Depending on the sign of both parameters E and c, the
orbits are classified in:

• elliptic direct, when the energy is negative and the angular momentum is
positive,

• elliptic retrograde, when both the energy and the angular momentum are
negative,

• hyperbolic direct, when both the energy and the angular momentum are
positive,

• hyperbolic retrograde, when the energy is positive and the angular mo-
mentum is negative,

Due to the change of the energy and the angular momentum after the close
encounter, every orbit can be characterise by two of these categories. In Table 4,
the labels A,B,...,O are assigned depending on the classification before and after
the passage near the planet. There is a symmetry due to the fact that an orbit
with angle ψ is different from an orbit with angle ψ+π only by a time reversal.
This means that there is a correspondence between the orbits of type B ↔ E,
C ↔ I, D ↔ M, G ↔ J, H ↔ N and L ↔ O.

For a fixed value of the perigee distance, each point in the (ψ,CJ) plane
represents an orbit that can be classified according the previous rules. This
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After → Direct Retrograde Direct Retrograde
Before ↓ Ellipse Ellipse Hyperbola Hyperbola
Direct Ellipse A E I M
Retrograde Ellipse B F J N
Direct Hyperbola C G K O
Retrograde Hyperbola D H L P

Table 4: Class of orbits depending on their classification before and after a close
encounter with a planet.

Figure 23:

gives a two-dimensional diagram where the regions corresponding to each type
of orbit can be represented. In Fig. 23 these diagrams are shown for orbits with
close encounters with Jupiter. The values of the perigee distance taken are 1.1
and 1.5 times the Jupiter’s radius. In .... the orbits every orbit followed enough
time to verify if the spacecraft has none, one or two possible encounter with the
Earth. Orbits that do not cross the Earth’s path around the Sun are labelled in
capital letters, while lower letters represents orbits that cross the Earth’s path
around the Sun at least once.

4.6 Surface impact at a target planet

Consider the problem of pointing a vehicle in a direction to impact a planetary
surface at a specific point. For simplicity, the following analysis assumes the
point of impact to lie in the plane formed by the polar axis of the planet and
the direction of the relative velocity vector (we are addressing the problem of
impacting at a specified latitude). Generally, small adjustments in the orbit
can alter the time of arrival to accommodate a desired longitude of impact.
According to Figure 24, we see that the choice of latitude φ together with v∞1
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Figure 24: Impact at a target plane.

serves to determine the angle β and the point of impact rs. Writing v∞1 in a
planetocentric equatorial system of coordinates, then

sin(β − φ) =
iz · v∞1

v∞
.

Recall that the parameter of an hyperbolic orbit is given by

p = a(1− e2) =
µ

v2
∞ tan ν

.

Thus we have

rs =
p

1 + e cos(π/2− β + ν)
=

µ

v2
∞ tan ν

1 +
sinβ
tan ν

− cosβ
.

Using (42), we get the following quadratic equation for determining ra in terms
of β and v∞.

r2a − rars sinβ − µ

v∞
rs(1− cosβ) = 0.

The angle of incidence ψ, shown in Figure 24, is important for the atmospheric
entry problem and may be determined from

tanψ =
p

rse sin f
,

where f = π/2− β + ν is the true anomaly. Thus we have

tanψ =
r2a

rs(ra cosβ + µ sinβ/v2
∞)

.
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4.7 Tisserand’s criterion

When a comet passes close to a planet, the elements of its orbit can be so dras-
tically altered that the identity of the comet can be questionable. To solve this
problem, Tisserand established a relationship among the comet elements which
remains essentially unaltered by the perturbations. This same relationship can
be used to analyse the effect of planetary contact on a spacecraft.

Tisserand’s criterion is a particular interpretation of Jacobi’s integral of the
restricted three body problem. Thus, the first step is to rewrite that integral is
an inertial (non-rotating) reference frame.

Recall that, in the synodic system, the Jacobi integral can be written as

ẋ2 + ẏ2 = w2(x2 + y2) +
2Gm1

r1
+

2Gm2

r2
− C,

and using the identity

w ∧ (w ∧ r) = −w2(xix + yiy),

we can write it as

v2 = ẋ2 + ẏ2 = −r ·w ∧ (w ∧ r) +
2Gm1

r1
+

2Gm2

r2
− C. (71)

In order to write it in the sidereal reference frame, recall that if R is a rotation
matrix and we denote r∗ = Rr, then

v∗ =
dr∗

dt
=
dR

dt
r +R

dr
dt

= R

(
RT dR

dt
r +

dr
dt

)
= R (Ωr + v) , (72)

where the matrix Ω is defined by

Ω = RT dR

dt
,

Derivating the identity RTR = I, one gets that ΩT = −Ω, so

Ω =

 0 −wz wy

wz 0 −wx

−wy wx 0

 .

Now, if we define w such that its components in the rotating reference system
are (wx, wy, wz), we can write

v∗ = R

(
w ∧ r +

dr
dt

)
.

The vector w represents the angular velocity of the rotating frame with respect
to the inertial one. From (72), we get

v∗ = R (Ωr + v) = R
(
ΩRT r∗ + v

)
,

so
v = RT

(
v∗ −RΩRT r∗

)
= RT (v∗ + Ω∗r∗) ,
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where Ω∗ is the matrix associated to w∗ = −w and verifies Ω∗T = RΩRT .
From this identity we get

vT v = v∗2 − rT Ωv + vT Ω r− rT Ω Ω r

= v∗2 + 2w · r ∧ v − r ·w ∧ (w ∧ r)
= v∗2 + 2w∗ · r∗ ∧ v∗ − r∗2w∗2 − (w∗ · r∗)2.

Taking into account that

w∗ = −w, r∗2 = r2, (w∗ · r∗)2 = (w · r)2

we obtain
v2 = v∗2 − 2w · r∗ ∧ v∗ − r ·w ∧ (w ∧ r),

Substituting this expression in (71)

v∗2 = 2w · r∗ ∧ v∗ +
2Gm1

r1
+

2Gm2

r2
− C, (73)

which is the Jacobi integral in sidereal coordinates.
If m1 and m2 are the masses of the Sun and a planet, respectively, then

m2 << m1. Therefore, when a comet (or spacecraft) is not close to the planet,
we may discard the term 2Gm2/r2 in Jacobi integral. It is also verified that

w2 =
G(m1 +m2)

r312
≈ Gm1

r312
=

µ

r312
,

where r12 is the distance from the Sun to the planet. Furthermore, r∗ ∧ v∗ is
just the angular momentum c of the small body with respect to the Sun, so that

w · r∗ ∧ v∗ = w c cos i = w
√
µa (1− e2) cos i,

where i is the inclination angle of the body’s orbital plane with respect to the
ecliptic; a and e are, of course, the semi-major axis and eccentricity of the orbit
of the small body. In addition, we can use the energy integral

v∗2 = µ

(
2
r1
− 1
a

)
.

When these are substituted in Jacobi integral, we obtain

1
a

+ 2

√
a(1− e2)

r312
cos i = ctant,

which can also be written as

1
a1

+ 2

√
a1(1− e21)

r312
cos i1 =

1
a2

+ 2

√
a2(1− e22)

r312
cos i2,

where a1, e1, i1 are the semi-major axis, eccentricity and orbital inclination
prior to the planetary contact and a2, e2, i2 are the orbital elements after the
contact. This last equation is generally referred as Tisserand’s criterion for the
identification of comets.
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5 Optimal multi-purpose missions

5.1 Minimum energy flight paths

The most important requirement for a mission with one or several flybys is
that it should reduce the energy consumption relative to an analogous
direct flight. The criterion of minimum total energy can be based on different
approximate models of the flight.

As has already been explained, the simplest model represents interplanetary
trajectories as Keplerian arcs which begin and terminate on the orbits of the
departure and destination planets (in circular and coplanar orbits). The en-
ergy expenditure for the interplanetary flight is estimated based on the total
velocity needed for the spacecraft to fly from the orbit of departure to that of
the destination planet. The gravity assist manoeuvre is approximated by an
instantaneous rotation of the spacecraft velocity at the moment that the planet
is passed.

For the simplest mission, and using the simplest model, the optimisation
problem is reduced to searching for the minimum of the function

min
(
‖V1 −Vpl1‖+ ‖V2 −Vpl2‖

)
,

where µ is the gravitational constant of the arrival planet and

Vpl1,Vpl2 = velocities of the departure and destination planets,
V1,V2 = spacecraft velocities at the departure and arrival points,

(Vi = V(Ti, rpi, Ri)),
Ti = period of the initial/final leg of the orbit,
rpi = pericentral distance of the initial/final leg of the orbit,
Ri = orbital radii of the departure and destination planets.

VΣ = ‖V1 −Vpl1‖+ ‖Vpl2 −V2‖ is called the total characteristic velocity
of the flight.

The orbital characteristics of the final (post-perturbation) leg of the flight
(T2, rp2) are determined only by the altitude of the spacecraft flight mp =
Rp/R

pl2 > 1 (in the pericenter of the flyby hyperbola) relative to the surface of
the flyby planet and VΣ = VΣ(T1, rp1, µ).

It should be mentioned that the search for optimal solutions, even based
on a model as simple as that, requires the use of the numerical methods and
algorithms of nonlinear programming.

In a more accurate approach, the spacecraft trajectory is approximated by
segments of unperturbed Keplerian movement, as in the previous model, but
the planetary motion is represented more accurately, allowing elliptic and non-
coplanar planetary orbits and taking into account the phasing of the planetary
movement along the orbits. In this case the analysis is made for specific dates
(or time intervals) of the interplanetary flight.

Now the approach works as follows: first, the segments of heliocentric motion
from the Earth to the flyby planet and from the flyby planet to the destination
planet are constructed. These segments of the interplanetary trajectory are
matched, based on the asymptotic incoming and outgoing velocities relative
to the flyby planet (v−∞ i and v+

∞ i), with possible application of a powered
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manoeuvre. For multiple flybys trajectories, a similar construction is made
for subsequent segments of the trajectory. The optimal trajectories are sought
based on the criterion of minimum total characteristic velocity, which can be
represented in the general form

minVΣ = min

(
‖V0‖+

N∑
i=1

‖Vi‖+ ‖Vf‖

)
,

where V0 is the starting impulse from the near-Earth orbit with radius R0,
Vi is the velocity impulse applied during the flyby of the i-th planet, Vf is
the characteristic velocity of deceleration at the destination planet to enter a
near-planetary orbit and N is the number of the flybys.

Here

V0 = V0(T1, T0,R0),
Vi = Vi(Ti−1, Ti, Ti+1,ρi),
Vf = Vf (TN , Tf ,Rf ),

where T0 is the date of the spacecraft launch, Ti are the dates of intermediate
planetary flybys, Tf is the date of arrival at the destination planet (Tf − T0

is the total flight time), R0 and Rf are the vector determining the departure
and destination orbits and ρi is the radius vector of the point passing from the
incoming to outgoing hyperbolas in the flyby of the i-th planet.

Thus, the problem of finding the optimal interplanetary trajectory with grav-
ity assist manoeuvres is reduced to the minimisation of the mission characteristic
velocity as a function of several variables

minVΣ(T0, Ti, Tf ,R0,ρi,Rf ).

In the minimisation process, the problems of finding heliocentric and planeto-
centric legs of the flight path are considered separately within the framework of
the different spheres of influence.

The problem of optimisation of a planetocentric flyby segment implies min-
imisation of energy expenditures for the inter-hyperbolic transfer, and is re-
garded as an internal problem with respect to the external heliocentric pre- and
post-perturbation segments, which determine the values of hyperbolic velocity
excess in the initial and end points of the flyby trajectory segment

v−∞ i = v(Ti−1, Ti), v+
∞ i = v(Ti, Ti+1), i = 1, ..., N − 1.

The hyperbolic velocity excess uniquely determine the plane of the spacecraft
planetocentric manoeuvre

[v−∞ i ∧ v+
∞ i] · ρi = 0.

The calculation of the velocity impulse to be applied during flyby, minVi,
in the case of a single-impulse manoeuvre reduces to find the impulse and the
point of transfer ρi between the incoming and outgoing hyperbolas.

In terms of computations, the problem of search for the optimal multiple-
fly-by interplanetary trajectory can be reduced to the successive minimisation
of the function

minVΣ = min
T1

(
min
T2

...

(
min

TN−1,Tf

VΣ

))
,
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with the optimisation of Vi at each stage. This problem can be solved by one of
the nonlinear programming methods on the manifold of variables T1, ..., TN−1, TN ,
ρi, R0, ...,RN−1,Rf .

5.2 Analysis of multi-purpose trajectories

Let M be the set of bounded coplanar orbits in a central gravitational field,
comprising two subsets of circular and elliptic orbits

M = Mc ∪Me.

Each element N ∈ M can be mapped onto the space of orbital parameters.
Several combinations of these parameters will be used, for instance the period
of the orbit T and the pericentral distance rp and we will write

N(T, rp) ∈M.

Given circular orbit with fixed radius Rk, N(Rk), we select the set of elliptic
orbits, M ′

e, sharing at least one point with the given circular orbit

M ′
e ⊂Me.

∆v

Rk

kv

rp

v

T

Figure 25: Single-impulse inter-orbital transfer.

Consider the problem of constructing the isoline field of relative velocities
(∆v = const) in the intersection points of the circular orbit N(Rk) with the
orbits in the set M ′

e. The velocity ∆v (see Figure 25) is the relative velocity of
transfer from a certain elliptic orbit to the given circular one (or vice versa) and
can also be interpreted as the hyperbolic excess of the spacecraft velocity v∞.

For the construction of the isoline field we first find the domain, in the (rp, T )
plane, into which the set M ′

e is mapped, and then construct the field

∆v = ‖v − v(Rk)‖ = f(rp, T ) = const.

within this domain. Here, v and v(Rk) are the orbital velocities in the point of
intersection of the elliptical and circular orbits.
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Figure 26: The domain of isolines ∆v = const of inter-orbital transfer.

The boundaries of the domain under consideration (see Fig. 26) are as
follows: on the left is the line aK of the orbits tangent to the given circular
orbit in their apocenters (ra = Rk); the upper boundary is the line Kp of orbits
tangent to the given circular orbit in the pericenter (rp = Rk); from below, the
domain is bounded by the rp = 0 axis (rectilinear orbits); in the right boundary
(at infinity) we find the parabolic orbits. The left and upper boundary lines
have a common point, K, corresponding to a circular orbit that coincides with
the given orbit (all points are shared and ∆v = 0).

Let us consider in more detail the limiting lines and the position in them of
the boundary points of the isolines ∆v = const. The line aK can be determined
analytically from the condition

T = 2π
(
a3

µ

)1/2

, a =
rp + ra

2
.

Since ra = Rk = const. (from the tangency condition), we can write

T = π

√
(rp +Rk)3

2µ
,

and solving for rp we get

rp =
(
T

π

)2/3

(2µ)1/3 −Rk.

This is, aK is a weakly convex segment limited by the points rp = 0 and
rp = Rk. The values of ∆v are determined from ∆v = vp − va, therefore, the
position of the left ends of the isolines ∆v = const within the segment aK can
be determined as

rp = 2a−Rk =
2µ

2V 2
k −∆v2

− rk, where Vk =
√

µ

Rk
.
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The boundary line Kp is parallel to the abscissa axis and is determined from
the condition rp = Rk; the location of the right ends of the isolines ∆v = const
on it can be determined from the conditions

∆v = vp − vk, T =
2πµ

(2V 2
k − (∆v + vk)2)3/2

.

It should be noted that each of the points lying within the domain aKp
corresponds to an orbit N(rp, T ) that has two shared points (intersections) with
the circular orbit N(Rk) under consideration. The isolines ∆v(rp, T ) = const
can be constructed using the relationships of the triangle of velocities and the
formulas describing undisturbed Keplerian motion of the spacecraft

∆v2 − 2vk

(
1− v2 +

C2

R2
K

)
+ v2

k − v2 = 0,

where

v2 =
2µ
Rk

−
(

2πµ
T

)2/3

,

C2 = 2rpµ− r2p

(
2πµ
T

)2/3

.

Figure 27 presents the isolines of relative velocities for central body with a
gravity constant µ = 1 and for a circular orbit with a radius Rk = 1. Each
isoline represents a set of orbits for which the relative velocity of transfer to
the orbit with unit radius Rk = 1 is constant. As can be seen from the Figure,
the parameters of these orbits (rp and T ) change monotonically from the values
corresponding to the orbits with apocentral tangency to the values of pericentral
tangency with the orbit Rk = 1.

Figure 27: Isolines of relative velocities of single-impulse transfer to the circular
orbit of radius 1.

Consider now several circular coplanar orbits with radii Rj , j = 1, ..., n and
let us see how to use the isoline field to analyse the conditions of inter-orbital
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transfer. Each of these orbits will be represented by a point N(Rj) on the plane
of orbital parameters rp and T .

To fix ideas, we will only consider four circular coplanar orbits N(Rj), j =
1, ..., 4. For each of these orbits we can construct the appropriate subsets of
intersecting orbits

Mj ⊂M, j = 1, ..., 4,

as well as the isolines of equal relative velocities. Figure 28 shows the location
of the domains of isolines for the four orbits under consideration.

2K

3K

4K

1K

rp

p1

p2

p3

p4

Γ12 Γ13 Γ14

Γ24Γ23

Γ34

∆vj∆vi

T

N *

a1 a2 a3 a4

(1)

(3)

(4)

(2)

Figure 28: Domains of isolines ∆v = const for inter-orbital transfer between
circular coplanar orbits.

The position of a point N∗(rp, T ) ∈ M in this diagram allows, not only
to judge the feasibility of certain inter-orbital transfers in the system of orbits
under consideration, but also to make assessment in terms of energy. Isolines
∆vj = const passing through N∗ will determine the velocity required for this
transfer, and the coordinates of the point N∗(rp, T ) determine the transfer orbit.

Let us consider different possible positions of the image point N∗(rp, T ) on
the diagram:

1. N∗ ∈ ∩4
j=1Mj implies that the selected orbit shares points with any given

orbit. The inter-orbital transfer along the orbit N∗ is possible in all cases.

2. N∗ ∈Mi ∩Mj ∩Mk, for all i, j, k = 1, ..., 4 and i 6= j 6= k implies that the
transfer along the orbit N∗ is possible between the three given orbits.

3. N∗ ∈ Mi ∩Mj for all i, j = 1, ..., 4 with i 6= j implies that the transfer
along the orbit is possible between the two given orbits.

4. N∗ ∈ Mj or N∗ /∈ Mj , j = 1, ..., 4 implies that the inter-orbital transfer
along the orbit N∗ is impossible.

In addition, specific positions of the image point are possible:

1. N∗ ∈ ajKj , implies that the orbit has an apocentral tangency with the
j-th orbit.
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2. N∗ ∈ Kjpj , implies that the orbit has an pericentral tangency with the
j-th orbit.

3. N∗ = Kj , implies that the orbit coincides with the j-th orbit.

4. N∗ = Γij ∈ aiKi ∩ Kjpj , with i 6= j, implies that the transfer orbit is
tangent to the departure and arrival orbits.

The points Γij on the diagram determine Hohmann transfer orbits between
the circular orbits N(Rj) considered.

This diagram can be used for a first approximate analysis, in terms of en-
ergy, for the transfers between the orbits under consideration and also to select
optimal transfer options. Indeed, for any point N∗(r∗p, T

∗) within the domains
(see Fig. 28), one can find an isoline ∆vj = const, j = 1, ..., 4, that passes
through this point and determines the velocity of a single impulse transfer be-
tween the selected orbit N∗(r∗p, T

∗) and the j-th circular orbit (in the point of
their intersection).

In the case where the point N∗ is located in the zone of overlap between two
domains, one can find two isolines such that N∗ ∈ ∆vi ∩∆vj , i 6= j. Then, the
characteristic velocity of a two-impulse transfer between the two circular orbits
can be determined as

∆v1 = ∆vj , ∆v2 = ∆vi, ∆vΣ = ∆v1 + ∆v2.

In a similar way, more complicated trajectories in the system of orbits under
consideration can be examined, and the optimal variant can be selected from
them.

Incidentally, this kind of diagram clearly demonstrates that the Hohmann
transfers provide minimum energy expenditure for the transfer from one orbit to
another. The extreme left and top position of the points Γij in the appropriate
domains provides the minimum possible values both for ∆v1 and ∆v2 (and,
hence, for the total characteristic transfer velocity ∆vΣ.

The above procedure can evidently be applied to the assessment of different
space flights in terms of energy expenses (between the orbits of planets and
their satellites, between orbits of planetary artificial satellites with different
altitudes, interplanetary flights, etc.). To do this it is sufficient to construct
combined isoline fields for relevant orbits.

5.3 Isolines for the analysis of the spacecraft orbit after
the gravity assist manoeuvre

Gravity assist manoeuvres allow the change of the elements of the spacecraft or-
bit and, in particular, to increase or decrease the orbital period T and pericenter
distance rp.

Consider, for example, a natural satellite of a planet, with gravitation con-
stant µs and radius rs, moving along a circular orbit with a radius R in the
central field of a planet with gravitational constant µ. We assume that the
orbital planes of the natural satellite and a spacecraft are the same and that
the spacecraft orbit is determined by its period T , pericentral distance rp and
pericentral longitude wp.
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The efficiency of a gravity assist manoeuvre is known to be determined by
the conditions of the spacecraft approaching the celestial body: the spacecraft
velocity V1 on approaching the natural satellite, the velocity of the satellite
Vs and the minimum distance of the spacecraft from the satellite rp. Figure
29 represents a vector diagram of this gravity assist manoeuvre, reflecting the
formation of the spacecraft post-manoeuvre velocity V2 as a result of rotation of
the asymptotic hyperbolic velocity v∞ by the angle 2ν between the asymptote
of the descending and ascending branches of the fly-by hyperbola.

1V

2V
V

s

2ν
α 2

α 1

rp

µ s

β2

οv ο 1

οv ο 2

R

µ

Figure 29: Diagram of velocities of the gravity assist manoeuvre.

Thus, the fly-by near an attracting body within the plane of its motion will
cause a change in the parameters determining the size and shape of the space-
craft trajectory as well as the position of the orbit in the flight plane. That
is, as the result of the perturbation manoeuvre with given rp, the set of in-
coming trajectories M1(rp1, T1, w1) is mapped into the set of post-perturbation
orbits M2(rp2 , T2, w2). This mapping associates each incoming orbit O1 ∈
M1(rp1, T1, w1) with a new (transformed) orbit O2 ∈M2(rp2, T2, w2).

The determination of the subset of orbits O∗
2 ∈ M2 with a fixed value of

T2, allows the construction of an isoline T2 = const that can be determined
in coordinates rp and T . The isoline will represent the totality of all incoming
spacecraft trajectories that will be transformed by the gravity assist manoeuvre
near the satellite into iso-periodical orbits.

Let us consider an algorithm for the construction of the iso-periodic curves
T2 = const in terms of the initial orbit parameters rp and T .

The set of all the post-perturbation orbits with given T2 is determined by
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the value of outgoing velocity

V =

((
2πµ
T2

)2/3

− 2µ
R

)1/2

,

and the angle β2 (0 ≤ β2 ≤ π) between Vs and V2.
Given a values of β2, we can determine the asymptotic incoming and outgo-

ing velocities of the spacecraft from the natural satellite using

v∞2 = ((V s)2 + V 2
2 − 2V sV2 cosβ2)1/2,

v∞1 = v∞2.

The corresponding angles of the asymptotes with respect to Vs can be deter-
mined from the formulas

α2 = arccos
(

(V s)2 + +v2
∞ − V ∗

2

2sv∞

)
,

α1 = α2 ± 2ν,

where
ν = arcsin

µs

µs + rpv2
∞
.

Here, the plus sign corresponds to a decrease in the spacecraft energy (passing
before the attracting body) and the minus sign to an increase in the spacecraft
orbital energy (passing behind the attracting body).

Now let us compute the parameters of the incoming orbit of the spacecraft

1. The velocity of approach to the natural satellite is given by

V1 = ((V s)2 + v2
∞ − 2V sv∞ cosα1)1/2.

2. Semi-major axis and eccentricity are

a =
∣∣∣−µ
h

∣∣∣ , e =
(

1 +
hC2

µ2

)1/2

,

where

h = V 2
1 − 2µ

R
, C = V1R cosβ, β = arcsin

(
v∞
V1

sinα1

)
,

3. The pericentral distance rp and period T of the incoming orbit of space-
craft are

rp = a(1− e), T = 2π
(
a3

µ

)1/2

.

In this way, the incoming orbit of the spacecraft for given values of T2 and β2

can been determined. Varying the values of β2 within [0, π], we can construct
the isoline rp(T ) for T2 = const, and a field of isolines T2 = T2(rp, T ) can be
constructed for different values T2j = const, j = 1, ..., n.

Figure 30 shows the isoline T2 = T2(rp, T ) = 30 days for the case of a
spacecraft having a fly-by with Jupiter’s natural satellite Ganymede. The two
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Figure 30: Isoline T2 = 30 days for Ganymede (m=1).

parts of the isoline, left and right, correspond to the approaching spacecraft
orbits requiring acceleration and deceleration manoeuvres respectively.

The isolines share a single point, β2 = 0, that corresponds to the spacecraft
orbit with a period T = 30 days and pericentral distance rp equal to the radius
of the bay-passed body’s orbit. Both branches have points of tangency to the
abscissa axis, which determine the degenerate rectilinear elliptic orbits of the
spacecraft (β = π/2). As can be seen from the figure, the perturbation effect
is strongly controlled by the selection of the incoming trajectory. Thus, the
maximum perturbation effect (both decelerating and accelerating) is observed
on the incoming orbits with rp ' 0.95R. It should be mentioned that the isolines
are constructed for m = 1 (where m = rp/r

s), and in the above example, they
reflect the maximum possible perturbation manoeuvre near the given celestial
body. A decrease in the spacecraft fly-by altitude relative to the surface of the
body will result in a reduction in the perturbation effect with the corresponding
narrowing of the domain of possible incoming trajectories. Fig. 31 presents
a family of isolines T2 = 30 days, for a relative flyby distance varying within
1 ≤ m ≤ 2.

Figure 31: The family of isolines T2 = 30 days for Ganymede (1 ≤ rp/r
s ≤ 2).

Thus, the isoline constructed for m = 1 can be regarded as a boundary of
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the domain of incoming orbits that can be transformed by the perturbation
manoeuvre at the given body into iso-periodical orbits with a given period.

This circumstance holds for most planets and planetary satellites in the solar
system. However, in the case of bypassing a planet with a strong gravitational
field (the rotation angle can be ν ≥ π/2) the perturbation effect can be maxi-
mum for the values m > 1 determined from equation 51.

A comprehensive idea of the efficiency of perturbation manoeuvring can
be derived from the isoline field for the parameter under study. By varying
the values of T2 = const we can construct the field of isolines (isochrones)
of the spacecraft post-perturbation trajectories for the fly-by of an attracting
body. Fig. 32 shows a field of iso-periodical orbits constructed using the above
algorithm and representing the perturbation effect due to Ganymede (form = 1)
on the spacecraft orbital periods.

Figure 32: Field of iso-periodic curves for Ganymede (m=1).

In a similar way, we can construct isolines reflecting the post-perturbation
orientation of the orbit Figs. 33 and 34 present isolines ∆w(rp, T ) = const and
∆imax(v∞) for Ganymede. It is evident that the perturbation manoeuvre can
result in considerable changes in the orientation of the orbit in its plane as well
as in the orbital plane rotation.

Figure 33: Isolines of angles of rotation of the orbital absides as a result of a
gravity assist manoeuvre at Ganymede (m=1).

Constructing fields of isolines of orbital parameters for solar system plan-
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Figure 34: Maximum angles of rotation of the orbital plane as a result of gravity
assist manoeuvre at Ganymede (m=1).

ets and their largest satellites will allow us to apply graphical analysis of the
perturbation manoeuvring to the study of different paths of space flights.
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6 The RTBP approximation

Let us consider a spacecraft moving in the solar system. The computation of fly-
by interplanetary trajectories is greatly simplified when they are idealized as two
(or more) heliocentric Keplerian orbits joined at one (or more) massless planet
points, where the planetary attractions have been neglected. The departure
from the departure planet, is patched to a launch hyperbola. Such a model, after
a certain amount of trial and error on planetary passage dates, provides a first
approximation to the launch velocity vectors for a family of fly-by trajectories
covering a season of advantageous launch dates.

In a second step, the heliocentric ellipses have to be corrected for the influ-
ences of the other planets and matched in a neighbourhood of the arrival planet
with local hyperbolas (see [5]). Furthermore, a local time-of-arrival bias that
is strongly dependent on the distance of closest approach to the planet has to
be taken into account. Firstly, the attraction of the departure planet can be
ignored, although the attraction of the arrival planet and other planets is in-
cluded. This analysis examines the correction to a nominal heliocentric ellipse
from one massless planet to the next, which is due to the planetary pertur-
bations as well as to variations on initial conditions. The expression for the
corrected trajectory is called the ‘outer expansion’.

In [5], the outer expansion relative to the arrival planet is examined at a dis-
tance (in AU) of order λ1/2, where λ = mp/mS is the mass ratio of the planet
to the Sun, and it contains terms of powers of λ1/2. This expansion has to be
compared with an ‘inner expansion’, obtained by considering a planet-centered
hyperbola plus the Sun’s perturbation. Then the position at distance of order
λ1/2 can be examined. Adjusting the energy, angular momentum orientation
and time of passage at pericenter of the hyperbola, the inner and outer expan-
sions become identical up to order λ2. This ‘matching’ procedure shows that the
position and velocity of the incoming asymptote to the osculating hyperbola at
closest approach as well as the velocity at infinity, differ from the corresponding
quantities of the simple model by constant terms of order λ added to linear
terms in the initial conditions variations and terms in other planet/Sun mass
ratios. Nevertheless, the time of closest approach contains the nonlinear term
(Gmp/v

3
∞) ln e, where e is the eccentricity of the hyperbola and v∞ the velocity

at infinity. If the mass of the departure planet is also taken into account, the
asymptote position and velocity corrections again contain biases and the time
correction will contain the logarithm of the eccentricity of the planet-centered
hyperbola.

An outline of the method would be the following one (for further details
see [5]). The motion of a spacecraft in the gravitational field of the Sun (mass
m0) and n planets (masses mi, i = 1, .., n), travelling from an arbitrary point
in space to a small neighbourhood of the planet m1, is described using pertur-
bation techniques and the asymptotic matching. The equations of motion can
be written as

r̈ = −µ0
r
r3

+ f(r, t),

where r is the position of the spacecraft relative to the Sun and

f(r, t) = −
n∑

i=1

µi

(
r− ri(t)
|r− ri(t)|3

+
ri(t)
|ri(t)|3

)
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(see eq. (4)). Then, the perturbed solution describing the heliocentric trajectory
can be developed as

r(t) = r0(t) + ρ1(t) + ρ2(t) + · · · ,

where r0(t) represents the unperturbed conic, which is determined by the initial
conditions at initial epoch t0. The perturbation terms satisfy linear second-
order non-homogeneous differential equations whose solution can be written in
terms of the transition matrix

∂(r(t), ṙ(t))
∂(r(t0), ṙ(t0))

.

In order to match the outer and inner approximations, the asymptotic be-
haviour of the perturbation solution as the spacecraft approaches the planet
must be determined. For this purposed, it is supposed that at epoch t1, the Sun
centered trajectory arrives at the position of the massless planet m1, this is,
r0(t1) = r1(t1). The only restriction imposed on the motion is that the relative
velocity with which it approaches the planet v1 = ṙ0(t1)− ṙ1(t1) is of O(1). The
process consists in knowing the behaviour of r0(t), ρ1(t) and ρ2(t) as t → t1
and to obtain the corrected position relative to the planet at distances of order
O(λ1/2). This position can be expanded in ascending powers of λ1/2.

Next, the inner trajectory (planet-centered motion) is described. The equa-
tions can be written as

ρ̇ = −µ1
ρ

ρ3
+ g(ρ, t),

where ρ = r− r1 and

g(ρ, t) = −µ0

(
ρ− r1(t)
|ρ− r1(t)|3

− r1(t)
|r1(t)|3

)
−

n∑
i=2

µi

(
ρ + r1(t)− ri(t)
|ρ + r1(t)− ri(t)|3

− r1(t)− ri(t)
|r1(t)− ri(t)|3

) .

The unperturbed equations define an hyperbola ρ0(t) with parameters (semima-
jor axis, eccentricity and time at pericenter) to be determined in the matching.
Using the unperturbed hyperbola, the Sun and planetary perturbations near the
planet m1 can be bounded, such that again expansions series of the perturbed
inner trajectory can be obtained.

The final step consists in matching the expressions obtained for the outer
and inner expressions. Neglecting terms of order O(λ2), expressions for the
velocity at infinity, the direction of the asymptote, the orientation of the plane
of the hyperbola and the distance to the asymptote can be obtained. Thus, the
planet-centered hyperbola is completely determined.

In the case where the trajectory of the spacecraft originates in a small neigh-
bourhood of one planet and reaches a small neighbourhood of a different one,
the asymptotic matching must be done at both ends of the Sun centered conic.

In the above method, all planets are considered, so it is necessary to deal with
all the perturbation terms due to the planetary attractions. In order to describe
the inner and outer solutions, a simpler model can be considered. We take as the
underlying model the 3D circular Restricted Three Body Problem, in which the
motion of a massless particle (the third body) under the gravitational attraction
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of the Sun and a planet (the primaries) is described. If the third body has a
close encounter with the planet, part of the motion takes place far from it and
another part, inside a neighbourhood of it. We will take as a neighbourhood of
the planet the sphere B of radius µ1/3 around it, where µ is the mass parameter
of the RTBP. Then, the outer solution and the inner solution will correspond
with the motion outside and inside B respectively. More concretely, we fix the
initial epoch at the moment in which the third body leaves B, this is, the initial
conditions in an rotating frame (ρi, ρ̇i) are such that

ρ2i = |ρi − ρ
P
| = µ1/3 and ρ2i · ρ̇i ≥ 0, (74)

where ρ
P

is the position of the planet. The inner solution corresponds with the
solution of the equations of the RTBP with these initial conditions and moving
backwards in time. The outer solution has two parts: before entering the sphere
and after leaving it. The later corresponds with the solution of the equations
with the same initial conditions and moving forward in time. It will be enough
to study and give an analytical approximation of this part of the outer solution
because the same arguments allow to obtain the same result for the part of the
outer solution before entering the sphere.

i solution
outer 

solution
inner P

2i

1/3 ρµ

v

ρ

Figure 35: Outer and inner solutions.

6.1 The outer solution

The outer solution takes place far from the small primary, so the motion of the
third body can be approximated by a keplerian orbit. We want to see how big
is the error involved in this approximation.

Let us begin writing the equations of the RTBP as a first order system in a
sidereal coordinate system as

q̇ =

 ṙ

−(1− µ)
r− r

S

r31

+

 0

−µ r− r
P

r32

 = G(q, µ) + F (q, µ), (75)

where q = (r, ṙ), r
S

and r
P

are the position vectors of the Sun and the planet
and

q̇ = G(q, 0) (76)

is the Kepler’s equation. Let q(t) and q0(t) be the solutions of (75) and (76)
respectively, with the same initial condition qi. Since the equations (75) are
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autonomous, we can consider that the initial condition occurs at t = 0. As qi

is on the sphere B and leaving it, we have that

r2(0) = r2i = |ri − r
P
| = µ1/3 and r2(t) > µ1/3 (77)

for some t > 0. We will also suppose that the motion is bounded and takes
place far from the Sun to avoid a collision with it.

In order to obtain an upper bound of |q(t) − q0(t)|, we write the solutions
of the equations (75) and (76) as

q(t) = qi +
∫ t

0

(
G(q(τ), µ) + F (q(τ), µ)

)
dτ ,

q0(t) = qi +
∫ t

0

G(q0(τ), 0) dτ.
(78)

On one hand, the assumptions made on the motion of the massless particle
implies that r is bounded and cannot be arbitrarily small, so we have that

G(q(t), µ) = G(q(t), 0) +O(µ),

and from the mean value theorem we obtain that

|G(q(t), µ)−G(q0(t), 0)| ≤ K|q(t)− q0(t)|+ Cµ. (79)

On the other hand, the function F (q, µ) in (75) can be bounded using (77) as
follows:

|F (q(t), µ)| = µ

r22
≤ µ

µ2/3
= µ1/3. (80)

Using (78), (79) and (80) we get that

|q(t)− q0(t)| ≤ µ1/3t+ Ctµ+K

∫ t

0

|q(τ)− q0(τ)| dτ

≤ C̃µ1/3t+K

∫ t

0

|q(τ)− q0(τ)| dτ,
(81)

for all the time such that (77) is verified.
At this point we use the following lemma1:

Lemma 1 Let g ∈ C1 such that g(t) ≥ 0.

1. If g(t) ≤ K0t+K1

∫ t

0

g(τ) dτ for t ≥ 0, with K0,K1 > 0, then

g(t) ≤ K0te
K1t

for all t ≥ 0.

2. If g(t) ≤ K0|t|+K1

∫ 0

t

g(τ) dτ for t ≤ 0, with K0,K1 > 0, then

g(t) ≤ K0|t|eK1|t|,

for all t ≤ 0.
1The results are similar to Gronwall’s Lemma.

61



Then, applying the first result of this Lemma to the inequality (81) we obtain
that

|q(t)− q0(t)| ≤ C̃µ1/3teKt, (82)

which means that if t is bounded, the error involved in the approximation of
the outer solution by a keplerian orbit is, at least, of order O(µ1/3), this is

q(t) = q0(t) +O(µ1/3), (83)

for t ∈ [0,M ] and a fixed M .
This result depends strongly on (80). The bigger the distance to the small

primary, the fewer the error. For instance, it is clear that for any time interval
for which r2(t) ≥ µ1/6, then

|q(t)− q0(t)| = O(µ2/3).

Initially, the orbit leaves B, r2(0) = µ1/3 < µ1/6, so the question is if the error
done in (83) can be improved up to order µ2/3 for all time interval for which
µ1/3 ≤ r2(t) ≤ µ1/6. The answer is affirmative if the initial velocity is not
tangent to the sphere. In that case, for t close to the initial epoch, the third
body is moving away from the planet and its distance grows. More accurate
calculations prove that

r2(t) ≥ µ1/3 + kt,

for a certain k not arbitrarily small and then∫ t

0

|F (q(τ), µ)| dτ =
∫ t

0

µ

r2(τ)2
dτ ≤ µ2/3

k
.

Using this result we obtain that

q(t) = q0(t) +O(µ2/3), (84)

for t ∈ [0,M ] and a fixed M .

6.2 Resonant orbits

B

B

solution

Outer

Figure 36: Qualitative representation of the outer solution of an orbit which
leaves and goes back to the sphere B centered at the planet.

Missions with two or more flybys of one or more attracting bodies can be
considered in order to reduce the energy requirements. A simpler way to achieve
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this reduction in a interplanetary trajectory from one Earth to another plant
is considering one gravity assist to a third planet. Nevertheless, the energy
savings can be considered insufficient. One way to improve this performance
is considering one or more gravity assists to the arrival planet. This kind of
solutions have been considered by Yen in [12] in the framework of the analysis
of a Mercury mission, where several resonant returns to Mercury are used in
order to reduce the orbit capture ∆v requirements. The ∆v saving is made
at the expense of flight time, because the spacecraft must return to the planet
at about the same position in space to obtain a gravity assist. For example,
performing two gravity assists to Mercury a substantial reduction of the v∞
at Mercury, from 5.7 km/s to 4.7 km/s, can be achieved, although there is a
penalty in the flight time of 270 days, which is three Mercury years.

Let us considerer a resonant orbit as a trajectory of the infinitesimal body
with consecutive approaches to the small primary such that between two close
encounters, both the massless particle and the planet perform an entire (not
necessarily equal) number of revolutions around the Sun. In order to character-
ize the resonant orbits around a planet, we can use the analytical approximation
of the outer solution given by (84).

The resonant orbits satisfy the restrictions made in the previous section:
they leave a neighbourhood of a planet, which we will suppose is the sphere B,
and go back to the same neighbourhood in a finite time. This implies that the
outer solution of the resonant orbits can be approach by an elliptic orbit. More
precisely, we say that an orbit is a p-q resonant orbit if the time spent in leaving
the sphere B and returning for the first time to the same sphere is

T = 2πq + εµ1/3 +O(µ2/3) = 2πpτ + δµ1/3 +O(µ2/3), (85)

where p, q ∈ N are relatively prime, ε and δ are suitable constants and 2πτ is
the period of the approximated ellipse q0(t).

In order to characterize the resonant orbits, we will obtain a set of conditions
on the initial position and velocity coming from two restrictions: the orbits leave
the sphere B and return to it in time T . The process will be the following: we
will compute the energy of the approximated ellipse, its angular momentum
and the final position on the sphere B at the return time T and we will give
developments for all of them in terms of powers of µ1/3. Equating terms of the
same order (of the appropriate developments) we will obtain the set of conditions
that define the resonant orbits.

Since the initial conditions are taken on the sphere B at t = 0, they can be
expressed in spherical coordinates in the rotating frame as

ρi =

 xi

yi

zi

 =

 µ− 1 + µ1/3 cosϕ cos θ
µ1/3 cosϕ sin θ
µ1/3 sinϕ

 ,

ρ̇i =

 ẋi

ẏi

żi

 = vi

 cosφ cosψ
cosφ sinψ

sinφ

 .

(86)

For a fixed position on B (this is, fixed ϕ and θ), there are different velocities
for which the orbit comes back to the same sphere (see Fig. 37). For this reason
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we write the spherical coordinates of the velocity, φ and ψ, as

φ = φ+ ∆φµ1/3 +O(µ2/3),
ψ = ψ + ∆ψ µ1/3 +O(µ2/3).

(87)

B

Figure 37: Fixed the initial position on the sphere B, there are different initial
velocities such that the orbit comes back to B. The curves on the figure are the
qualitative representation of two solutions of the RTBP that come back to B
tangentially.

To guarantee that the orbit leaves B at the initial epoch, it is necessary to
avoid the tangent direction, so the initial conditions must verify that

0 <
ρ2i · ρ̇i

µ1/3vi
= cos a, (88)

where vi = |ρ| and a is the angle between ρ2i and ρ̇i. Using (86) and (87), we
can write

cos a = cos a+O(µ1/3) (89)

where
cos a = cosϕ cosφ cos(θ − ψ) + sinϕ sinφ,

and (88) can be expressed as ε ≤ cos a, for some ε.
Furthermore, using the Jacobi integral (18) and (86), the initial synodical

velocity vi can be written in terms of CJ and µ as

v2
i = 3− CJ + (cos2 ϕ (1 + 3 cos2 θ) + 1)µ2/3 +O(µ). (90)

This equation implies that CJ < 3. In the planar problem this means that there
are no zero velocity curves, but in the spatial case still zero velocity surfaces
(and so, forbidden regions for the motion) exist, although they do not intersect
the z = 0 plane.

As we have said, the outer solution of a resonant orbit can be approximated
by a keplerian orbit which must be an ellipse. Both, the outer solution and
the ellipse, have the same initial conditions, so we can compute the energy h in
terms of the spherical coordinates ϕ, θ, φ, ψ, the Jacobi constant and µ. We
will use the relations (86), (87) and (90). The energy of the keplerian orbit is
given by

h =
|ṙi|2

2
− 1
|ri|

. (91)
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On one hand,
r2i = 1− 2µ1/3 cosϕ cos θ +O(µ2/3). (92)

On the other hand, we use the relation between the sidereal and synodical
velocities

|ṙ|2 = |ρ̇|2 + 2(xẏ − ẋy) + x2 + y2,

which at the initial condition gives

|ṙi|2 = 4− CJ − 2
√

3− CJ cosφ sinψ +O(µ1/3). (93)

Introducing (92) and (93) in (91) we can develop h in terms of µ1/3, obtaining
the following expression for the energy

h = h0 +O(µ1/3) = 1− CJ

2
−
√

3− CJ cosφ sinψ +O(µ1/3). (94)

Let us introduce the fact that the orbit is a resonant orbit. As we know, the
energy h and the period τ (modulus 2π) of a keplerian orbit verify that

τ2/3 =
1

2|h|
. (95)

¿From (85) τ can be written as

τ =
q

p
+
ε− δ

2πp
µ1/3 +O(µ2/3),

and, therefore,

τ2/3 =
(
q

p

)2/3

+
1
3

(
p

q

)1/3
ε− δ

πp
µ1/3 +O(µ2/3). (96)

Using (95) and equating the terms of order zero of (94) and (96), we get that

CJ − 2 + 2
√

3− CJ cosφ sinψ =
(
p

q

)2/3

. (97)

¿From this expression we can get several information. First of all, we notice
that (97) implies that the energy is negative, because h0 < 0. Next, we observe
that (p/q)2/3 ≤ CJ − 2 + 2

√
3− CJ ≤ 2, so p and q must verify

p

q
≤ 2

√
2. (98)

Moreover, (97) implies that
∣∣∣∣2− CJ +

(
p
q

)2/3
∣∣∣∣ ≤ 2

√
3− CJ , from which we get

that CJ ∈ [CJ1 , CJ2 ] where

CJ1,2 =
(
p

q

) 2
3

∓ 2

√
2−

(
p

q

) 2
3

. (99)

The next condition to be required is to avoid collision with the big primary,
which implies that the angular momentum c cannot vanish. As before, we can
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compute c of the keplerian orbit in terms of the initial conditions from the
expression

c = ri ∧ ṙi = ρi ∧ ρ̇i + wi,

where wi = (−xizi,−yizi, x
2
i +y2

i ). Using again (86), (87) and (90) the modulus
of c can be expressed as

c2 = (3− CJ) sin2 φ + (1−
√

3− CJ cosφ sinψ)2 +O(µ1/3), (100)

and the condition c 6= 0 can be expressed as

(3− CJ) sin2 φ + (1−
√

3− CJ cosφ sinψ)2 6= 0.

As this expression is the sum of two squares, it will be sufficient if one of them
is different from zero. The first one do not vanish if φ 6= 0. If φ = 0, then
it will be necessary that sinφ 6= 1/

√
3− CJ , which using (97) is equivalent to

CJ 6= (p/q)2/3. Thus, the condition will be

φ0 6= 0, or CJ 6=
(
p

q

)2/3

. (101)

Observe that, for planar orbits, using the same developments as above, the
angular momentum can be written as

c =

(
0, 0,

1
2

(
CJ −

(
p

q

)2/3
))

+O(µ1/3).

According to the classification given in a previous section depending on the sign
of the energy and the angular momentum, the orbits with values of the Jacobi
constant CJ < (p/q)2/3 are elliptic retrograde, whereas the orbits are elliptic
direct if CJ > (p/q)2/3.

Summarizing, for a fixed values of p and q, the range of admissible values
for CJ is [CJ1 , CJ2 ] ⊂ (−2

√
2, 3). Moreover, if the initial velocity is parallel to

the z = 0 plane (φ = 0), then CJ 6= (p/q)2/3. In Fig. 38 the restrictions for the
Jacobi constant are represented.

At this point, the spherical coordinates of the initial conditions and the Ja-
cobi constant of orbits with period given by (85), initial negative energy and
such that leave the sphere B avoiding the tangent direction, have been char-
acterized. The restrictions are given by (88), (97) and (100). There is a final
condition to be imposed on the orbits and comes from the fact that they must
come back to B at time T . To deal with it, we will derive an explicit expression
for the out map, which is associated to follow the flow forward in time and
applies the initial conditions qi to the position and velocity qe = q(T ) at the
return time T .

In order to obtain an expression for the final position and velocity, we use(85)
and the approximation by the elliptic orbit given by (84):

r(T ) = r0(T ) +O(µ2/3) = r0(2πpτ + δµ1/3) +O(µ2/3)
= r0(2πpτ) + ṙ0(2πpτ)δµ1/3 +O(µ2/3)
= ri + ṙiδµ

1/3 +O(µ2/3),
(102)
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Figure 38: The area limited by the continuous curve defines the range of vari-
ation of the Jacobi constant of the resonant orbits as a function of p/q. The
dotted curve represents the values CJ = (p/q)2/3 which must be excluded if
φ = 0. The upper and lower regions correspond to direct and retrograde orbits
respectively.

where we have used that 2πpτ is the period of the elliptic orbit q0, and ri and
ṙi are its initial conditions. Analogously, the position of the planet at epoch T
can be expressed as

r
P
(T ) = r

P
(2πq + εµ1/3) +O(µ2/3) = r

P
(0) + ṙ

P
(0)εµ1/3 +O(µ2/3) (103)

The condition we need is |r(T )−r
P
(T )| = µ1/3. Using (102) and (103) we write

|r(T )− r
P
(T )| = |ri − r

P
(0) + µ1/3(ṙiδ − ṙ

P
(0)ε)|+O(µ2/3),

which can be expressed as |r(T )− r
P
(T )| = µ1/3|w|+O(µ2/3) where

|w|2 = 1 + (ε− δ)2 + (3− CJ)δ2 + 2(ε− δ)δ
√

3− CJ cosφ sinψ
+2δ

√
3− CJ (cosϕ cosφ cos(ψ − θ) + sinϕ sinψ)

+2(ε− δ) cosϕ sin θ.

The condition we will ask is w = 1, or equivalently

(ε− δ)2 + δ2(3− CJ) + 2 (ε− δ) cosϕ sin θ
+2δ

√
3− CJ cos a+ 2(ε− δ)δ

√
3− CJ cosφ sinψ = 0. (104)

Thus, ε and δ, the terms of order µ1/3 of the return time T , have to verify
equation (104). This equation represents an ellipse in the (δ, ε−δ) plane, except
if 1 = cos2 φ sin2 ψ. In these cases, equation (104) represents two lines, so δ and
ε−δ can take any real value and then T could be arbitrarily large. To avoid this,
it is necessary to impose that cos2 φ sin2 ψ 6= 1 which, using (97), is equivalent
to CJ 6= CJ1,2 .

6.2.1 The out-map

The out map applies the initial position and velocity (ri, ṙi) to the final position
and velocity on B at the return time T , (re, ṙe). We have seen in (102) that

re = ri + ṙiδµ
1/3 +O(µ2/3).
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Figure 39: Qualitative representation of the out map in a synodical reference
system.

Analogously it can be derived an expression for the velocity:

ṙ(T ) = ṙ0(2πpτ + δµ1/3) +O(µ2/3)
= ṙ0(2πpτ) + r̈0(2πpτ)δµ1/3 +O(µ2/3)

= ṙi −
ṙi

r3i
δµ1/3 +O(µ2/3).

Using that ri = 1+O(µ1/3), we get that the out-map in the sidereal coordinates
is given by the expressions

re = ri + ṙiδµ
1/3 +O(µ2/3)

ṙe = ṙi − riδµ
1/3 +O(µ2/3).

(105)

These expressions give us the position and velocity at the return time on the
sphere B in terms of the initial conditions.

In [6], orbits which undergo consecutive close encounters with the small
primary in the planar RTBP are considered. The numbers of revolutions of
the small bodies around the larger one between consecutive encounters can be
chosen to be two arbitrary sequences (pn, qn), with constraints depending on
the Jacobi constant.

6.3 The inner solution

As the third body approaches the small primary, the influence of the big one
can be considered as a perturbation. The inner solution takes place inside
the sphere B, so the orbit will be, approximately, an hyperbolic orbit. As for
the outer solution, we want to study the difference between the real solution
and the approximated hyperbola, for which it will be convenient to remove the
singularity of the system due to the small primary. To achieve this we begin
regularizing the equations of motion.

Let (ρ, ρ̇) be the solution of the equations of motion (17) in a synodic refer-
ence system with initial condition on the sphere B, this is, the solution of

ρ̈ +A3ρ̇ = ∇Ω(ρ), ρ(0) = ρi, ρ̇(0) = ρ̇i, (106)

where Ω(ρ) =
1
2
(x2 + y2) +

1− µ

r1
+
µ

r2
and A3 =

0 −2 0
2 0 0
0 0 0

 .
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Simultaneously to the regularization we will perform a change of scale in
order to transform the sphere B into a sphere of radius 1, so we will introduce the
parameter µ1/3 into the equations. This will allows us to develop the equations
of motion in powers of µ1/3 and, truncating at first order, we will obtain an
approximated solution of the real orbit.

To regularize, we use Kustaanheimo-Stiefel (KS) transformation, which is
defined by

ρ = ρ
P

+ µ1/3L(u)u,
dt

ds
= r2, (107)

where u = (u1, u2, u3, u4), a zero fourth component to the vector ρ and ρ
P

has
been added and

L(u) =


u1 −u2 −u3 u4

u2 u1 −u4 −u3

u3 u4 u1 u2

u4 −u3 u2 −u1

 .

We observe that L(u)TL(u) = |u|2I4 (I4 identity matrix 4×4), so r2 = µ1/3|u|2.
Therefore, the sphere B transforms into the sphere B∗ = {u ∈ R4; |u| ≤ 1}.

The change of coordinates (107) introduces a change in time, as well. As
the inner solution is the solution of the equation (106) when the third body
moves backwards in time, we can write the relation between t and s (time in
KS coordinates) as

t = −µα

∫ 0

s

|u(τ)|2dτ. (108)

We denote ′ = d/ds. To write the new equations of motion, we will make use
of the following Lemma ( [10]):

Lemma 2 Let u,w ∈ R4 satisfying the bilinear relation

l(u,w) = u1w4 − u2w3 + u3w2 − u4w1 = 0.

Then

1. L(u)w = L(w)u

2. 〈u,u〉L(w)w − 2〈u,w〉L(u)w + 〈w,w〉L(u)u = 0

Once we get the equations of motion, it can be proved that l(u,u′) is a first
integral. This means that

l(u(s),u′(s)) = u′4u1 − u′3u2 + u3u
′
2 − u4u

′
1 = 0, (109)

has to be fulfilled at just one point, for instance at the initial condition (s = 0).
We will take this into account when we choose the initial conditions.

We want to write the left side of (106) in terms of the new variables. Let us
suppose that (109) is satisfied ∀ s. Then using the first property of the Lemma
we get that

ρ̇ =
2
|u|2

L(u)u′, (110)

and deriving this expression and using the second property of the Lemma we
get that

r̈s =
2µ−1/3

|u|4

(
L(u)u′′ − |u′|2

|u|2
L(u)u

)
. (111)
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We also need to express ∇Ω(ρ) in terms of the new coordinates. First we write

∇Ω(ρ) =

xy
0

− 1− µ

r31

x− µ
y
z

− µ

r32

x− µ+ 1
y
z


= p−

(
1− µ

r31
+
µ

r32

)
ρ2 + (1− µ)

(
1
r31
− 1
)

e1,

(112)

where p = (x− µ+ 1, y, 0) and e1 = (1, 0, 0). Next, we are going to expand the
expression (112) in terms of powers of µ1/3. Using (107) we have that

r2 = µ1/3|u|2,
r21 = 1− 2uxµ

1/3 + µ2/3|u|4,
1
r31

= 1 + 3µ1/3ux +O(µ2/3),

where ux and uy are given by x− µ+ 1 = µ1/3ux and y = µ1/3uy. Introducing
these relations in (112) we get that

∇Ω(ρ) = µ1/3

[
p +

(
1 +

1
|u|6

)
L(u)u + 3uxe1

]
+O(µ2/3), (113)

where we have used that |u| is bounded because we are interested in the motion
inside B∗.

Now, substituting (110), (111) and (113) into (106) we get that

L(u)u′′ − |u′|2

|u|2
L(u)u =

µ1/3

2
|u|4

(
− 2
|u|2

A3L(u)u′ +∇Ω(ρ)
)

= −µ1/3|u|2A3L(u)u′ +
µ2/3

2|u|2
L(u)u +O(µ2/3).

(114)
In order to get the final equations of motion (where the singularity do not
appear) it will be necessary to introduce the Jacobi integral |ρ̇|2 = 2Ω(r)−CJ .
On one hand, from (110) we get that

|ρ̇|2 =
4
|u|4

L(u)u′ · L(u)u′ = 4
|u′|2

|u|2
.

¿From another hand,

2Ω(ρ) = x2 + y2 + 2
1− µ√

(x− µ)2 + y2 + z2
+ 2

µ√
(x− µ+ 1)2 + y2 + z2

= (µ− 1 + µ1/3ux)2 + µ2/3u2
y +

2(1− µ)√
1− 2µ1/3ux +O(µ2/3)

+
2µ2/3

|u|2

= 1− 2µ1/3ux + 2(1 + µ1/3ux) + 2
µ2/3

|u|2
+O(µ2/3)

= 3 + 2
µ2/3

|u|2
+O(µ2/3).

Then, the expression of the Jacobi constant in terms of powers of µ1/3 is

|u′|2

|u|2
=

3− CJ

4
+
µ2/3

2|u|2
+O(µ2/3). (115)

70



Substituting (115) in (114) we finally obtain the equations of motion in KS
coordinates expressed in powers of µ1/3:

u′′ =
3− CJ

4
u− µ1/3|u|2L(u)tA3L(u)u′ +O(µ2/3). (116)

The initial conditions (ui,u′i) are chosen such that ui is any solution of the
equation ρi = µ1/3L(ui)ui (observe that there is one degree of freedom) and u′i
is such that verifies u′i = 1

2L(ui)tṙs
i . This choice ensures that l(ui,u′i) = 0.

The equation (116) can be written as a first order system as

U′′ = CU +O(µ1/3)
U(0) = Ui

(117)

where U = (u,u′),

C =
(

0 I4
c I4 0

)
,

and c = (3−CJ)/4. Let U(s) be the solution of (117) (this is, the inner solution)
and U0(s) be the solution of the truncated equation U′′ = CU with the same
initial conditions (the hyperbolic orbit). Then, applying the same Lema as in
the approximation of the outer solution we get that

|U(s)−U0(s)| ≤ |s|Kµ1/3ec|s|, (118)

for all time s for which the orbit is inside the sphere B∗ and where c =
max(1, (3− CJ)/4). This result states that if the orbit remains inside B∗ for a
bounded time the error done in the approximation is of order µ1/3. In order to
know the magnitude of the error in synodic coordinates, it is necessary to undo
the change of variables. It is immediately from (107) that the error will be of
order µ2/3 for the synodical positions. Nevertheless, for the synodical velocities
we have to use (110).In this case, if |u(s)| cannot be arbitrarily small, the error
will be of order µ1/3 .

As for the outer solution, (118) can be improved. It will be necessary to
keep more terms in the equations (116). The problem is that the term of order
µ1/3, is not linear. In order to solve this difficulty, it is necessary to introduce a
change of coordinates previous to the K-S coordinates, which allows us to write
the equations as

u′′ =
3− CJ

4
u + µ1/3f(u,u′)u +O(µ2/3),

where f(u,u′) = −u2u
′
1 + u1u

′
2 − u4u

′
3 + u3u

′
4. Then, using (118) and explicit

expressions for U0 it can be easily seen that

f(U) = f(U0) +O(µ1/3) = k +O(µ1/3)

for some constant k. This implies that the equations can be written as

u′′ = cu +O(µ2/3), (119)

where now c = (3 − CJ)/4 + kµ1/3. Then, if we consider the solution of the
linear part of the equations (119) as an approximation of the solution of the
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whole equations, we get that the error will be of order µ2/3 in K-S coordinates,
and of order µ and µ2/3 for the synodical positions and velocities respectively.

For the moment, it will be sufficient to consider the approximation given by
(118). As we have said, it is necessary to ensure that the time spent inside the
sphere is finite and that the minimum distance to the planet is not too small.
For this, we will compute the time spent for the hyperbolic orbit inside B∗ and
its distance to the origin at the pericenter as well.

The solution u0 can be written explicitly in terms of the initial conditions
as

u0(s) = cosh(
√
cs)ui +

sinh(
√
cs)√

c
u′i. (120)

Let us denote Vi = |u′i| and ηi such that ui · u′i = Vi cos ηi. The modulus |u(s)|
can be written as

|u(s)|2 =
1
2

(
1 +

V 2
i

c

)
cosh(2

√
cs)+

Vi cos ηi√
c

sinh(2
√
cs)+

1
2

(
1− V 2

i

c

)
, (121)

where we have use that |ui| = 1. Deriving this expression and equating to zero,
we will obtain the time of passage at pericenter, which is

sp =
1

4
√
c

ln
(
mi − ni

mi + ni

)
, (122)

where

mi = 1 +
V 2

i

c
and ni = 2

Vi cos ηi√
c

.

Vi and ηi can be expressed in terms of the synodical initial conditions. From
the expression of the Jacobi constant (115), we get that

V 2
i = c+O(µ2/3), (123)

and from (107) and (110)

ρ2i · ρ̇i = 2µ1/3ui · u′i, (124)

which implies that vi cos a = 2Vi cos η. We use again the spherical coordinates
for the synodical initial conditions introduced in (86). Then, using vi = 2

√
c+

O(µ2/3) (obtained from (90)), (123), (88) and (89), the expression (124) gets
that

cos ηi = cos a (1 +O(µ1/3)). (125)

Observe that mi ≥ ni and ni > 0, so sm < 0. We can also write mi

and ni in terms of the initial conditions. From (123), mi = 2 + O(µ2/3) and
ni = 2 cos ηi +O(µ2/3). Then

m2
i − n2

i = 4(1− cos2 ηi) +O(µ2/3) = 4 sin2 ηi +O(µ2/3),
mi − ni = 2(1− cos ηi) +O(µ2/3) = 2(1− cos a) +O(µ1/3),
mi + ni = 2(1 + cos ηi) +O(µ2/3) = 2(1 + cos a) +O(µ1/3).

(126)

Introducing the two last equations in (122) we get that the time of passage at
pericenter can be written as

sp =
1

3− CJ
ln
(

1− cos a
1 + cos a

)
+O(µ1/3), (127)
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provided that 1 − cos a is not too small. This implies that we have to avoid
the case in which the third body leaves the sphere in the direction of the radius
vector. When the third body moves backwards in time, this is the direction to
the center of the sphere, this is, the direction to collision with the small primary.

Furthermore, the time sf spent in B∗ by the third body is twice the time of
passage at pericenter, so sf will be bounded whenever

1− cos a ≥ ε > 0,

for some ε. Assuming this, from (108) we can obtain an approximate expression
for the synodical time spent in B. Using the approximation given by u0 and
(121) and after some calculations, we can write

tf = −µ1/3

∫ 0

sf

|u0| ds+O(µ2/3) = −µ1/3 cos a√
c

+O(µ2/3).

So, the time spent within B is of order µ1/3. In previous sections, we have
supposed that close encounters to a planet performs an impulsive change in the
velocity. This can be done if the time tf can be neglected, this is, for small
values of the mass parameter µ.

Finally, we can also get the minimum distance to the origin. Substituting
sp into the expression (121) it can be obtained that

|u(s)|2 = 1− 1
2
(mi −

√
m2

i − n2
i ) = sin a+O(µ1/3).

Again, assuming that the angle a cannot be small, the minimum distance to the
small primary is bounded.

6.3.1 The in-map

Analogously to the out-map, the in-map applies the initial position and velocity
(ri, ṙi) to the final position and velocity on B at the return time T , (rf , ṙf ), when
the third body moves backwards inside the sphere B. To derive expressions
for (rf , ṙf ), we can use the approximation given by (118). First, an explicit
expression for the in-map of the hyperbolic approximation U0 can be obtain
from (120), using that

sf =
1

2
√
c

ln
(
mi − ni

mi + ni

)
,

and

cosh(
√
c sf ) =

1
2

√
mi − ni

mi + ni
) +

1
2

√
mi + ni

mi − ni
) =

mi√
m2

i − n2
i

,

sinh(
√
c sf ) =

1
2

√
mi − ni

mi + ni
)− 1

2

√
mi + ni

mi − ni
) =

−ni√
m2

i − n2
i

.

Then, the in-map in K-S coordinates writes as

uf =
1√

m2
i − n2

i

(
miui −

ni√
c
u′i

)
+O(µ1/3),

u′f =
1√

m2
i − n2

i

(
−
√
c niui +miu′i

)
+O(µ1/3).
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In order to obtain the in-map in synodical coordinates, it is necessary to
undo the change of variables given be (107) and (110) and the properties of
Lemma 2 . After some calculations, it can be obtained that

ρf = ρi −
cos a√
c
µ1/3ρ̇i +O(µ2/3)

ρ̇f = ρ̇i +O(µ1/3),
(128)

which express the final position and velocity in terms of the initial conditions.
The second equation in (128), which do not gives the explicit terms of order

µ1/3, can be improved. This can be done using the appropriate changes of
variables which improve the approximation given by (118) up to order µ2/3. In
that case, it can be shown that

ρ̇f = ρ̇i +
cos a√
c
µ1/3A3ρ̇i +O(µ2/3). (129)

The in-map allows us to obtain a development in powers of µ1/3 for the
change of the (keplerian) energy (with respect to the big primary) after a passage
near the small primary. The result obtained is similar to (61), in the sense that
it can be explained the increase or decrease of the energy in terms of the initial
velocity.

6.4 Resonant orbits and periodic solutions

The interest in resonant orbits comes from their application to the design of
spacecraft missions and because of their role as natural motions of comets, as
well. In the case of spacecraft missions, multiple flybys to one planet can be
done, such that the approach energy is reduced each time the spacecraft makes
a near resonant return to the planet for a gravity assist, reducing the orbit
capture ∆V requirements.

Let us suppose that a massless particle is moving in a resonant orbit after a
flyby to a planet. So after some time, it will return to the same neighbourhood
of the same planet. Considering the motion in the framework of the Restricted
Three Body Problem, the passage near the small primary corresponds to the
inner solution, and the resonant orbit to the outer solution. Both solutions
match at the junction point where the third body leaves the neighbourhood
(the initial condition for both inner and outer solution), but not at the return
point in which the third body enters the neighbourhood of the small primary.
The in-map and the out-map allow us to measure the distance between these
two positions. From (105) and (128), we have that

ρe − ρf =
(
δ +

cos a√
c

)
µ1/3ρ̇i +O(µ2/3). (130)

A reduction of this distance can be done matching the corresponding expres-
sions up to order µ2/3, so that

δ = −cos a√
c
. (131)

Nevertheless, we have to take into account that resonant orbits have to verify
the restrictions (97), (101) and (104). Given a value for p and q, it will be
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enough to choose a value for the Jacobi constant and the spherical coordinates
of the initial conditions (at the epoch where the orbit leaves the neighbourhood
of the small primary) verifying (97), (101) and ε such that ε− δ = 0 to ensure
(104).

In particular, in the planar case (φ = ϕ = 0) the resonant families can be
described as follows. For each p, q ∈ N relatively prime with p/q ≤ 2

√
2, there

is a family of p–q resonant orbits with the Jacobi constant, CJ ∈ (CJ1 , CJ2) \
{(p/q)2/3} (see (99)) and the polar angle of the velocity ψ given (from (97)) by
the relation

sinψ =
2− CJ + (p/q)2/3

2
√

3− CJ

. (132)

Only a very reduced subset of these orbits will be periodic. If we just ask for
periodicity in configuration space, the difference ∆v between the velocities ρ̇e

and ρ̇s
f for this orbits can be computed numerically. In Figure 40 the behaviour

of ∆v as a function of CJ for different p–q families are shown. As we can
see, there are ranges of values of the Jacobi constant for which the ∆v keeps
bounded, while for values near its minimum CJ1 and maximum CJ2 value, ∆v
increases.
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Figure 40: CJ (x axis) vs ∆v (y axis) for the orbits of two p–q resonant families.
The left hand side curves correspond to values of ψ ∈ (−π/2, π/2) and the right
hand side to ψ ∈ (π/2, 3π/2). From top to bottom, the values of p–q are 1–2
and 3–2 respectively.
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