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model1 gives options 
prices as a function of 

volatility. If an option price is given by the market we can invert 
this relationship to get the implied volatility.

If the model were perfect, this implied value would be the 
same for all option market prices, but reality shows this is not 
the case. Implied Black-Scholes volatilities strongly depend on 
the maturity and the strike of the European option under scru-
tiny. If the implied volatilities of at-the-money options on the 
Nikkei 225 index are 20% for a maturity of six months and 
18% for a maturity of one year, we are in the uncomfortable 
position of assuming that the Nikkei oscillates with a constant 
volatility of 20% for six months but also oscillates with a con-
stant volatility of 18% for one year.

It is easy to solve this paradox by allowing volatility to be time-
dependent, as Merton did.2 The Nikkei would first exhibit an 
instantaneous volatility of 20% and subsequently a lower one, 
computed by a forward relationship to accommodate the one-year 
volatility. We now have a single process, compatible with the two 
option prices. From the term structure of implied volatilities we 
can infer a time-dependent instantaneous volatility, because the 
former is the quadratic mean of the latter. The spot process S is 
then governed by the following stochastic differential equation:

dS
S

= r t( )dt + σ t( )dW

where r(t) is the instantaneous forward rate of maturity t implied 
from the yield curve.

Some Wall Street houses incorporate this temporal informa-
tion in their discretisation schemes to price American or path-
dependent options.

However, the dependence of implied volatility on the strike, 
for a given maturity (known as the smile effect) is trickier. 
Researchers have attempted to enrich the Black–Scholes model 
to compute a theoretical ‘smile’. Unfortunately, they have to 
introduce a non-traded source of risk such as jumps, stochastic 
volatility or transaction costs, thus losing the completeness 
(ability to hedge options with the underlying asset) of the 
model.3 Completeness is of the highest value: it allows for arbi-
trage pricing and hedging.

Therefore, we must ask whether it is possible to build a spot 
process that:
n is compatible with the observed smiles at all maturities, and
n keeps the model complete.

More precisely, given the arbitrage-free prices C(K, T) of Euro-
pean calls of all strikes K and maturities T, is it possible to find a 
risk-neutral process for the spot in the form of a diffusion:

dS
S

= r t( )dt + σ S, t( )dW

where the instantaneous volatility s is a deterministic function of 
the spot and of the time?

This would extend the Black-Scholes model to make full use of 
its diffusion setting without increasing the dimension of the 
uncertainty. We would have the features of a one-factor model 
(hence easily discretisable) to explain all European option prices. 
We could then price and hedge any American or path-dependent 
options (even for European options, the knowledge of the whole 
process is necessary for hedging). We would also know which 
volatility to use to price a barrier option and how to hedge a com-
pound option. It is quite simple to work on a discretised version of 
the spot, as we show later, but here we also give an analytical 
treatment, which is more revealing.

If the spot price follows a one-dimensional diffusion process, 
then the model is complete and option prices can be computed by 
discounting an expectation with respect to a ‘risk-neutral’ proba-
bility under which the discounted spot has no drift (but retains 
the same diffusion coefficient).

More precisely, path-dependent options are priced as the dis-
counted expected value of their terminal payoff over all possible 
paths. In the case of European options, this boils down to an 
expectation about the terminal values of the spot (which can be 
seen as bundling the paths that end at a same point).

It follows that knowledge of the prices of all path-dependent 
options is equivalent to knowledge of the full (risk-neutral) diffu-
sion process of the spot; knowing all European option prices 
merely amounts to knowing the probability densities of the spot 
at different times, conditional on its current value.

The full diffusion contains much more information than the 
conditional laws, as distinct diffusions may generate identical 
conditional laws. For instance, a Gaussian process with mean 
reversion can generate the same conditional laws as another Gaus-

Pricing 
with  
a smile
In the January 1994 issue of Risk, Bruno Dupire 
showed how the Black-Scholes model can be extended 
to make it compatible with observed market volatility 
smiles, allowing consistent pricing and hedging of 
exotic options 

The Black-Scholes

1 Black, F, and M Scholes, 1973, The pricing of options and corporate liabilities, Journal of Political 
Economy 81, pages 637–654
2 Merton, R, 1973, The theory of rational option pricing, Bell Journal of Economics and Management 
Science 4, pages 141–183
3 For an account on completeness for stochastic volatility, see Dupire, Arbitrage pricing with stochastic 
volatility, Proceedings of AFFI Conference, Paris, June 1992, and Model art, Risk, September 1993, 
pages 118–124
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sian process with volatility decreasing over time. However, as we 
shall see, if we restrict ourselves to risk-neutral diffusions, the 
ambiguity is removed and we can retrieve from the conditional 
laws the unique risk-neutral diffusion from which they come. 
This result is interesting in itself but we will also exploit its conse-
quences in hedging terms.

A diffusion from prices
We can gain considerable clarity without losing much in general-
ity by assuming that the interest rate is zero. For a given maturity 
T, the collection of option prices of different strikes C(K, T) – 
which in practice requires a smooth interpolation from a few 
points – yields the risk-neutral density function ϕT of the spot at 
time T through the relationship:

C K ,T( ) = max S − K , 0( )ϕT S( )dS
0

∞
∫

which we differentiate twice with respect to K to obtain: 

ϕT K( ) = ∂2C
∂K 2 K ,T( )

which is the risk-neutral probability density of the spot being 
equal to K at time T. We recall that European option prices are 
equivalent to the densities ϕT and that path-dependent option 
prices are equivalent to the diffusion process. We are then left 
with an interesting stochastic problem – with the notation (x, t) 
instead of (K, T): knowing all the densities conditional on an ini-
tial fixed (x0, t0), is there a unique diffusion process dx = a(x, t)dt 
+ b(x, t)dW which generates these densities? 

The solution in general is not unique; however, if we restrict 
ourselves to risk-neutral diffusions, we can recover, under some 
technical assumptions, a unique diffusion process from the ϕT 
(see box 1). The interest rate being zero, we pay attention only to 
martingale (ie, driftless) diffusions dx = b(x, t)dW.

Thanks to the Fokker-Planck equation, we can – after some 
maths4 – write:

	

b2 K ,T( )
2

∂2C
∂K 2 =

∂C
∂T 	

(E)

where C(S, t, K, T) denotes the premium at time t for a spot S of 
a European call of strike K and maturity T.

Both derivatives are positive by arbitrage (butterfly for the con-

vexity and conversion for the maturity). Equation (E) can be used 
to determine b, as:

∂2C
∂K 2 and ∂C

∂T
are known from the market smiles. We can infer the instanta-
neous volatility at time T for a spot equal to K from the knowl-
edge of the option prices of maturities and strikes around T 

If we restrict ourselves to diffusions, there is a unique risk-neutral (drift equal 
to the short-term rate) process for the spot which is compatible with Euro-
pean option prices:
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This means that, if we assume the spot is following a diffusion process, we 
can obtain exotic option prices from European option prices through the 
scheme:

European
prices

Path-dependent
prices

Risk-neutral
densities

Risk-neutral
diffusion

1.	A	unique	diffusion	process

4 See Dupire, Pricing and hedging with smiles, Proceedings of AFFI Conference, La Baule, June 1993 
(also presented at IAFE meeting, New York, December 1993)
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and K, which is our primary purpose. Going back to the spot 
process dS/S = s(S, t)dw, we indeed obtain the instantaneous 
volatility by:

σ S, t( ) = b S, t( )
S

A new way to compute prices
Equation (E) can also be interpreted in another fashion. If b is 
known, it establishes a relationship between the price as of 

today of call options of varying maturities and strikes.
Equation (E) has the same flavour as, but is distinct from, the 

classical Black-Scholes partial differential equation which 
involves, for a fixed option (ie, K and T fixed), derivatives with 
respect to the current time and value of the spot. With zero inter-
est rates, the Black-Scholes equation takes the form:

	
−
b2 S, t( )
2

∂2C
∂S2

=
∂C
∂t 	

(BS)

Equations (E) and (BS) can be thought as being dual to each 
other. However, the relationship is not so universal, as (BS) 
applies to any contingent claim, though (E) holds only because 
the intrinsic value of a call happens to be the second integral of a 
Dirac function. It is very fortunate that the market trades this 
particular payoff!

It also provides an algorithm to compute an option price 
through a forward tree and even the price of many different 
options in a single sweep of the tree!

To price the (K, T) call, we build a tree with its root at (K, T), 
expanding backward in time up to the current date where it is fed 
by an intrinsic value which is the value today of an option of 
immediate maturity. Pricing is performed forward in time by tak-
ing the discounted expectation at each node until the root (K, T) 
is reached and the premium can be collected (see box 2).

An internal node of the tree will be labelled with today’s value 
of a European call where strike and maturity correspond to this 
node, as opposed to a standard tree where each node carries the 
premium of a fixed option at a future time and spot associated to 
that node.

It is indeed possible to compute b numerically from the relation 
(E) obtained from the continuous time and price analysis, and to 
discretise the associated spot process with explicit recombining 
binomial5 or trinomial6 schemes. We prefer however to present a 
construction that makes use of a new technique widely used for 
interest rate model fitting: forward induction,7 as it can be under-
stood without any stochastic machinery.

It is worth stressing that it is quite easy to find a set of coeffi-
cients that price options correctly, since degrees of freedom are in 
superabundance compared with the constraints. The situation is 
analogous to the one encountered in the continuous case, where 
various diffusions could generate the same densities. However, 
imposing the martingale condition (risk-neutrality) in the dis-
crete time setting at each node gives additional constraints. This 
extra structure is a key point in our pricing/hedging approach but 
existence and uniqueness are in general not achieved by a simplis-
tic discretisation. As we shall see, a trinomial one does ensure 
existence and uniqueness of the discretised process, through a 
parsimonious use of its degrees of freedom (the weights carried by 
the connections).

We build a trinomial tree with equally spaced time-steps. The 
ratio of price-step over time-step, which determines the opening 
of the tree, has to be large enough to cater for the local variance of 
the process. This condition is equivalent to the one that guaran-
tees the stability of explicit discretisations of a partial differential 
equation. If the market Black-Scholes smiles are not too pro-
nounced, equal steps on the logarithm of the spot are best. If the 

Spot follows dxt = b(x, t)dWt (interest rates are 0).
Two ways to compute C(S0, 0, K0, T0):

Black-Scholes PDE (BS)
K, T fixed

∂C
∂t

= −
b2 S, t( )
2

∂2C
∂S2

computes C(S, t, K0, T0)

S0

0 T0

C(S, t, K0, T0)

K0

(S – K0)+

(S, t)

Fokker-Planck (E)
S, t fixed

∂C
∂T

=
b2 K ,T( )

2
∂2C
∂K 2

computes C(S0, 0, K, T)

S0

0 T0

C(S0, 0, K, t)
K0

(S0 – K)+

(K, t)

In both cases, C(S0, 0, K0, T0) collected at the root of the tree.

2.	A	new	way	to	price	options

5 Nelson, D, and K Ramaswamy, 1990, Simple binomial processes as diffusion approximations in 
financial models, The Review of Financial Studies 3, pages 393–430
6 Hull, J, and A White, 1990, Valuing derivative securities using the explicit finite difference method, 
Journal of Financial and Quantitative Analysis 25, pages 87–100
7 Jamshidian, F, 1991, Forward induction and construction of yield curve diffusion models, Journal of 
Fixed Income 1; Hull, J, and A White, 1992, One factor interest-rate models and the valuation of 
interest-rate contingent claims, working paper, University of Toronto
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initial guess of the opening is not high enough, it should be 
increased to ensure that the procedure described below can be 
carried out. Weights will be assigned to the connections, which 
will allow us to compute the discounted probability of each path 
and hence to value any path-dependent option. It is possible to 
reduce the complexity of the computation in many cases.

At each discrete date, all profiles consisting of continuous 
piecewise linear functions with break points located at inner 
nodes of the tree are required to be correctly priced by the tree. At 
the nth step, any such profile is uniquely characterised by the 
value it takes on the 2n + 1 nodes of that step, thus the space of all 
profiles is of dimension 2n + 1. This contains the zero coupon, the 
asset itself and all calls (and puts) whose strikes are the inner 
nodes. With each node we associate an Arrow-Debreu profile 
whose value is 1 on this node and 0 on the others.

A node is labelled (n, i) with n denoting the time-step and i the 
price-step. Its associated Arrow-Debreu price is denoted A(n, i) 
and the weight of the connection between nodes (n, i) and (n + 1, 
j), j = i – 1, i, or i + 1 is denoted w(n, i, j). Arrow-Debreu prices 
are computed from market prices, as prices of portfolios of Euro-
pean calls, spot and cash positions. The weights are computed 
through the tree in a forward fashion.

We can exploit two types of relations:
n forward relations, which relate the Arrow-Debreu price of a 
node to the Arrow-Debreu prices of its immediate predecessors;
n standard backward relations, which link the value of a contin-
gent claim at a node to its value at the immediate successors. We 
apply this relation to two simple claims: a unit of cash and a unit 
of the spot, both to be received one time-step later (see box 3).

The generic step of the algorithm is:
Compute w(n, i, i – 1) from A(n + 1, i – 1), A(n, i), A(n, i – 1), 

A(n, i – 2), w(n, i – 1, i – 1) and w(n, i – 2, i – 1).
Compute w(n, i, i) and w(n, i, i + 1) from the forward discount 

factors of the cash and spot.

Hedging
Knowledge of the whole process allows for the pricing of path-
dependent options (by Monte-Carlo methods) and American 
options (by dynamic programming). It also allows for hedging 
through an equivalent spot position because the sensitivity of the 
options with respect to the spot can be computed. Knowing the 
full process, it is possible to shift the initial value and to infer the 
process that starts from this new value and the new price it incurs. 
Delta hedging can then be achieved, which will be effective 
throughout the life of the option if the spot behaves according to 
the inferred process.

It probably will not, which leads us to a more sophisticated 
method of hedging. We can build a robust hedge that will be 
efficient even if the spot does not behave according to the instan-
taneous inferred volatilities of the diffusion process. The idea is 
to associate with every contingent claim X a portfolio of Euro-
pean options (which should be rebalanced periodically) that 
will be tangential to it in the sense that it will change in value 
identically up to the first order for changes in the volatility 
manifold s(K, T)K,T.

We proceed as follows. A local move of the volatility manifold 
around (K0, T0) will lead to a new diffusion process, hence to a 
new value of X. We can then compute the sensitivity of X to a 
change of volatility s(K0, T0) and the equivalent (K0, T0) call posi-
tion. Repeating for all (K, T), we obtain a spectrum of sensitivi-
ties Vega(K, T) and the associated (continuous) portfolio of (K, 

T) calls, which can be seen as a projection of X on the calls. This 
portfolio will behave up to the first order as X, even if the market 
evolves by transgressing the induced forward volatilities com-
puted above.

Conclusion
Under certain conditions, it is possible to recover from the condi-
tional laws a full diffusion process whose drift is imposed. This 
means that from option prices observed in the market we can 
induce a unique diffusion process. Clearly it would be excessive to 
pretend that the spot will follow this diffusion. What we can say 
is that the market prices European options as if the process was 
this diffusion.

In practice, this shows how a sound pricing for path-dependent 
and American options can be elaborated. Moreover, it finely 
assesses the risk of such options by performing a risk analysis 
along both strikes and maturities. This enables these options to be 
fully integrated into a book of standard European options, which 
is clearly a key point for many financial institutions. n

Bruno	dupire	was	head	of	options	research	at	Paribas	capital	markets	in	
London.	He	is	happy	to	mention	fruitful	conversations	with	nicole	el	Karoui	
and	colleagues	from	the	SoRt	(Swaps	and	options	Research	team)	at	Paribas

We assume the connections have been computed over the first time-step 
and pay attention to the second one:
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1 is computed forward through the Arrow-Debreu prices of B and E
2 are computed backward through 1 and the zero coupon and the spot at 
period 2
3 is computed forward through the Arrow-Debreu prices of B, C, F and 2
4 are computed backward through 3 and the zero coupon and the spot at 
period 2
5 is computed forward through the Arrow-Debreu prices of B, C, D, G, 2  
and 4
6 are computed backward through 5 and the zero coupon and the spot at 
period 2

Arrow-Debreu profiles of H and I need not be exploited, as they are neces-
sarily correctly priced by the tree. In effect, they are spanned by the Arrow-
Debreu profiles of E, F and G, the zero coupon and S, which are correctly 
priced.

3.	Building	the	tree
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