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1 Wings According to Size

Imagine that you are sitting in a jumbo jet, en route to some exotic

destination. Half dozing, you happen to glance at the great wings

that are carrying you through the stratosphere at a speed close to

that of sound. The sight leads your mind to take wing, and you

start sorting through the many forms of flight you have encoun-

tered: coots and swans on their long takeoff runs, seagulls floating

alongside a ferry, kestrels hovering along a highway, gnats dancing

in a forest at sunset. You find yourself wondering how much power

a mallard needs for vertical takeoff, and how much fuel a hum-

mingbird consumes. You remember the kites of your youth, and

the paper airplane someone fashioned to disrupt a boring class.

You recall seeing hang gliders and parawings over bare ski slopes,

and ultralights on rural airstrips.

What about the wings on a Boeing 747? They have a surface area

of 5,500 square feet, and they can lift 800,000 pounds into the air—

a ‘‘carrying capacity’’ of 145 pounds per square foot. Is that a lot? A

5 � 7-foot waterbed weighs 2,000 pounds, and the 35 square feet of

floor below it must carry 57 pounds per square foot—almost half

the loading on the jet’s wings. When you stand waiting for a bus,

your 150 pounds are supported by shoes that press about 30 square

inches (0.2 square foot) against the sidewalk. That amounts to 750

pounds per square foot—5 times the loading on the jet’s wings. A

woman in high heels achieves 140 pounds per square inch, which

is 20,000 pounds per square foot.

From a magazine article you read on a past flight, you recall that

a Boeing 747 burns 12,000 liters of kerosene per hour. A humming-

bird consumes roughly its own weight in honey each day—about 4

percent of its body weight per hour. How does that compare to the



747? Midway on a long intercontinental flight, the 747 weighs ap-

proximately 300 tons (300,000 kilograms, 660,000 pounds). The

12,000 liters of kerosene it burns each hour weigh about 10,000

kilograms (22,000 pounds), because the specific gravity of kerosene

is about 0.8 kilogram per liter. This means that a 747 consumes

roughly 3 percent of its weight each hour.

A hummingbird, however, is not designed to transport people.

Perhaps a better comparison, then, is between the 747 and an auto-

mobile. At a speed of 560 miles per hour, the 747 uses 12,000 liters

(3,200 U.S. gallons) of fuel per hour—5.7 gallons per mile, or 0.18

mile per gallon. Your car may seem to do a lot better (perhaps 30

miles per gallon, or 0.033 gallon per mile), but the comparison is

not fair. The 747 can seat up to 400 people, whereas your car has

room for only four. What you should be comparing is fuel con-

sumption per passenger-mile. A 747 with 350 people on board

consumes 0.016 gallon per passenger-mile, no more than a car

with two people in it. With all 400 seats occupied, a 747 consumes

0.014 gallon per passenger-mile. A fully loaded subcompact car

consuming 0.025 gallon per mile (40 miles per gallon) manages

0.006 gallon per passenger-mile.

Nine times as fast as an automobile, at comparable fuel costs: no

other vehicle can top that kind of performance. But birds perform

comparable feats. The British house martin migrates to South Af-

rica each autumn, the American chimney swift winters in Peru,

and the Arctic tern flies from pole to pole twice a year. Birds can

afford to cover these enormous distances because flying is a rela-

tively economical way to travel far.

Lift, Weight, and Speed

A good way to start when attempting to understand the basics of

flight performance is to think of the weight a pair of wings can sup-

port. This ‘‘carrying capacity’’ depends on wing size, airspeed, air

density, and the angle of the wings with respect to the direction of

flight.
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Unfortunately, most of us learned in high school that one needs

the Bernoulli principle to explain the generation of lift. Your

science teacher told you that the upper face of a wing has to have

a convex curvature, so that the air over the top has to make a lon-

ger journey than that along the bottom of the wing. The airspeed

over the top of the wing has to be faster than that below, because

the air over the top ‘‘has to rejoin’’ the air along the bottom. An ap-

peal to Bernoulli then ‘‘proves’’ that the air pressure on top is low-

er than that below. The biologist Steven Vogel, who has written

several delightful books on biomechanics, says: ‘‘A century after

we figured out how wings work, these polite fictions and misappre-

hensions still persist.’’ Polite fiction, indeed. It does not explain

how stunt planes can fly upside down, it does not explain how the

sheet-metal blades of a home ventilator or an agricultural windmill

work, it does not explain the lift on the fabric wings of the Wright

Flyer, it fails to explain the aerodynamics of paper airplanes and

butterfly wings, and so on. If your high school teacher had taken

the trouble to do the math, he would have found that the mistaken

appeal to Bernoulli does not produce nearly enough lift to keep a

bird or an airplane aloft. The principal misapprehension in the

conventional explanation is that the air flowing over the top of a

wing has to rejoin the air flowing along the bottom when it reaches

the trailing edge. In fact, all along the wing the airspeed over the

top is higher than that over the bottom. Rejoining is not necessary

and does not occur.

We will have to do better. I will use a version of Newton’s Sec-

ond Law of Motion, not familiar to most high school physics teach-

ers, that is a cornerstone of aerodynamics and hydrodynamics. I

also will appeal to Newton’s Third Law, which says that action

and reaction are equal and opposite. Applied to wings, these two

laws imply that a wing produces an amount of lift that is equal to

the downward impulse given to the surrounding air. According to

the version of the Second Law that I will use, force equals rate of

change of momentum and can be computed as mass flow times

speed change.

Wings According to Size 3



How much air flows around a wing? The mass flow is propor-

tional to the air density r, the wing area S, and the airspeed V.

Let’s check the dimensions of the product of the three factors r, V,

and S. The density r is measured in kilograms per cubic meter, the

wing area S (taken as the planform surface seen from above) in

square meters, and the speed V in meters per second. This means

that the units for rVS are kilograms per second, which indeed is a

mass flow. For a Boeing 747-400 cruising at 39,000 feet, the mass

flow around the wings computes as 42 tons of air per second, or

2,500 tons per minute. By the way, the mass flow into each of a

747-400’s jet engines is about 500 pounds per second.

How much downward motion is imparted to the air flowing

around a wing? The downward component of the airspeed leaving

the wing is proportional to the flight speed (V ) and the angle of

attack of the wing (a). It is easy to get a feeling for the effect of

the angle of attack: just stick your hand out of the window of a car

moving at speed. When you keep your hand level you feel only air

resistance, but when you turn your wrist your hand wants to move

up or down. You are now generating aerodynamic lift. Note also

that you start generating more resistance while losing much of the

lift when you increase the angle of your hand in the airstream. Air-

planes and birds have similar problems: when the angle of attack

of their wings reaches about 15�, the air flow over the top surface

is disrupted. Pilots call this ‘‘stall.’’ When the airflow is stalled,

the lift decreases; it is no longer proportional to the angle of attack.

On top of that, the drag increases a lot, causing a plane to drop like

a brick.

With the mass flow pinned down as rVS and with the deflection

speed proportional to the product of a and V, the lift on a wing is

proportional to arV 2S. Note that the square of the airspeed V is

involved. When you fly twice as fast with the same wings at the

same angle in the air flow, you obtain 4 times as much lift. You’ll

have to reduce the angle of attack if you merely need to support

your weight, or you may decide to make a tight turn. At an altitude

of 12 kilometers, where the air density is only one-fourth its sea-
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level value, you will have to fly twice as fast to sustain your

weight.

What about Bernoulli? The conventional explanation is that the

air over the top surface has to flow faster than the air below, so

that the pressure on the top surface will be lower than that along

the bottom surface. That ‘‘logic’’ is inverted. A wing gives the sur-

rounding air a downward deflection. It does so by creating a region

of reduced pressure on the top surface (a kind of ‘‘suction’’), which

pulls the passing air downward. The partial vacuum over the top

surface manifests itself as lift. Yes, the suction over the top acceler-

ates the local airflow, and yes, the pressure difference can be

computed with the Bernoulli formula, but the ‘‘polite fictions’’

involved in what you learned in high school lead you astray.

Birds and airplanes can change the angle of attack of their wings

to fit the circumstances. They fly nose up, with a high angle of at-

tack, when they have to fly slowly or have to make a sharp turn;

they fly nose down when speeding or diving. But everything that

flies uses about the same angle of attack in long-distance cruising;

6� is a reasonable average. At higher angles of attack the aero-

dynamic drag on wings increases rapidly; at smaller angles wings

are underutilized.

Since wings have to support the weight of an airplane or a bird

against the force of gravity, the lift L must equal the weight W. The

lift is proportional to the wing area S and to rV 2, and so is the

weight:

W ¼ 0.3rV 2S. (1)

(The 0.3 is related to the angle of attack in long-distance flight, for

which the average value of 6� has been adopted.)

We must make sure we aren’t violating the rules of physics when

we use equation 1. We must give clear and mutually consistent

definitions for the units in which r, V, and S are expressed.

(Clearly the numbers would look different if velocities were given

in miles rather than in millimeters per minute.) The best way to en-

sure consistency is to use the metric system, expressing S in square
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meters, V in meters per second, and r in kilograms per cubic me-

ter. The rules of physics then require that the weight W in equation

1 be given in kilogram-meters per second squared. This frequently

used unit is known as the newton, after Sir Isaac Newton (1642–

1727), the founder of classical mechanics. A newton is slightly

more than 100 grams (3.6 ounces). A North American robin weighs

about 1 newton, a common tern a little bit more, a starling a little

bit less. Since there are roughly 10 newtons to a kilogram, a 70-

kilogram (154-pound) person weighs about 700 newtons.

The distinction between mass and weight still causes confusion

in the public mind. Mass is the amount of matter; weight is the

downward force that all matter experiences in Earth’s gravity field.

One reason for the confusion is that the force of gravity is propor-

tional to the mass of an object and is independent of everything

else. None of the other forces in nature have this outrageously sim-

ple property. I have chosen to work with the weight of flying

objects, not their mass, because all flying has to be done on Earth

and is therefore subject to terrestrial gravity. If gravity were absent,

wings would not be needed. Classical Italian painters understood

this well: their Cupids, being little angels, feature miniature wings,

mere adornments. Angels need not worry about gravity.

Great tit (Parus major ): W ¼ 0.2 N, S ¼ 0.01 m2, b ¼ 0.23 m.
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If we respect the rules, we can play with equation 1 in whatever

way we want. For example, a Boeing 747-200 has a wing area of

5,500 square feet (511 square meters) and flies at a speed of 560

miles per hour (900 kilometers per hour; 250 meters per second) at

an altitude of 12 kilometers (40,000 feet), where the air density is

only one-fourth its sea-level value of 1.25 kilogram per cubic me-

ter. Using r ¼ 0.3125 kilogram per cubic meter, V ¼ 250 meters

per second, and S ¼ 511 square meters, we calculate from equation

1 that W must equal 2,990,000 newtons. Because a newton is about

100 grams, this corresponds to approximately 300,000 kilograms,

or 300 tons. That is indeed the weight of a 747 at the midpoint of

an intercontinental flight. At takeoff it is considerably heavier (the

maximum takeoff weight of a 747-200 is 352 tons), but it burns 10

tons of kerosene per hour.

Equation 1 can be used in several ways. Consider a house spar-

row. It weighs about an ounce (0.3 newton), flies close to the

ground (so that we can use the sea-level value of r, 1.25 kilogram

per cubic meter), and has a cruising speed of 10 meters per second

(22 miles per hour). We can use equation 1 to find that the sparrow

needs a wing area of 0.01 square meter, or 100 square centimeters.

That’s 20 centimeters from wingtip to wingtip, with an average

Sparrow hawk (Accipiter nisus): W ¼ 2.5 N, S ¼ 0.08 m2, b ¼ 0.75 m.
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width of 5 centimeters. Or we can use the same equation in design-

ing a hang glider. Taken together, the pilot and the wing weigh

about 1,000 newtons (100 kilograms, 220 pounds). So if you want

to fly as fast as a sparrow (20 miles per hour), you need wings

with a surface area of 33 square meters. On the other hand, if you

want to fly at half the speed of a sparrow, your wing area must be

more than 100 square meters (more than 1,000 square feet).

Wing Loading

To make equation 1 easier to work with, let us replace the variable

r (air density) with its sea-level value: 1.25 kilogram per cubic me-

ter. This should not make any difference to most birds, which fly

fairly close to the ground. For airplanes and birds flying at higher

altitudes, we will have to correct for the density difference or re-

turn to equation 1; we can worry about that detail when it becomes

necessary. Another improvement in equation 1 is to divide both

sides by the wing area S. The net result of these two changes is

Little gull (Larus minutus).
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W/S ¼ 0.38V 2. (2)

This formula tells us that the greater a bird’s ‘‘wing loading’’ W/S,

the faster the bird must fly. Within the approximations we are us-

ing here, sea-level cruising speed depends on wing loading only.

No other quantity is involved. This is the principal advantage of

equation 2. But it is a simplification.

The predecessor of the Fokker 50 was the Fokker Friendship,

with a weight of 19 tons (190,000 newtons) and a wing area of 70

square meters. Its wing loading was 2,700 newtons per square me-

ter, good for a sea-level cruising speed of 85 meters per second

(190 miles per hour). The wing loading of a Boeing 747 is about

7,000 newtons per square meter, and it must fly a lot faster to re-

main airborne. The wing loading of a sparrow is only 38 newtons

Razorbill (Alca torda): W ¼ 8 N, S ¼ 0.038 m2, b ¼ 0.68 m.
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per square meter, corresponding to a cruising speed of 10 meters

per second (22 miles per hour). From these numbers one gets the

impression that wing loading might be related to size. If larger

birds have higher wing loadings, it is no coincidence that a Boeing

747 flies much faster than a sparrow.

Our understanding of the laws of nature is due in part to people

who have been driven by the urge to investigate such questions.

One person in particular deserves to be mentioned: Crawford H.

Greenewalt, a chemical engineer who was chairman of the board

of DuPont and a longtime associate of the Smithsonian Institution.

For many years Greenewalt’s chief hobby was collecting data on

the weights and wing areas of birds and flying insects. Humming-

birds were his favorites, and he carried out many strobe-light

experiments to measure their wing-beat frequencies.

Some of the data collected by Greenewalt and later investigators

are listed in table 1. For the sake of clarity, the selection is

restricted to seabirds: terns, gulls, skuas, and albatrosses. Looking

at table 1, we find that wing loading and cruising speed generally

increase as birds become heavier. But the rate at which this hap-

pens is not spectacular. A wandering albatross is 74 times as heavy

as a common tern, but its wing loading is only 6 times that of its

small cousin, and it flies only 2.5 times as fast (equation 2). In

terms of weight, the wing loading isn’t terribly progressive.

To improve our perception of what is happening, let us plot the

weights and wing loadings of table 1 in a proportional or ‘‘double-

logarithmic’’ diagram, which preserves the relative proportions be-

tween numbers. In a proportional diagram a particular ratio (a two-

fold increase, say) is always represented as the same distance, no

matter where the data points are located. Four is 2 � 2, and 100 is

2 � 50; in a proportional diagram the distance between 2 and 4 is

equal to the distance between 50 and 100. (See figure 1.)

The steeply ascending line in figure 1 suggests that there must be

a simple relation between size and wing loading. There are devia-

tions from this line, of course; for example, the fulmar has a rather

high wing loading for its weight. But before you look at the excep-

tions, let me explain the rule.
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All gulls and their relatives look more or less alike, with long,

slender wings, pointed wingtips, and a beautifully streamlined

body with a short neck and tail; however, they vary considerably

in size. Now compare two types of gull, one having twice the wing-

span of the other. If the larger of the two is a scaled-up version of

its smaller cousin, its wings are not only twice as long but also

twice as wide, making its wing area 4 times as large. The same

holds for weight. Because weight goes as length times width times

Table 1 Weight, wing area, wing loading, and airspeeds for various seabirds, with W given
in newtons (10 newtons ¼ 1 kilogram, roughly), S in square meters, and V in
meters per second and miles per hour. The values of W and S are based on mea-
surements; those for V were calculated from equation 2. In general, larger birds
have to fly faster.

V

W S W /S m/sec mph

Common tern 1.15 0.050 23 7.8 18

Dove prion 1.70 0.046 37 9.9 22

Black-headed gull 2.30 0.075 31 9.0 20

Black skimmer 3.00 0.089 34 9.4 21

Common gull 3.67 0.115 32 9.2 21

Kittiwake 3.90 0.101 39 10.1 23

Royal tern 4.70 0.108 44 10.7 24

Fulmar 8.20 0.124 66 13.2 30

Herring gull 9.40 0.181 52 11.7 26

Great skua 13.5 0.214 63 12.9 29

Great black-billed gull 19.2 0.272 71 13.6 31

Sooty albatross 28.0 0.340 82 14.7 33

Black-browed albatross 38.0 0.360 106 16.7 38

Wandering albatross 87.0 0.620 140 19.2 43
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Figure 1 The relation between weight and wing loading represented in a proportional dia-
gram. When the weight increases by a factor of 100, the value of W /S increases by
a factor of 5 and the airspeed by a factor of more than 2.
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height, the weight of the larger gull is 8 times that of its smaller

cousin. Eight times as heavy, with a wing area 4 times as large, a

bird with a wingspan twice that of its smaller cousin has twice the

wing loading. And according to equation 2 it has to fly 40 percent

faster (the square root of 2 is about 1.4). It is useful to write this

down in an equation. If the wingspan (the distance from wingtip

to wingtip with wings fully outstretched) is called b, the wing area

is proportional to b2 and the weight is proportional to b3. The wing

loading, W/S, then is proportional to b. But b itself is proportional

to the cube root of W. In this way we obtain the scale relationship

W/S ¼ c�W 1=3. (3)

Strictly speaking, this formula holds only for birds that are ‘‘scale

models’’ of one another. The steeply ascending line in figure 1 cor-

responds to equation 3, the coefficient having been determined

Herring gull (Larus argentatus): W ¼ 11.4 N, S ¼ 0.2 m2, b ¼ 1.34 m.
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empirically. For the seabirds in figure 1, c ¼ 25: at a weight of 1

newton, the wing loading is 25 newtons per square meter.

The scale relation (equation 3) is universally applicable when-

ever weights and supporting surfaces or cross-sectional areas are

involved. Galileo Galilei (1564–1642) wrote the first scientific trea-

tise on this subject, asking himself why elephants have such thick

legs and similar questions. The answer is that the larger an animal

gets, the more crucial the strength of the legs becomes. The stress

on leg bones increases as the cube root of weight; for this reason, a

land animal much larger than an elephant is not a feasible proposi-

tion. This is the same problem that engineers face when they de-

sign bridges, skyscrapers, or even stage curtains, which would

give way under their own weight were they not reinforced by steel

cables. Another good example is that of walking barefoot on a

stony beach. Walking on gravel is an uncomfortable experience for

adults, but not for little children. A father who is twice as tall and 8

times as heavy as his 8-year-old daughter must support himself on

feet whose surface area is only 4 times that of her feet. Thus, his

‘‘foot loading’’ is twice hers. No wonder he seems to be walking

on hot coals.

The scale relation given in equation 3 is not a hard-and-fast rule.

Most birds are not exact ‘‘scale models’’ of others, and we must

also allow some latitude for deviations to fit designers’ visions and

nature’s idiosyncrasies. On the other hand, designers are con-

fronted by tough technical problems whenever they deviate too

far. The margins permitted by the laws of scaling are finite.

The Great Flight Diagram

Thanks to the dedicated work of Crawford Greenewalt and other

enthusiasts, and assisted by the airplane encyclopedia Jane’s All

the World’s Aircraft, we can now collect everything that flies in a

single proportional diagram: figure 2. The results are impressive:

12 times a tenfold increase in weight, 4 times a tenfold increase in

wing loading, and 2 times a tenfold increase in cruising speed!
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Figure 2 The Great Flight Diagram. The scale for cruising speed (horizontal axis) is based on
equation 2. The vertical line represents 10 meters per second (22 miles per hour).



Very few phenomena in nature cover so wide a range; the Hertz-

sprung-Russell diagram in astronomy is the only other one I am

aware of. At the very bottom of the graph we find the common fruit

fly, Drosophila melanogaster, weighing no more than 7 � 10�6

newton (less than a grain of sugar) and having a wing area of just

over 2 square millimeters. At the top is the Boeing 747, weighing

3.5 � 106 newtons, 500 billion times as much as a fruit fly. The

747’s wings, with an area of 511 square meters, are 250 million

times as large. Despite these enormous differences, a 747 flies only

200 times as fast as a fruit fly.

Allow yourself time to study figure 2 carefully. It is loaded with

information. The ascending diagonal running from bottom left to

top right is the scale relation of equation 3. The constant c has

been set equal to 47, almost twice as large as the value in figure 1.

The vertical line marks a cruising speed of 10 meters per second,

corresponding to 22 miles per hour and to force 5 on the Beaufort

scale used by sailors and marine meteorologists. Birds that fly

slower than this (those to the left of the vertical line) may not be

able to return to their nest in a strong wind. (To return home in a

headwind, a bird must be able to fly faster than the rate at which

the wind sets it back.)

Deviations from the rule can be seen both to the left and to the

right of the diagonal representing the scale relation of equation 3.

The diagonal acts as a reference, a ‘‘trend line,’’ a standard against

which individual designs can be evaluated. Let’s start with the

birds and airplanes that follow the trend—the commonplace types

found on or near the diagonal. The starling is a good example. A

thrush-size European blackbird, 100 of which were released in

1890 in New York’s Central Park, it has become a most successful

immigrant (and somewhat of a nuisance, too). With a weight of 0.8

newton (80 grams, a little over 3 ounces) and a wing loading of 40

newtons per square meter, the starling is clearly an ordinary bird

and does not have to meet any special performance criteria. But

the Boeing 747 also follows the trend. In its weight class the 747 is

a perfectly ordinary ‘‘bird,’’ with ordinary wings and a middle-of-
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the-road wing loading. The weight of the 747 is no longer very spe-

cial, either: today several other planes of similar weight are in

service.

Deviations from the trend line may be necessary when special

requirements are included in the design specifications. The 747’s

little brother, the 737, weighs only 50 tons (5� 105 newtons), one-

eight the weight of a 747-400. If the 737 had been designed as a

scale model of the 747, its wing loading would have been half that

of the larger plane (the cube root of 8 is 2). And according to equa-

tion 2 its cruising speed would have been only 71 percent of its big

brother’s: not 560 miles per hour but only 400. This would have

been a real problem in the dense air traffic above Europe and North

America, where backups are much easier to avoid if all planes fly

at approximately the same speed. To make it almost as fast as the

747, the 737 was given undersize wings. Its wing loading is higher

than those of ordinary planes of the same weight class, and it is

therefore located to the right of the trend line in figure 2. (With a

cruising speed 60 miles per hour less than that of the 747, the 737

would still be a bit of a nuisance in dense traffic were it not con-

signed to lower flight levels.)

Far left of the diagonal, in the center of figure 2, is Pteranodon,

the largest of the flying reptiles that lived in the Cretaceous era.

Weighing 170 newtons (37 pounds), it was almost twice as heavy

as a mute swan or a California condor. It had a wingspan of 23 feet

(7 meters) and a wing area of 108 square feet (10 square meters)—

comparable to a sailplane. Its wing loading was 17 newtons per

square meter, about one-tenth that of a swan but comparable to

that of a swallow. Pteranodon spent its life soaring above the cliffs

along the shoreline, since its flight muscles were not nearly strong

enough for continuous flapping flight. Its airspeed was about 7

meters per second (16 miles per hour)—not fast for an airborne an-

imal that must return to its roost in a maritime climate. However,

there were no polar ice caps during the Cretaceous era, and there

was less of a temperature difference between the equator and the

poles than there is today; as a result there was much less wind.
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The largest flying animal that ever lived, however, was not a rep-

tile, but a giant bird that roamed the windy slopes of the Andes

and the pampas of Argentina 6 million years ago. Looking much

like an oversized California condor, Argentavis magnificens

weighed 700 newtons (150 pounds). With a wing area of 8 square

meters and a wingspan of 7 meters, its speed in soaring flight was

about 15 meters per second, much the same as that of a golden

eagle. It defies the conventional wisdom that birds much heavier

than 25 pounds cannot fly. Exceptions to the rule add spice to the

work of a scientist.

After centuries of experimentation, humans finally managed to

fly under their own power. That required feather-light machines

with extremely large wings. The only way to reduce the power re-

quirement to a level that humans could attain was to reduce the

airspeed to an absolute minimum. Humans pedaling through the

air on gossamer wings are the real mavericks in the Great Flight Di-

agram (figure 2). They are represented there by Paul McCready’s

Gossamer Condor, the first successful example of the breed. Also

shown are a number of solar-powered planes. A severe lack of en-

gine power forces them also to the far left of the trend line. As a

mode of transportation they are just as fragile as human-powered

planes or extinct flying reptiles. We’ll have to wait for much more

efficient solar cells before solar-powered flight will succeed in the

struggle for survival in this technological niche.

What about the Concorde? Wasn’t it supposed to fly at about

1,300 miles per hour? How come it didn’t have higher wing load-

ing and therefore smaller wings? The answer is that the Concorde

suffered from conflicting design specifications. Small wings suffice

at high speeds, but large wings are needed for taking off and land-

ing at speeds comparable to those of other airliners. If it could not

match the landing speed of other airliners, the Concorde would

have needed special, longer runways. The plane’s predicament

was that it has to drag oversize wings along when cruising in the

stratosphere at twice the speed of sound. It could compensate

somewhat for that handicap by flying extremely high, at 58,000

feet. Still, its fuel consumption was outrageous.
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Convergence and Divergence

The Great Flight diagram (figure 2) exhibits many curious features.

Let me name a few. Sports planes tend to be underpowered, but

crawl toward the trend line as the engine power increases. Small

birds fly much faster than computed when they are migrating.

Insects are either too fast for their size or too slow. Large soaring

birds deviate more from the trend line than their smaller cousins.

Large airliners tend to have the same wing loading, irrespective of

size. Biologists believe that creatures that exhibit better all-around

performance have a better chance to survive. They tend to evolve

in similar ways, much as insects, birds, and airplanes cluster

around the trend line in figure 2. The label given to this idea is

convergence. In short, evolutionary success is determined by func-

tional superiority. Good designs perform better than alternative

ones, so alternative solutions are weeded out. Creatures that ven-

ture far from the trend line, human-powered airplanes for example,

have little chance of survival in the long run. In fact, human-pow-

ered airplanes have become extinct.

In the very beginning of powered flight, airplanes tended to be

underpowered. Early aircraft engines weighed many pounds per

horsepower. In order to keep the total weight within limits, rela-

tively small engines had to be used. One hundred years ago, the

cruising speed of most airplanes was 40 miles per hour at best.

The advantage is obvious: those early planes could take off and

land on grass strips. Also, crashes were relatively easy to repair.

The major disadvantage was that these planes had to be kept on

the ground in high winds. The best fighters in World War I were a

lot faster: with engines delivering up to 200 horsepower, speeds of

100 miles per hour or more could be obtained. In World War II,

Mustangs and Spitfires reached speeds up to 450 miles per hour.

When you decide to install a more powerful engine in your next

plane, the total weight will increase because the engine is heavier

and the fuel tank bigger. This requires a larger wing. But a larger

engine allows you to fly faster, and that permits you to choose a

smaller wing. The net result is that the wing area stays about the

same as engine power increases. Typical private planes have a
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wing area of about 20 square meters. When S is fixed, the wing

loading W/S does not increase as the third root of W; it increases

in linear proportion to W itself. This is exactly what happens as

you move from the Wright Flyer or the Skysurfer to the Beechcraft

Baron and the Beechcraft Bonanza in figure 2. A clear case of evo-

lutionary convergence: as aircraft engines improve in terms of

horsepower per pound of engine weight, it pays to install a larger

engine, which allows a higher cruising speed. The trend line is

rejoined at speeds around 60 meters per second (130 miles per

hour), a typical plane then weighing about 4,000 pounds. This is

just one example of the rapid pace of convergence in technological

evolution.

Curiously, the Supermarine Spitfire, the famous British World

War II fighter, is right on the trend line in figure 2. Thus, you might

think it is rather ordinary. But sometimes appearances are deceiv-

ing. With a wing area of 22.5 square meters and a takeoff weight of

40 kilonewtons, a Spitfire’s cruising speed computes as 69 meters

per second (250 kilometers per hour, 155 miles per hour). What

about the reported top speed of 700 kilometers per hour, then?

And why was a 1,600-horsepower Rolls-Royce Merlin engine in-

stalled? Spitfires were interceptors: they had to climb to 25,000

feet just in time to attack approaching German bombers. That is

what the famous 48-valve Merlin engine was for. You can’t fly fast

and climb fast at the same time. It pays to have a rather low cruis-

ing speed, because most of the power then can be used to climb

fast. If you plan on modifying a Spitfire for racing, you should give

it much smaller wings and forget about a high rate of climb. Taking

off from grass strips then also is out of the question.

Why doesn’t the Great Flight Diagram (figure 2) include any

bats? The diagram is terribly crowded as is. Also, no new informa-

tion would have been presented. Bats’ wing loading is similar

to that of birds of the same size. By omission, the case for con-

vergence is made stronger yet: having to live in the same en-

vironments, birds and bats have evolved toward comparable

aerodynamic design parameters. There are subtle differences,
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though. The largest swan weighs about 25 pounds, but the largest

bat only 5 pounds. This is probably not a matter of muscle power

but a consequence of lung design. The lungs of birds have air sacs

behind them, so they are ventilated twice during each respiration

cycle and can pick up much more oxygen than the lungs of mam-

mals, which don’t have those lung extensions. I wonder why evo-

lution hasn’t solved this discrepancy. Is the cause of the handicap

that mammals appeared on the scene so much later than birds?

Sometimes a limited amount of divergence from the trend line is

unavoidable. Vultures and eagles prefer to soar in ‘‘thermals’’

(ascending pockets of hot air) and need a rate of descent less than

1 meter per second in still air. Since these large birds can glide 15

meters for every meter of altitude lost, they should not fly faster

than 15 meters per second (33 miles per hour). The wing loading

of large soaring birds therefore is fixed at about 80 newtons per

square meter. The extinct giant Andes condor Argentavis magnifi-

cens is no exception. As they grow bigger, the large soaring birds

diverge further from the trend line in figure 2. Their lifestyle

requires much less muscle power than those of geese and swans,

so their flight muscles are relatively small. Continuous flapping is

out of the question; they have wait until sufficiently strong ther-

mals develop in the course of the day. It shouldn’t surprise you

that smaller species start their soaring days earlier than larger

ones. Neither should it surprise you that a flock of soaring birds

sends scouts aloft in the morning in order to find out whether the

updrafts have become strong enough.

Large birds that cannot soar but have to flap their wings have

problems of their own. As far as wing loading and flight speed are

concerned, swans, geese, and ducks follow the trend line faith-

fully. But they don’t grow much heavier than about 25 pounds. So

where’s the rub? The muscle power available to flapping birds is

about 20 watts per kilogram of body weight. Muscle power is pro-

portional to weight, but the power required to maintain horizontal

flight is proportional to the product of weight and flight speed. Big-

ger birds have to fly faster, so their power reserve decreases as their
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weight grows larger. The largest species of swans have very little

power to spare. According to Swedish researchers, they can gain

altitude no faster than 50 feet per minute. I can confirm this num-

ber from personal experience. One autumn many years ago, a flock

of mute swans landed in a meadow behind my house. After resting

for a day and filling their stomachs, they took off. The meadow,

however, was surrounded by brushwood and trees on all sides.

The leader of the flock realized that he couldn’t clear those

obstacles head-on and decided instead to fly a large circle, exploit-

ing the width of the meadow. Slowly the flock gained height. After

a circle and a half, they cleared the brush on the southwest corner

of the field.

From swans and eagles to insects: a large step down in weight,

but similar characteristics of convergence and divergence. Big

birds either soar slowly with oversized wings or follow the trend

line by working hard and flying fast. Among insects, the slow

ones, butterflies and the like, follow the trend line rather faithfully,

but shifted a bit to the left. Many butterflies are capable of gliding

and soaring, and use these styles of flight to conserve energy. If

they can take advantage of strong tailwinds, migrating monarch

butterflies cross the Gulf of Mexico directly, instead of following

the coast. They have been observed by radar to flock in the

updrafts between the ‘‘roll vortices’’ in the lower atmosphere that

stretch at a slight angle to the wind direction. They float without

flapping—a perfect way to cross 500 miles of open sea. I don’t

know how they find out where the updrafts are, but I do know

how human observers do : under appropriate circumstances,

‘‘cloud streets’’ form in the air between each pair of roll vortices.

Mosquitoes, bees, and flies fly in an entirely different way. Their

buzzing wings act like the rotor blades of helicopters. Their wing

size is not determined by their flight speeds but by their flapping

frequency. The speeds suggested in figure 2 are therefore not reli-

able. Bees can go faster when they have to; 10 meters per second

is not uncommon. Some biologists argue that bees diverge farther

from the trend line the smaller they become. On the other hand,
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the very smallest flies, such as Drosophila melanogaster, go only 1

meter per second, one-third as fast as figure 2 suggests. Going into

the details of the performance of buzzing insects would lead me

astray. For very small creatures, air does not obey the aerodynamic

principles that are valid for birds and planes. To a fruit fly, for ex-

ample, flying must feel very much like swimming in syrup. (For

those who want to know more, I recommend reading one of the

books on insect flight listed in the bibliography. For most readers,

David Alexander’s Nature’s Flyers, though not limited to insects,

is by far the best source. And those who insist learning about all

the intricate details will have to study Robert Dudley’s book

Biomechanics of Insect Flight.)

In the top right corner of figure 2, another constraint occurs. It is

the speed of sound. For good reasons, explained in chapter 6, air-

liners travel above 30,000 feet, where the speed of sound is 295

meters per second (1,062 kilometers per hour, 664 miles per hour).

They have to fly somewhat slower than that, typically 560 miles

per hour, in order to avoid making little shock waves that increase

airframe drag rapidly as the speed of sound is approached. Curi-

Storm petrel (Hydrobates pelagicus): W ¼ 0.17 N, S ¼ 0.01 m2, b ¼ 0.33 m.
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ously, all modern long-distance planes cluster around the original

design parameters of the Boeing 747. Convergence in this case is

not just toward the trend line but to a quite specific weight class: a

small cloud of data points in the top right corner of figure 2. The

Airbus A380 is no exception. (Chapter 6 deals with the engineering

logic that has led to this curious development. I did explain the

logic in the first edition, but I did not see the consequences for the

size of future airliners at the time.)

Incidentally, the Boeing 747 is represented in figure 2 as having

a wing loading of 7,000 newtons per square meter and a cruising

speed of 136 meters per second. But 136 meters per second is 300

miles per hour, roughly half the 747’s actual cruising speed. What

has gone wrong here? In figure 2 the lower air density at cruising

altitudes has been ignored. Since the air density at 39,000 feet is

only one-fourth the density at sea level, the high-altitude cruising

speed is twice the cruising speed near Earth’s surface. Figure 2

Barn swallow (Hirunda rustica): W ¼ 0.2 N, S ¼ 0.013 m2, b ¼ 0.33 m.

Chapter 1 24



gives the speed at sea level; table 6 (in chapter 6) gives the neces-

sary conversion factors.

Traveling Birds

Several groups of ornithologists have been making radar measure-

ments of actual flight speeds of migrating birds. The Schweizeri-

sche Vogelwarte (Swiss Ornithological Institute) published a

massive list of radar speed data in 2002, and biologists at the Flight

Ecology Department of the University of Lund in Sweden added

their own list in 2007. (A selection of these data is presented in

the appendix.) Theoreticians have begun to dissect the assump-

tions underlying the ‘‘aerodynamic theory of bird flight,’’ the

theory from which I distilled my way of handling the matter.

Since 1970 or thereabouts, everyone involved with bird flight

assumed that the speed at which birds glide best is not too differ-

ent from the most economical speed in flapping flight. We now

know this was an unwarranted simplification. If flapping birds

want to conserve energy, they have to fly much faster than when

gliding. When birds are in no hurry, like a circling flock of homing

pigeons or a great dancing swarm of starlings at sunset, they fly at a

speed that requires the least muscle exertion. It turns out that this

Bee hummingbird (Mellisuga helenae): W ¼ 0.02 N, S ¼ 0.0007 m2, b ¼ 0.07 m.
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speed is not too different from the optimum gliding speed. But bird

migration is another business altogether. Birds on migration often

are in a hurry. Most of them fly faster than the speed that mini-

mizes their ‘‘fuel consumption’’ per hour, near the top speed their

muscles allow. The migration speed of small birds may be as much

as twice the speed that requires least muscle power. In fact, I have

found no numbers below 10 meters per second (22 miles per hour)

for any songbird on migration. If you want to amend figure 2, here

is your chance. All the data you need are given in the appendix. A

typical 10-gram songbird migrates at 10 meters per second, 80-

gram starlings and half-pound jackdaws manage 14 meters per sec-

ond (30 miles per hour), and many wading birds fly 20 meters per

second (45 miles per hour) when they are making their seasonal

long-distance journeys. If you want to make a sophisticated correc-

tion to figure 2, you should choose a curve that makes the flight

speed much less dependent on weight instead of the trend sug-

gested in figure 2. That would account for the fact that small birds

have lots of power to spare for speeding, while large birds are

straining themselves even when flying most economically.

Flapping, Gliding, Soaring, and Landing

What about the various swifts, swallows, and martins in figure 2?

They are all found on the left of the trend line. For their weight,

they all have rather large wings and fly relatively slowly. There

must be something wrong here. Swifts did not get their name for

nothing.

In fact, swifts and swallows are fast only when gliding, diving, or

fooling around. In level flapping flight, they are not fast at all. Ra-

dar data on migrating swifts give speeds around 10 meters per sec-

ond (22 miles per hour). In wind tunnels, swallows fly no faster

than 12 meters per second (27 miles per hour). Their comfortable

cruising speeds are lower yet, consistent with the data in figure 2.

Swifts and their relatives can fly very slowly, when they have to,

by spreading their wings wide. When they want to fly faster, they
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can fold their wings. The elegance of their streamlining does not

suffer when they reduce their wing area, but the wing loading

increases, and with it the cruising speed. Are they poking fun at

the laws of nature? According to equation 2, a bird cannot alter its

speed at will if it wants to fly economically, once blessed with a

particular set of wings. The cruising speed is controlled by the

wing loading: W/S ¼ 0.38V 2. But if S can be changed to fit the

circumstances, this problem vanishes: the cruising speed then

changes too. All birds do this to some extent, though not always

with the grace and sophistication of swifts and swallows. But glid-

ing, soaring, and maneuvering are altogether different from flap-

ping. In the downstroke of flapping flight, all birds spread their

wings fully; however, when gliding, birds can fold their wings at

will. Figure 3 shows how gliding falcons and pigeons progressively

fold their wings as their speed increases.

When low speeds are needed, all birds make their wing area as

large as is possible. The sparrow hawk on final approach (figure 4)

Figure 3 Birds progressively fold their wings as their speed increases. On the left is a pigeon,
on the right a falcon. At high speeds, fully spread wings generate unnecessary drag.
This can be avoided by reducing the wing area.
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is a good example. Since it wants to fly slowly, it spreads its pri-

mary quills and tail feathers wide. In fact, many birds deliberately

stall their fully stretched wings on final approach, maximizing drag

to obtain quick deceleration and not caring about lift during the

last seconds of flight. Just for fun, watch pigeons landing on a tree

branch or a rooftop, and see how they do it. Airplanes fully extend

various slats and flaps in preparation for landing. Airplanes and

birds alike minimize their landing speed to reduce the length of

runway required or the risk of stumbling.

Swifts’ amazing aerial maneuvers are made possible by the su-

perb aerodynamic performance of their sweptback wings. I have

seen them dallying in the updrafts in front of the cliffs in southern

Portugal, first diving toward the shore and then suddenly shooting

Figure 4 Sparrow hawk (Accipiter nisus): W ¼ 2.5 N, S ¼ 0.08 m2, b ¼ 0.75 m.
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up like rockets and disappearing out of sight. In these stunts, flap-

ping would be of no use. With their wings folded far back, swifts

have another surprise in store. If they have to make a quick maneu-

ver, they can generate a ‘‘leading-edge vortex’’ over their swept-

back wings by suddenly increasing their angle of attack. Almost

but not quite stalling their wings, they achieve a large momentary

increase in lift that way, which allows for very sharp turns. This is

how they catch insects in their flight path, and this is how they

show off during the sophisticated aerobatics of courtship.

Continuous flapping flight does not support such extreme behav-

ior. Level flapping flight is boxed in by a large number of con-

straints—kinematic, dynamic, energetic, physiological, and so on.

When flapping, wings have to act not only as lift-generating surfa-

ces but also as propellers, a combination never successfully imi-

tated by human technology. Wings act as propellers only in the

downstroke. The upstroke is of little use. Many birds fold their

wings before they start the upstroke; others drastically reduce the

angle of attack before their wings move upward. To keep things

simple, I will assume that only the downstroke counts. This means

that flapping wings are useless during one half of each wingbeat

cycle, and have to produce twice the lift during half the time in or-

der to make sure a bird stays airborne. The immediate consequence

is that birds have to endure a roller-coaster ride when flapping at

speed. This is obvious when you watch traveling geese fly by over-

head. Their heads are kept steady, presumably to make sure that

their delicate navigation equipment is not affected, but their bodies

are shaking up and down with each wingbeat. Another conse-

quence of the two-stroke cycle of flapping wings is that the angle

of attack during the downstroke has to be much larger than when

gliding at the same speed. This is fine as far as the flight muscles

are concerned, because the airspeed for most economical gliding

does not differ much from the speed that requires the least muscle

effort when flapping. (Just watch any bird switching from gliding to

flapping or vice versa, without change in speed.) But it does pay to

choose a higher airspeed in flapping flight, because a bird can also
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get twice the lift by flying 40 percent faster (the lift goes as the

square of the speed, and the square root of 2 is about 1.4). This op-

tion keeps the angle of attack at a value that doesn’t compromise

the aerodynamic performance of the wings. I know I am not doing

justice to the great variety of flapping styles that birds employ, but

a useful rule of thumb is that the most economical speed for flap-

ping is 40 percent higher than that for gliding, provided a bird has

no shortage of muscle power. Swans and other big birds do not

have that option; their speed is limited by their muscle power.

This implies that their wings are working at a high angle of attack

during the downstroke, an angle that compromises flight efficiency

somewhat. The whistling noise made by the flight feathers of mute

swans proves that in the downstroke their wings are almost

stalling.

Birds and Insects

A curious feature of figure 2 is the continuity between the largest

insects and the smallest birds. The largest of the European beetles,

the stag beetle Lucanus cervullus, weighs 3 grams, about the same

as a sugar cube or a fat hazelnut. The smallest bird on Earth, the

Cuban bee hummingbird Mellisuga helenae, weighs 2 grams. The

smallest European bird, the goldcrest, weighs 4 grams. Small bats

also weigh about 5 grams, notwithstanding their different flight ap-

paratus. The wing loadings of large insects do not differ much from

Cockchafer (Melolontha vulgaris): W ¼ 0.01 N, S ¼ 0.0004 m2, b ¼ 0.06 m.
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those of small birds, either. This is no minor observation. In

theory, conditions may be imagined in which the largest beetle

exceeds the smallest bird in size, or a wide gap exists between the

largest flying insects and the smallest birds. Such a gap does exist

between the largest birds and the smallest airplanes, after all. And

there are substantial construction differences, too. The exoskele-

tons of insects are made up of load-bearing skin panels, while birds

(like humans) have endoskeletons, with the load-bearing bones in-

side the body. Notwithstanding the different construction techni-

ques, the transition from insects to birds is barely perceptible.

Apparently, the choice between an exoskeleton and an endoskele-

ton is a tossup for weights around 3 grams. Just a little heavier and

the exoskeleton loses out to the little birds; just a little lighter and

the endoskeleton has to make way for the big beetles. What factor

determines this switchover? Is it the wing structure, the weight of

the skeleton, the geometry of the muscle attachment points, the

respiration constraints, or the blood circulation? This would be a

wonderful research project for a young aeronautical engineer.

Some experience with aircraft construction would give the engi-

neer a head start. Like insects, most airplanes have exoskeletons:

Stag beetle (Lucanus cervus).
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their skins carry most of the structural load. For very small or very

large flying objects, an endoskeleton is apparently not a wise

choice.

The time has come to look deeper into the energy required for

powered flight. Hummingbirds and jetliners consume a few per-

cent of their body weight in fuel per hour. That is a sure sign that

energy consumption is a major consideration in flight performance.

Most of the time, flying is hard work. When you hear a wren sing

its staccato ‘‘tea-kettle, tea-kettle, tea’’ in your backyard, it is not

enjoying an idle moment; it is trying to keep competitors off its ter-

ritory without having to patrol the perimeter. Flying back and forth

would use up too much energy. Birds that have to spend much of

the day looking for food find it easier to whistle a tune than to

chase intruders. Similarly, birds feeding their nestlings must select

their food carefully, choosing between the fattened caterpillars in

the woods a quarter-mile away and the starving maggots in the

meadow below. If a bird doesn’t take care, it will spend more en-

ergy on getting food than it and its young get out of it.
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