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ABSTRACT 
Data centers and HPC clusters often incorporate specialized 
networking fabrics to satisfy system requirements. However, 
Ethernet’s low cost and high performance are causing a shift 
from specialized fabrics toward standard Ethernet. Although 
Ethernet’s low-level performance approaches that of specialized 
fabrics, the features that these fabrics provide such as reliable 
in-order delivery and flow control are implemented, in the case 
of Ethernet, by endpoint hardware and software. Unfortunately, 
current Ethernet endpoints are either slow (commodity NICs 
with generic TCP/IP stacks) or costly (offload engines). To 
address these issues, the JNIC project developed a novel 
Ethernet endpoint. JNIC’s hardware and software were 
specifically designed for the requirements of high-performance 
communications within future data-centers and compute 
clusters. The architecture combines capabilities already seen in 
advanced network architectures with new innovations to create a 
comprehensive solution for scalable and high-performance 
Ethernet. We envision a JNIC architecture that is suitable for 
most in-data-center communication needs. 

1. INTRODUCTION 
Ethernet is nearly ubiquitous in today’s data center. Its 
commodity pricing and high performance is a strong motivator 
for replacing specialized fabrics such as InfiniBand [9], 
Quadrics [14], Myrinet [3], and Fibre Channel [4]. Gigabit 
Ethernet (GigE) is used in over 40% of the top 500 
supercomputers as of November 2006. As low-latency 10 
Gigabit Ethernet solutions become widely available, Ethernet 
will dominate in-data-center communications. However, 
Ethernet’s simple architecture requires complex computation in 
the endpoints to deal with its unreliable communications, out-of-
order delivery, and lack of useful flow control. These limitations 
are typically addressed by the TCP/IP protocol suite. Current 
implementations of these protocols do not satisfy the needs of 
high-performance scalable in-data-center communications. 
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The Joint Network Interface Controller (JNIC) project is a 
collaborative research project between HP and Intel to explore 
high-performance in-data-center communications over Ethernet. 
We are investigating advances required to allow Ethernet to 
become the unifying fabric for high-performance in-data-center 
communications. This requires increased Ethernet performance, 
as delivered to the user, while reducing the endpoint costs. 
Future Ethernet-based data center fabrics can leverage the 
commodity pricing for all components including endpoints, 
switches and cabling. The project demonstrates that Network 
Interface Controller (NIC) hardware closely coupled into the 
CPU/memory complex can be combined with on-load software 
running on (i.e. on-loaded to) a multi-core CPU to achieve these 
goals. 
The primary contribution of this work is the design, 
implementation, and evaluation of a network architecture for 
Ethernet-based communications in future data centers. The 
hardware and software architecture is designed with a number of 
key assumptions. Hardware must be simple for close integration 
in future multi-core processors. Inexpensive hardware 
minimizes cost for users with modest communication needs. 
The architecture uses front-side bus attachment to provide low 
latency, high bandwidth and efficient hardware/software 
interaction. The architecture must allow efficient scalable 
communication within very large data centers. 
Complex control must be implemented using on-load software 
that exploits general-purpose processors and memory. 
Additional general-purpose resources are used to provide 
increased performance and more complex communication 
services. Functions such as congestion management, quality of 
service, and a variety of complex client communication services 
are incorporated as flexible on-load software to allow the 
incorporation of new functionality.  
While most of JNIC’s components are similar to components 
that have been explored within prior work, we believe that JNIC 
provides a unique and innovative system architecture that 
improves our understanding of communications architectures for 
future data centers 
To understand future system performance, a hardware and 
software prototype was developed instead of using simulation. 
This carries benefits and limitations. We integrated and tested 
all components within a fully-functional system and our 
complex prototype demonstrates many real-system behaviors. A 
key limitation of our prototype is modest performance. When 
work began, we were aware that our 1 Gb Ethernet prototype 



could not match the performance of existing products. Instead, 
our goals were to use this platform to identify sound 
architectures and to extrapolate realistic performance, 
functionality, and cost goals for future systems. The JNIC 
prototype serves this purpose well. Any future product would 
incorporate faster processors and network hardware as well as 
better-tuned and more complete software. With our existing 
prototype, we extrapolate across these limitations into the 
future. 

 
Figure 1: Future JNIC Systems—Future JNIC systems will 
use multi-core processors, integrated on-chip NIC, and on-
load software.  

The high-level, forward-looking vision of the JNIC system is 
depicted in Figure 1. At the bottom, we show a 10 Gigabit (or 
faster) Ethernet-based converged data center fabric. To 
communicate with that fabric, a multi-core processor 
incorporates tightly-integrated NIC hardware, with most of the 
complex communications functionality implemented in software 
running on the multi-core processor. This on-load software is 
fabric-optimized to manage congestion and ensure the efficient 
yet reliable transport of data. A software virtual NIC (VNIC) 
service layer offers virtualized NIC devices that are efficiently 
accessed by user- and kernel-mode clients with performance-
critical applications layering a variety of communications 
services on the VNICs. 
To achieve this vision, JNIC’s architecture combines a number 
of key architectural elements. Coherent-attached NIC hardware 
maps transmit and receive apertures into a multi-processor 
address space as described in Section 3. JNIC’s on-load helper 
software exploits the power of future chip multiprocessors to 
provide reliable data transport and virtualized NIC services as 
described in Section 4. JNIC Bulk Message Transport provides 
copy-free autonomous data delivery as described in Section 5. 
MPI is used to demonstrate JNIC as described in Section 6. 

A central component of our prototype software is a driver that 
provides reliable and low latency system-to-system 
communication. This software runs in a helper task on a 
processor dedicated to communications processing. While 
ensuring reliability, this low-level software also regulates the 
messaging rate between peers to manage congestion. The 
Virtual NIC (VNIC) layer, which sits on top of this reliable 
communications substrate, presents a reliable datagram service 
to kernel and user clients. The device driver multiplexes 
message requests from the various VNIC clients to the reliable 
communications layer. Another component of our prototype 
software, the JNIC Bulk Message Transport (JBMT) layer, 
implements a remote DMA facility to support large message 
transfers. JBMT uses VNICs to implement efficient, copy-free, 
high-bandwidth data transport. MPI [16] has been ported to the 
JNIC testbed to demonstrate high performance short and long 
message transfers. We believe that other communication 
services, including remote disk access, can be efficiently 
supported by the VNIC and JBMT layers. 

2. THE JNIC PROTOTYPE SYSTEM  
We have developed a functional prototype (Figure 2) consisting 
of optimized NIC hardware and software for communications-
intensive applications. Our hardware uses an FPGA-based GigE 
NIC that plugs into an Intel® Xeon® processor socket, allowing 
direct communication over the processor front side bus. With 
this hardware, we can explore software for future JNIC-inspired 
products, e.g. those based on 10GigE and next-generation 
processor interconnects. The JNIC itself is implemented using 
off-the-shelf FPGA, MAC, and PHY components. 
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Figure 2: JNIC Testbed—The testbed combines a Xeon 
Multiprocessor, an onload driver, and FPGA-based NIC 
Hardware. 

3. THE PROTOTYPE HARDWARE  
The hardware testbed uses a 4-way multiprocessor server host 
system with our prototype NIC replacing one of the 4 



processors. The host system can be configured with the 
prototype NIC, and one, two, or three CPUs. The prototype NIC 
is a fully compliant symmetric cache-coherent agent on the FSB 
(Front Side Bus) so the NIC can be accessed using coherent 
memory as opposed to PCI transactions. Residing on the FSB 
not only enables faster processor access to NIC registers, but 
also faster NIC access to system memory when it DMAs packet 
data to and from the network. 
The prototype NIC is implemented in an FPGA. The NIC is 
constructed as three stacked circuit boards, the NIC Baseboard, 
external power board, and the IO mezzanine (Figure 3). The 
NIC Baseboard contains the FPGA, an optional onboard 
memory (currently unused), and a USB controller. The I/O 
mezzanine contains 4 Gigabit Ethernet ports implemented using 
discrete PHY and MAC (Media Access Controller) chips. 

Figure 3: Physical hardware prototype—JNIC’s triple-
stacked board (with FPGA, MAC and PHY) plugs into a 
processor socket. 

A unique feature of the NIC is that it provides a coherent 
network interface that is directly accessible by host CPUs. 
Major hardware resources on the NIC (i.e. buffers) are made 
visible as cacheable memory regions (apertures) that provide 
direct read and write access by CPUs using coherent memory 
transactions. On the transmit side, a CPU can directly push 
packet data into the NIC, while on the receive side the CPU can 
gain access to a packet even before it reaches system memory. 
Coherent access provides a powerful tool for lowering latency, 
reducing copy overhead, and increasing the efficiency of data 
transfer between the host CPUs and the NIC device. 
Four main hardware resources are exposed via the memory 
apertures: the transmit command queue, the receive command 
queue, the receive data buffer, and the control status registers 
(Figure 4). These resources are updated and read via coherent 
memory transactions. The NIC hardware sees all system bus 
transactions and performs appropriate actions based on the 
transaction’s type and address. 
The NIC’s Control and Status Registers (CSRs) are mapped to a 
single region of memory, with each CSR mapped to a single 
cache line. The CSRs are written and read via the use of 
coherent memory transactions. This is important since it allows 
efficient software polling of CSRs. For example, when software 
polls the receive buffer tail pointer to detect the arrival of data, 
the tail pointer value is cached within the processor for efficient 
repeated access that generates no front-side bus traffic. After the 
NIC receives a new message and updates the tail pointer, the 

pointer is invalidated by hardware permitting software to see the 
updated value. 

 
Figure 4: NIC System Memory Apertures—Apertures allow 
the efficient exchange of data, control, and status, between 
application and JNIC hardware. 
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Figure 5: NIC Transmitter—The transmitter supports 
immediate commands for short messages and indirect 
commands for long message DMA. 

3.1 Transmit Operation 
The transmit command queue (Figure 5) is a circular queue that 
holds the commands for JNIC’s transmit DMA engine. Head 
and tail pointers indicate the region of valid queue entries. 
Information is pushed onto the transmit command queue using 
coherent memory transactions. When the NIC observes a bus 
transaction that writes to the transmit command queue aperture, 
it captures the data and updates its local (in-NIC) hardware 
buffer. This unique ability allows the CPU to directly push data 
into the NIC hardware via coherent memory. The NIC transmit 
engine supports two transmit command types immediate and 
indirect transfer. For immediate transfers, which are used for 
small messages, the command and the associated data are both 
pushed directly into the transmit command queue. This saves 
the time that would otherwise be necessary to invoke a DMA. 
Indirect transfers are used for larger messages and require that 
only command information and no data be written to the 
command queue. Indirect commands direct the NIC to copy data 
from system memory into the transmit stream using hardware 



DMA. Each DMA is from a contiguous physical address region, 
so multiple indirect commands are used to transfer a data region 
that is contiguous only in virtual address space. 
The hardware flow of packet transmission can be divided into 
four parts: command transfer, command processing, data packet 
transmission, and completion status update. During command 
transfer, helper software writes a sequence of one or more 
transmit commands into the transmit command queue (Figure 5) 
by writing to the JNIC memory aperture. When a complete 
packet has been described, software updates the tail pointer, and 
launches hardware command processing of the region between 
the head and tail pointers. An Ethernet packet is then assembled 
in the NIC’s local transmit buffer based on the sequence of 
commands. The first and last commands of each packet are 
marked so hardware knows when packet assembly begins and 
completes. Once the complete packet is assembled, data packet 
transmission sends data to the network. Finally, during the 
completion status update phase, the transmit command queue 
head pointer is moved to signal hardware completion. 

3.2 Receive Operation 
The receive data buffer (Figure 6) holds data arriving from the 
network. Processors have direct access to this buffer and 
software can move packet data from the buffer directly to 
system memory without requiring multiple copies. Software can 
access received data in any manner it chooses, hence the 
received packets can be accessed and processed in arbitrary 
order. This feature can be used to reorder the delivery of 
received packets to reduce memory copy costs.  
The receiver provides a receive command queue to control 
receive-side DMA processing. The receive command queue is 
similar in construction to the transmit command queue and 
holds commands that are executed by the receiver’s DMA 
engine to process packets that are received by the NIC. The flow 
of a received packet can be divided into the following steps: 
receive data buffering, receive header processing, receive 
command transfer and receive data transfer. During receive data 
buffering, data received from the network is buffered within the 
NIC. This buffer is mapped to a system memory address range 
thereby making it visible to host software (Figure 4). Head and 

tail pointers track the region of valid entries. For each arriving 
packet, hardware delivers data into the receive data buffer and 
updates the tail pointer. This action invalidates the cache line 
containing the tail pointer within all processors caches and 
notifies any processor that is polling the tail pointer that new 
data is available. If a new packet arrives and the receive data 
buffer is full, the packet is dropped. This could occur if receiver 
software fails to keep up with the arriving packet stream. The 
result would be equal to that of a dropped packet in the network 
and might require software retransmission. 
During receive header processing, software polls the receive 
data buffer tail pointer. When the tail pointer indicates a new 
packet is available, software reads only required header portions 
of the receive data buffer. Software interprets headers to 
determine whether to deliver data directly via software-copy or 
via hardware DMA. Delivery in software eliminates DMA 
overhead when the processor reads from the receive data buffer 
and writes data directly into the receiving client’s address space. 
For larger amounts of data, DMA is invoked. 

During receive command transfer, software invokes 
DMA by transferring one or more receive commands 
into the memory aperture for the receive command 
queue and advancing its tail. Each command invokes 
a DMA with a source address that identifies data in 
the receive data buffer and a physically addressed 
target in system memory. The NIC reads all data 
written to this aperture and updates its local (in-NIC) 
receive command queue. Head and tail pointers 
indicate valid commands in this queue. When a 
newly written command is ready, software updates 
the tail pointer, thereby launching receive command 
processing of the region between the head and tail 
pointers and initiating the data transfer phase. 
During receive data transfer, hardware processes a 
command by initiating DMA from the receive data 
buffer to system memory. The receive command 
provides all information needed to move the data, 
including physical address pointers. As with the 
transmit-side DMA, multiple physically contiguous 

DMAs may be required to transfer data to a logically contiguous 
virtual address space. Once a DMA has competed, hardware 
indicates the completion status by updating the receive 
command queue head pointer. Software polls the head pointer to 
learn that the command has been processed by hardware. 

4. JNIC SOFTWARE ARCHITECTURE 
The JNIC software architecture exploits the increasingly 
abundant processing power from future multicore architectures 
to provide high levels of performance. Performance bottlenecks 
encountered by traditional architectures include the system call 
and interrupt processing overhead associated with conventional 
Ethernet device drivers. In addition, the traditional sockets API 
has copy semantics, requiring that messages be copied by 
software from user buffers to kernel buffers or vice versa. These 
copies are expensive for long messages and can account for a 
significant fraction of the time spent in processing packets. The 
JNIC architecture addresses these and other communications-
related difficulties using a variety of techniques. 

Figure 6: NIC Receiver—The receiver supports software-based header 
processing in memory-mapped receive data buffer. The receive command 
queue processes DMAs for copy-free delivery. 



A kernel task running on a dedicated processing core is used to 
service hardware and user requests. System call overhead is 
eliminated using memory mapped VNIC queue structures that 
are shared by kernel user tasks. A user program uses simple 
loads and stores to enqueue and dequeue elements. The kernel 
task not only monitors these queues, but it also monitors the 
JNIC hardware’s transmit command and receive data and 
command queues. All queues are polled by dedicated cores so 
interrupt overhead is not incurred. 
The VNIC queues also (much like hardware) allow both copy-
based communications for short messages and copy-free 
communications for long message. On top of this low level 
support, we provide an RDMA-like bulk transport capability 
that can be used by applications, such as MPI, to efficiently 
move large messages. 

4.1 Helper Thread Scheduler 
A kernel thread, which we call the helper, is central to JNIC’s 
software architecture. This thread is bound to its own dedicated 
core and both VNIC-layer and JBMT-layer processing are 
performed within a single helper thread. Both the VNIC and 
JBMT implementations are decomposed into multiple subtasks. 
Because of the importance of helper processing, the JNIC 
software includes its own scheduler to manage helper subtasks 
in an efficient, modular, expandable and OS-independent way. 
Currently, the helper thread services all subtasks in round-robin 
fashion although other policies could incorporate more 
sophisticated quality-of-service mechanisms. 

4.2 Virtual NIC Interface 
Our architecture defines a VNIC interface that provides 
communication services to a potentially large number of clients 
with diverse needs. The interface uses shared memory queues 
that are polled by helper software. This facilitates very low 
latency communications as user mode clients do not need 
system calls to transmit or receive data. 
VNICs support a simple command interface that minimizes 
overhead for simple communications. VNICs are also used to 
implement more complex services such as the RDMA-like bulk 
messaging described below. VNICs directly support reliable 
communications. We believe that the majority of in-data-center 
communications requires reliable communication and that 
optimizing reliable communications within the lowest software 
layer is most efficient. 
VNICs support both immediate- and indirect-mode 
communications. Immediate mode provides the fastest way to 
communicate short messages especially when used in 
conjunction with JNIC’s hardware immediate mode. This allows 
rapid multiplexing (within onload software) of short messages 
between multiple VNICs and memory-mapped JNIC transmit 
and receive buffers. However, immediate mode requires costly 
copying for large messages. 
Efficient bulk data transfer is supported with the VNIC indirect 
mode. VNIC indirect mode provides the utility of JNIC’s 
hardware DMA to VNIC clients. Data is passed, by reference, to 
lower layers and, when used in conjunction with JNIC’s 
hardware indirect mode, copy-free transport can be 
implemented. Since JNIC hardware is restricted to transfer data 
between pinned pages, VNIC source and destination buffers are 

also pinned. Indirect mode may require overhead including: 
overhead for buffer registration, overhead to process separate 
command and data streams, and overhead for indirect data 
address lookup. Thus, while indirect mode is the most efficient 
way to move large amounts of data, indirect data specification 
may increase latency for short messages. 
A client inserts commands into a VNIC command queue with 
each command providing information needed to move a single 
Ethernet packet of data from a sender to a receiver. These 
commands describe how to collect data at the local end, where 
to send the data, and how to distribute the data at the remote 
end. After building a command in the queue, the client moves a 
tail pointer across that command to notify the helper. This tail 
pointer is isolated to its own cache line to permit responsive 
polling of VNICs in a manner that generates no extra front-side 
bus traffic. 
A VNIC command is composed of several fields including a 
header, a list of destination fields, and a list of source fields. The 
header gives general information about the message including 
information identifying the destination VNIC and the total 
message length. The destination field list tells the destination 
how to deliver the message when it is received. Each field in the 
destination list specifies either immediate or indirect. A 
destination immediate field instructs the receiving JNIC’s helper 
thread to copy the next N bytes from the message directly into 
the destination VNIC where it would be available to the client.  
In contrast, a destination indirect field instructs the receiving 
JNIC’s helper thread to copy the next N bytes from the message 
to a location in the destination user’s address space represented 
by a handle and an offset. The JNIC helper thread can choose to 
copy the data directly via software or through use of the JNIC 
hardware’s DMA engine. 
The fields in the source list are also of the immediate and 
indirect forms. They notify the VNIC as to how to acquire the 
data to form the transmitted packet. By using combinations of 
these primitive destination and source immediate and indirect 
fields, more complex interactions can be built. For example, for 
MPI, an unbounded length MPI message is decomposed into 
Ethernet-frame-sized VNIC messages with MPI headers that 
support features such as MPI’s message matching. MPI headers 
are inserted and retrieved from the VNIC message using 
destination and source immediate fields. MPI also uses our bulk 
messaging protocol which uses destination and source indirect 
fields for efficient long message transfer. 

4.3 The VNIC Implementation 
The VNIC helper task multiplexes all VNICs onto the physical 
NIC hardware. It also provides both end-to-end reliability and 
congestion control. Software running on a dedicated core close 
to NIC hardware supports highly responsive and flexible packet 
processing. The actions of the VNIC helper are partitioned into 
four subtasks as shown in Figure 7. These helper subtasks use 
simple producer-consumer relationships to facilitate lock-free 
communications that can be seen as single-input single-output 
queues that are used between: helper and application (blue), 
helper and helper (pink), and helper and hardware (yellow).  
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Figure 7: VNIC Helper Tasks and Queues—The VNIC helper is decomposed into multiple sub-tasks needed to service user tasks 
and JNIC hardware. 

The low-level interface between the VNIC helper task software 
and JNIC hardware can be seen in Figure 7 where hardware is 
shown in yellow. To send data, the transmit enqueue task writes 
into the JNIC hardware’s “tx pending” queue. This corresponds 
to appending commands at the tail of the transmit command 
queue of Figure 5. After hardware completes the transmit 
operation, the transmit completion task senses completions in 
the “tx done” queue by observing the motion of the transmit 
queue head pointer caused by hardware. The receive dequeue 
task observes received data in the JNIC hardware’s “rx data 
ready” queue which corresponds observing the tail of the 
receive data buffer in Figure 6. After header data has been 
processed, messages are delivered either by copying data in 
software, or by delivering data using DMA. To invoke DMA, 
the receive dequeue task inserts a command into the “rx DMA 
pending”, queue which corresponds to appending at the tail of 
the JNIC hardware’s receive command queue. The receive 
completion task senses DMA completions by watching the “rx 
DMA done” queue which corresponds to watching the 
advancement of the head of the receive command queue as 
hardware completes each DMA. 
The VNIC helper implements reliable communications and 
ensures both reliable transmission and efficient use of network 
resources. Because congested Ethernet switches drop packets, 
reliability and congestion control are closely coupled. JNIC’s 
software provides reliability using a TCP/IP like protocol. Our 
communication layer uses highly responsive software to provide 
low latency and high bandwidth. Typical TCP/IP 
implementations are designed to accommodate both wide-area 
and in-data-center communications and, as a result, are not 
designed for low-latency. By minimizing round-trip latency, we 
can respond quickly to, and minimize, fabric congestion. 

4.4 The VNIC Reliable Datagram Service 
While communication interfaces such as a TCP socket and 
InfiniBand’s Queue Pair are reliable and connection-based, 
JNIC’s VNIC is reliable and datagram based. Connection-based 
interfaces support one-to-one communications between a local 
and a single remote interface. High performance compute 
clusters use hundreds or thousands of processing nodes 
(computer systems) to run compute-intensive parallel 
applications. Each node may consist of multiple CPUs or CPU 
cores, and may concurrently run multiple application processes 
(shown as “Users” in Figure 8 and Figure 9). Each user 
communicates with many other users and may do so in an 

unpredictable manner. To support such communication, each 
user needs distinct connection-based interfaces to send and 
receive messages from all other users. Thus, in an N-user 
cluster, each user requires N-1 communication interfaces. 

 
Figure 8: Connection-based Interface—Connection based 
interfaces require a distinct receive buffer for each remote 
interface. 

For large-scale clusters, connection-based receive buffers cause 
inefficient memory usage. Within a single MPI application, each 
source user may send data to all destinations many times. 
Sometimes, a large amount of data is exchanged over a single 
connection and high bandwidth requires a substantial receive 
buffer for that connection. If we assume that a buffer of M bytes 
is needed to provide high bandwidth for a single connection, 
then (N-1)M bytes are needed to support all connection-based 
receive buffers for that user. Every user requires a similar 
amount of space and thus the total space required is N(N-1)M 
bytes. These buffers are used repeatedly and are often resident 
in expensive main memory. When buffers are swapped to disk, 
performance degrades severely as disk access is required to 
sustain communications performance. However, the utilization 
of these receive buffers is necessarily poor. It is rarely the case 



that all users send messages to a single user and fill all receive 
buffers for connections to that user. Hence, most receive buffers 
are empty. For very large clusters, this problem is so severe that 
complex techniques have been developed to reduce the number 
of active TCP buffers [7]. 
Connection-based user interfaces require multiplexing and de-
multiplexing data from many virtual interfaces to a single 
physical interface. This can be done with polling (shown using 
blue ovals in (Figure 8), but polling is not scalable. The use of 
doorbells improves scalability but introduces interrupts or other 
complexity in VNIC access. Cache performance degrades as 
data moves through memory addresses associated with a large 
number of communication interfaces. Connection-based 
interfaces may also incorporate connection state. For example, 
TCP connections maintain state including a TCP window to 
track data exchange with a single remote connection. For each 
VNIC, connection state is virtualized and unaware of the 
demands of any other connection. 

 
Figure 9: JNIC’s Datagram-based Interface—Datagram 
based interfaces share receive buffers across many remote 
interfaces. 

Unlike connection-based interfaces, datagram-based user 
interfaces, such as the VNIC, support one-to-many and many-
to-one communications. Each datagram-based interface sends 
to, and receives from, many remote interfaces providing buffer 
sharing opportunities. Each user now uses only a single 
datagram-based interface (Figure 9). Therefore the physical 
transport supports far fewer interfaces because the number of 
datagram-based interfaces is independent of the number of 
connections. A single, shared, receive buffer holds messages 
from many senders allowing communications to scale efficiently 
without requiring dedicated per-connection buffers. However, 
this key advantage is not without penalty. Prior techniques for 
connection-based flow control must be extended to support 
buffer space management for shared receive buffers. This is 
discussed in greater detail in Section 4.5. 

4.5 Flow Control for Reliable Datagrams 
VNIC receive queues are shared for enhanced scalability. To 
share queues, VNIC clients must guarantee adequate space 
within fixed-size memory-pinned buffers. JNIC’s flow control 
uses the notion of a buffer space availability guarantee, or 
credit. Credits can be distributed to remote hosts as remote 
credits or held locally as local credits. JNIC’s enhanced credit-
based flow control provides the dual benefits of low latency and 
scalable use of shared buffers. Low latency is provided when 
unpredicted data is sent using remote credits without waiting for 
a round trip credit request. However, remote credits consume 
valuable unused pinned memory when many users hold remote 
credits to guarantee the right to send an unexpected message to a 
common recipient. For large messages, a round-trip request 
gathers local credits to transmit data without wasting unused 
buffer space. JNIC’s flow control overlaps a request for 
additional local credits with sending useful data. Flow control 
has been implemented for the MPI and JBMT VNIC clients. 

5. BULK MESSAGING 
The JNIC bulk message transport (JBMT) provides an RDMA-
like facility that is implemented as a kernel mode client to the 
VNIC interface. JBMT supports copy-free and autonomous 
delivery of bulk data. JBMT uses the VNIC indirect mode for 
both source and destination to eliminate software data copies 
and, instead, copies are performed by JNIC’s hardware DMA.  
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Figure 10: MPI and JBMT Overview—JBMT provides 
autonomous and copy-free bulk data transport. MPI uses 
JBMT for long messages. 

JBMT is implemented (Figure 10) with helper software that 
receives requests and returns responses through virtualized 
command and completion ports. Communications is 
implemented by accessing the VNIC service with a VNIC 
dedicated for JBMT. JBMT implements a GET operation 
similar to that of RDMA. First, a memory region is registered by 
the sender and the operation returns a registration token that 
provides access control. JBMT registration does not pin the 
region and consumes only a small kernel table entry. The 
registration token is sent to a receiver using conventional VNIC 
messaging. Then, a JBMT GET is submitted to JBMT by the 
receiver. The GET specifies the registered source region’s 
token, a source offset, a target region pointer, and a transfer 



length. Legal transfers are limited to remote source regions for 
which access was granted in prior source registrations. After 
transfer, a completion is deposited in the JBMT port’s 
completion queue. 
DMA hardware access is restricted to pinned data to prevent 
page relocation during DMA. Before initiating low-level VNIC 
transfers, JBMT guarantees that source and target buffers are 
pinned for DMA. Pinning is kernel-managed to eliminate user 
control over critical page resources. JBMT decomposes large 
messages into smaller, dynamically pinned, sections. First, a 
receive-side local section is pinned. The local section can be any 
subset of the GET’s target region as dictated by memory 
availability. A request for a local section is then sent to the 
remote (send-side) interface. A remote section is then pinned. 
The remote section is again a subset of the requested source 
region. The pinned remote section is fragmented into Ethernet-
packet-size frames and transmitted using the VNIC’s indirect 
message feature. 
After a remote section is transferred, it is unpinned and 
additional remote sections are pinned, transmitted, and unpinned 
until the entire requested local section is received. After the 
local section is received it is unpinned and the next local section 
is pinned, requested, and unpinned until the entire data transfer, 
requested by the GET, has been processed. This procedure 
transfers regions of unbounded size while ensuring forward 
progress with limited memory resources. 

6. MPI MESSAGE PASSING USING JNIC 
In order to demonstrate message passing, the MVAPICH2 [10] 
version of MPI has been ported to JNIC. Our MPI 
implementation uses JBMT for long messages and a raw VNIC 
interface for short messages. When MPI is initialized, it opens 
VNIC and JBMT communication ports on each node in a 
cluster. Connections are opened so that each VNIC messaging 
port (for short messages), and JBMT messaging port (for long 
messages) can communicate with all nodes in the cluster. MPI 
allows out-of-order message matching between senders and 
receivers. Each receive operation provides a match key to 
indicate whether an arriving message should be delivered as the 
matching received message. 
Different approaches are used for short and long messages. The 
decision to treat a message as short or long is made in software. 
Message length thresholds are carefully set when JNIC is tuned 
for a specific hardware and software approach. Short messages 
are sent directly through a VNIC. After a matching receive is 
found, the short message is copied, by MPI, to a user program 
variable. Received messages may be matched and delivered out 
of order. For example, if a first receive does not match the head-
of-queue message, but does match the second entry, the second 
entry can be delivered before the message at the head of the 
queue. When the head-of-queue message is matched and 
delivered for a subsequent read, both entries are deallocated. 
When a VNIC receive queue becomes congested with messages 
for which there are no matching receives, messages are copied 
into MPI’s receive status for later matching and deallocated 
from the receive queue. 
MPI transmits long messages using JNIC’s JBMT. MPI supports 
asynchronous messaging which overlaps long message transfers 
with computation. An MPI client executes an asynchronous 

ISend to initiate message transfer. For a long message, an 
envelope (a message with no data) carrying MPI rank and tag 
information is treated much like a short message and sent to the 
receiving interface where it is held until it matches a receive. 
The receiving MPI client executes an asynchronous IRecv. After 
successful receive-side matching, a bulk transfer is invoked by 
submitting a GET command through the JBMT interface. 
Performance is enhanced when application compute resumes 
while JBMT autonomously transports data. When JBMT signals 
the completion of the GET, MPI is informed that the transfer 
has completed, first on the receiving side, and then the sending 
side. The GET completion allows both receiver and sender to 
proceed past MPI Wait commands needed for correct 
asynchronous execution. At this time, the receiver may utilize 
received data and the sender may overwrite sent data 

7. EXPERIMENTAL RESULTS 
We have working prototype hardware and preliminary software 
capable of demonstrating our architecture’s functionality. Our 
prototype provides a deep understanding of complex system 
performance but also suffers prototype limitations. The 
prototype uses dated 3GHz Intel® Xeon® processors, 1 Gb 
Ethernet, and an FPGA-based NIC. The quad data rate front-
side bus provides a 64-bit wide data path with a 100MHz clock. 
FPGA-based prototyping suffers performance limitations for 
timing-critical front-side-bus circuits. These limitations reduce 
performance for JNIC’s hardware command path and for JNIC’s 
DMA. Similarly, JNIC software is first generation software 
whose performance is neither fully characterized nor tuned. 
With these limitations, we report JNIC’s performance for a 
number of micro-benchmarks that characterize the technology. 
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Figure 11: Latency versus message size—Latency for 
immediate, indirect and MPI over VNIC immediate modes, 
plus message latency for TCP socket and MPI over TCP 
socket. 

The VNIC-to-VNIC message latency is plotted in Figure 11. 
This experiment was performed using a simple two-node 
application that creates a VNIC on each node. Nodes were 
directly connected with no switch latency. A message of given 
length is sent from a node A to B while B waits. After the 
message is received, then the message is sent from B back to A 
while A waits. This process is repeated many (N) times and the 
duration of the experiment is divided by 2N. This measures the 
time needed to send a message of given length. 



The experiment was first performed using VNIC immediate 
(VNIC imm) mode. For immediate mode, all data was copied by 
the client application through the VNIC interface. In addition, 
data was copied by helper software to and from JNIC hardware 
for transmit and receive. The experiment was also performed 
using the VNIC’s indirect (VNIC ind) mode. For indirect mode, 
software does not copy data. Instead, hardware DMA copies 
transmitted and received data directly from and to user buffers. 
While the immediate mode shows better performance for 
messages less than 128 bytes, the indirect mode shows improved 
performance for longer messages. A single byte immediate 
mode message takes about 8 microseconds. This result can be 
compared to the commonly reported ping-pong latency. To 
demonstrate baseline results for a mature I/O attached solution 
against JNIC, a similar experiment was repeated, on the same 
system, using TCP socket software (socket) and an Intel® 
PRO/1000 NIC. Latencies are also shown for MPI over VNIC 
(MPI VNIC) and MPI over TCP (MPI socket). 
Latency will improve with a number of enhancements. Better 
hardware including faster processors, faster bus interfaces, 
improved cut-through data transfer, and a 10-fold Ethernet rate 
increase will all contribute to improved latency. Software 
performance will improve substantially with modern processor 
technology. Modern processors are twice as fast and NIC 
hardware improvements should also provide at least a factor of 
two latency improvement. Software improvements will result 
from profiling and tuning. Software improvements will allow 
JNIC’s DMA to be used for longer VNIC immediate messages. 
Using DMA to copy long immediates from and to VNICs will 
improve performance for long immediate messages. We 
currently estimate that planned architecture improvements can 
reduce the latency to about 2us. 
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Figure 12: Bandwidth versus message size—Bandwidth for 
VNIC immediate, VNIC indirect and MPI over VNIC 
immediate. A theoretical upper bound VNIC max is also 
included. 

Bandwidth is plotted in Figure 12. Each calculation measures 
payload bandwidth for a reliable stream of messages from 
source to destination client. Tests measure VNIC immediate 
(VNIC imm), VNIC indirect (VNIC ind), and MPI over VNIC 
(MPI VNIC) modes. A VNIC max plot is introduced to show a 
theoretical maximum payload bandwidth for an optimal stream 
of VNIC messages that fully saturates 1Gb Ethernet. The max 
bandwidth diminishes for small messages as the overhead for 

Ethernet headers, VNIC headers and inter-frame gap dominate 
the payload. This experiment shows a modest indirect mode 
bandwidth improvement at medium message lengths of about 
300 bytes. Messages longer than about 500 bytes saturate the 
1Gb network. Note that for both the immediate and indirect 
modes, the 1GigE link approaches saturation. Effects due to 64 
byte cache lines are clearly visible for medium sized data. The 
achieved bandwidth for MPI is not yet as high as expected. 
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Figure 13: Message rate versus message size—Rate for 
VNIC immediate, VNIC indirect, and MPI over VNIC 
immediate. A theoretical upper bound VNIC max is also 
included. 

The VNIC message rate is plotted in Figure 13. Each calculation 
measures the number of messages per second that can be sent 
for messages of a given size for VNIC immediate (VNIC imm), 
VNIC indirect (VNIC ind), and MPI over VNIC (MPI VNIC). 
The maximum rate, achieved in immediate mode, is about 420k 
messages per second. For short messages, immediate mode 
achieves a higher rate than indirect mode. For medium size 
messages, indirect mode is superior and cache line effects are 
especially visible. For long messages, rates are identical and 
limited by 1Gb Ethernet. Again, max plots the maximal VNIC 
message rate assuming that headers plus data saturate 1Gb 
Ethernet. 
A number of factors will combine to improve future VNIC 
message rates. FPGA prototype hardware retains key 
limitations. Front-side-bus-interactions are slow and CPU-to-
NIC and NIC-to-CPU data rates are not equal to that of custom 
circuits. Many future improvements will be found that increase 
message rates for our first generation software. The use of a 
modern CPU will increase rates substantially. We can also use 
additional processing power to exploit task-level parallelism. 
One strategy uses one processor for transmit and another for 
receive. This would tap additional compute power when cores 
are plentiful. 
One of the strengths of the JNIC’s system is high bandwidth. 
While at 1Gb, indirect mode communications is not very 
important, indirect mode will be important for 10Gb where 
software copy costs are relatively much higher. For indirect 
mode, software overhead is per message and the payload is 
processed by hardware DMA. With adequate frame sizes, and 
with suitable DMA hardware, our architecture scales to very 
high data rates. For example, at our currently achieved indirect-



mode message rates of 330k msgs/second, we could saturate 
10Gb Ethernet with 3.8kB packets. If the message rate is 
increased by 2.5 times, 10Gb Ethernet will saturate with 
standard 1500 byte packets. This is a realistic goal with NIC 
improvements, software improvements, and up-to-date 
processor technology. Although much higher message rates may 
be possible, this would have to be demonstrated in future 
research and, with current techniques, longer frames are 
probably needed to saturate future 100Gb Ethernet. 
For systems consisting of thousands of nodes, TCP socket 
connection-oriented clusters suffer scaling inefficiencies that are 
so costly that alternative fabrics are currently required. 
Compared to this, JNIC has clear scalability advantages. For 
example, JNIC provides the inherently scalable JBMT for long 
message transport. Since JBMT copies directly between user 
buffers, no significant system buffers are needed for copy-free 
transport. While JBMT is suitable for long messages, its 
performance for medium-sized messages may be dominated by 
buffer registration overhead, and round-trip messaging overhead 
for buffer handles. Here immediate-mode communications 
through a VNIC interface may be preferred. 
When scaling VNIC immediate-mode communications, two key 
factors are considered: connection bookkeeping data and VNIC 
receive buffer space. At each local node, JNIC requires 
connection-oriented bookkeeping for all remote nodes. 
Inspection of key data structures indicates that for an example 
4000 node cluster, less than 1MB of memory is required, at each 
local node, to represent control information for all remote 
communications. 
VNIC receive buffer space is needed for immediate mode data. 
We estimate VNIC buffers as follows. A credit request round 
trip time is estimated at 40μs or about 2 times the MPI-to-MPI 
round trip time. This estimates time needed for MPI to ask for 
and receive remote credits. Assuming a 10Gb network, 50KB of 
data can be sent from a given source before a credit reply is 
returned. Assuming 4000 nodes, a pool of 200MB of buffer 
space is needed to buffer unexpected sends arriving 
simultaneously from all senders. While buffer sharing 
techniques will improve, 200MB receive buffers per node in a 
4000 node cluster is acceptable. 

8. RELATED WORK  
Prior work on Ethernet studied close-attach NIC architectures 
and on-load software. Afterburner [5] investigated the use of an 
I/O-attached NIC with on-load software to provide high-
performance communications. A prototype NIC was developed 
and demonstrated. 
Work by Mukherjee et. al [12] used simulation to explore 
coherent attached network interfaces for fine-grained 
communication. This work investigated microarchitectures for 
attaching NICs to a processor cache. Work by Binkert et. al. [2] 
investigated simple on-chip NIC hardware with on-load 
software to provide high performance network communications. 
This work was explored in conjunction with a simulation model 
that runs a complete system including user code, kernel code 
and hardware model. 
Credit-based flow control has been studied in many contexts. 
An early use for credit-based flow control was to manage 
available buffer space across transmission links within switched 

ATM networks [8]. Credit-based flow control has also been 
enhanced to incorporate speculation [11] in order to improve 
buffer usage efficiency. Both of these efforts focused on 
managing credits between a single sender and a single receiver 
whereas we focus on managing credits between many senders 
and a single receiver. Work on scalable InfiniBand clusters [17] 
extends credit management to treat shared receive buffers. 
A number of previous research and product efforts have 
developed network interfaces for high-performance 
communications. The Virtual Interface Architecture [6] defined 
an OS-bypass interface for low latency and high bandwidth 
communications that allowed the elimination of unnecessary 
data copying. 
Users needing high-performance communications performance 
typically rely on specialized Myrinet [3], Quadrics [14] and 
InfiniBand [9] networks to construct scalable compute clusters. 
Myrinet, Quadrics, and InfiniBand incorporate high-
performance communications interfaces into their architectures. 
These solutions utilize expensive switch fabric hardware 
providing features such as reliable delivery and link-level flow 
control. Nodes use optimized NIC hardware and driver software 
to deliver needed performance. Connection-based interfaces 
such as InfiniBand’s Queue Pair suffer from scalability 
limitations. Research by Sur et. al. [18] explores scalable 
approaches for cluster based communications over InfiniBand. 
The InfiniBand architecture provides powerful hardware 
capabilities to help manage congestion and quality of service. 
Service levels and virtual lanes allow for prioritized treatment of 
packets. Each service level is mapped to a virtual lane that 
supports lossless transmission with link-level flow control. A 
weighting scheme controls the relative rate for service among 
lanes. Qlogic (previously PathScale) offers Hypertransport-
attached InfiniBand NICs that utilize onload software to achieve 
impressive performance. 
Many specialized fabric vendors are now moving toward 
Ethernet. Myrinet provides PCI express connected Myri-10G 
NICs that communicate over both Myrinet’s proprietary fabric 
and standard 10GigE. Myrinet’s NIC combines offload 
processing and host driver software to offer high bandwidth and 
low latency for demanding scalable applications. Similarly, 
Quadrics is also investing in Ethernet. Specialized fabric 
solutions are at risk of being overtaken by the rapid pace of 
Ethernet development. Many experts predict that Ethernet will 
dominate competing approaches as greater investment drives 
Ethernet’s progress. 
Many existing Ethernet solutions do not focus on scalable high-
performance in-data-center communications. Ethernet-based 
systems use a TCP/IP software stack that is not well suited for 
high performance communications. When TCP sockets are used 
for cluster communications latency is high and TCP-socket-
based communications scales poorly for large clusters. Prior 
work explored the use of TCP onload [15] to exploit multi-
processor architecures for TCP acceleration. However this work 
was primarily for commercial applications and did not address 
issues of low latency, copy-free delivery, and scalability needed 
for cluster computing. Prior work also explored splintering TCP 
[7] which improves TCP’s performance and improves the 
scalability of current TCP implementions that require a system 
buffer for each TCP connection. 



Ethernet has been extended to provide RDMA with iWARP. 
Vendors such as Chelsio and NetEffect support 10Gb adapters 
that support iWARP. TCP Offload Engines or TOEs [1] can 
improve Ethernet performance by offloading TCP from a host to 
an intelligent NIC. However, many of these solutions do not 
focus on low latency or the scalability needed for many in-data-
center applications. Research by Yoon et. al. [19] explored the 
use of the VIA communication interface with Ethernet. 
Research reported by Park et. al.[13] describes the architecture 
of a VIA-based network adaptor for Gigabit Ethernet. In this 
work an FPGA-based TOE was developed and benchmarked for 
latency and bandwidth.  
Until recently, Ethernet switches suffered from low bandwidth 
and high latency and were not competitive with more 
specialized hardware solutions. We now see vendors like 
Fulcrum and Fujitsu who offer modestly priced Ethernet 
switches that provide 10Gbps bandwidth and less than ½ 
microsecond latency. Fulcrum’s switch also supports fat-tree-
based fabrics needed to provide very large bandwidth across 
scalable data centers. Woven systems incorporates fast Ethernet  
switches within a data center fabric that provides high bisection 
bandwidth, congestion-based load balancing, and fabric 
partitioning. 
We believe that using JNIC-like solutions with future Ethernet 
components will alleviate many of Ethernet’s handicaps and 
provide an architectural approach that achieves high 
communications performance using Ethernet.  

9. FUTURE WORK 
We hope to advance JNIC research in a number of directions. 
We will improve our understanding of JNIC’s current 
performance, identify bottlenecks, and optimize performance for 
common usage models. A better understanding is needed for 
JNIC’s performance in realistic future product and application 
settings. Of interest are 10GigE (and beyond), congestion in 
data center networks, and large applications requiring virtual 
memory. JNIC performance should be extrapolated to future 
product-relevant environments to better understand JNIC’s 
applicability. 
We plan to continue to explore architectures for tightly coupled 
NIC integration and improve our understanding of the best 
attachment architectures for future multiprocessors. On-load and 
off-load approaches should be compared to characterize 
differences in ease of use, performance, cost, and power. We 
hope to define on-load architectures that scale to 100GigE and 
many cores. Also needed are architectures that combine the 
responsiveness of polling and yet relinquish CPU resources 
during idle periods for added performance or reduced power. 
Can we dynamically scale on-load compute for needed 
communications performance? 
As diverse network traffic competes for resources within 
converged fabrics, improved architectures are needed to prevent 
troublesome system failures. Currently data-center 
administrators are unwise to combine mission critical traffic 
with general traffic on a common Ethernet fabric. Next-
generation converged fabrics must provide improved congestion 
management and quality of service. JNIC provides an 
architecture that facilitates improvements in congestion 

management and quality of service and this is a key area for 
future JNIC research. 
System architectures are needed that incorporate JNIC benefits 
while supporting both traditional and innovative application 
interfaces. Future systems must support communications 
between tiers in a multi-tiered server and storage 
communication. While JNIC software currently demonstrates 
high-performance MPI, we hope to develop software for 
common communications APIs such as TCP or UDP. We will 
also consider developing architectures that support important 
interfaces such as iSCSI, RDMA, and DAPL.  

10. CONCLUSIONS 
The JNIC project has developed a prototype testbed to explore 
future Ethernet architectures for high-performance in-data-
center communications. JNIC hardware and software 
architectures demonstrate that high-performance 
communications can be achieved within future low-cost data 
centers. The hardware models inexpensive closely attached 
NICs for future multi-core processors. The software 
demonstrates that general-purpose cores can be coupled with 
innovative software to deliver low latency, high message rate, 
and high bandwidth. 
While our prototype does not yet deliver performance that is 
competitive with more specialized and higher-cost products, 
projections indicate that future, low-cost JNIC solutions can 
deliver the low latency, high bandiwdth, and scalability needed 
for the vast majority of in-data-center communicains. 
We believe that inexpensive NICs integrated into future chip 
multiprocessor systems will provide a flexible platform that 
supports most communications needs. Such architectures will 
use flexible software for a broad spectrum of complex 
communications requirements. Low-level network functionality 
will be developed as on-load software to support network, 
messaging, disk and other communication needs. 
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