
High-Performance Ethernet-Based Communications for
Future Multi-Core Processors

 Michael Schlansker†, Nagabhushan Chitlur*, Erwin Oertli#, Paul M. Stillwell Jr*, Linda Rankin*, Dennis Bradford*,
Richard J. Carter, Jayaram Mudigonda†, Nathan Binkert†, Norman P. Jouppi†

† Hewlett-Packard Labs/Advanced Architecture Lab, * Intel Corporation/Corporate Technology Group, # VMware

{mike.schlansker, jayaram.mudigonda, binkert, norm.jouppi}@hp.com,
{bhushan.chitlur, paul.m.stillwell.jr, linda.rankin, dennis.bradford}@intel.com, eoertli@vmware.com

ABSTRACT
Data centers and HPC clusters often incorporate specialized
networking fabrics to satisfy system requirements. However,
Ethernet’s low cost and high performance are causing a shift
from specialized fabrics toward standard Ethernet. Although
Ethernet’s low-level performance approaches that of specialized
fabrics, the features that these fabrics provide such as reliable
in-order delivery and flow control are implemented, in the case
of Ethernet, by endpoint hardware and software. Unfortunately,
current Ethernet endpoints are either slow (commodity NICs
with generic TCP/IP stacks) or costly (offload engines). To
address these issues, the JNIC project developed a novel
Ethernet endpoint. JNIC’s hardware and software were
specifically designed for the requirements of high-performance
communications within future data-centers and compute
clusters. The architecture combines capabilities already seen in
advanced network architectures with new innovations to create a
comprehensive solution for scalable and high-performance
Ethernet. We envision a JNIC architecture that is suitable for
most in-data-center communication needs.

1. INTRODUCTION
Ethernet is nearly ubiquitous in today’s data center. Its
commodity pricing and high performance is a strong motivator
for replacing specialized fabrics such as InfiniBand [9],
Quadrics [14], Myrinet [3], and Fibre Channel [4]. Gigabit
Ethernet (GigE) is used in over 40% of the top 500
supercomputers as of November 2006. As low-latency 10
Gigabit Ethernet solutions become widely available, Ethernet
will dominate in-data-center communications. However,
Ethernet’s simple architecture requires complex computation in
the endpoints to deal with its unreliable communications, out-of-
order delivery, and lack of useful flow control. These limitations
are typically addressed by the TCP/IP protocol suite. Current
implementations of these protocols do not satisfy the needs of
high-performance scalable in-data-center communications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SC07 November 10-16, 2007, Reno, Nevada, USA
(c) 2007 ACM 978-1-59593-764-3/07/0011…$5.00

The Joint Network Interface Controller (JNIC) project is a
collaborative research project between HP and Intel to explore
high-performance in-data-center communications over Ethernet.
We are investigating advances required to allow Ethernet to
become the unifying fabric for high-performance in-data-center
communications. This requires increased Ethernet performance,
as delivered to the user, while reducing the endpoint costs.
Future Ethernet-based data center fabrics can leverage the
commodity pricing for all components including endpoints,
switches and cabling. The project demonstrates that Network
Interface Controller (NIC) hardware closely coupled into the
CPU/memory complex can be combined with on-load software
running on (i.e. on-loaded to) a multi-core CPU to achieve these
goals.
The primary contribution of this work is the design,
implementation, and evaluation of a network architecture for
Ethernet-based communications in future data centers. The
hardware and software architecture is designed with a number of
key assumptions. Hardware must be simple for close integration
in future multi-core processors. Inexpensive hardware
minimizes cost for users with modest communication needs.
The architecture uses front-side bus attachment to provide low
latency, high bandwidth and efficient hardware/software
interaction. The architecture must allow efficient scalable
communication within very large data centers.
Complex control must be implemented using on-load software
that exploits general-purpose processors and memory.
Additional general-purpose resources are used to provide
increased performance and more complex communication
services. Functions such as congestion management, quality of
service, and a variety of complex client communication services
are incorporated as flexible on-load software to allow the
incorporation of new functionality.
While most of JNIC’s components are similar to components
that have been explored within prior work, we believe that JNIC
provides a unique and innovative system architecture that
improves our understanding of communications architectures for
future data centers
To understand future system performance, a hardware and
software prototype was developed instead of using simulation.
This carries benefits and limitations. We integrated and tested
all components within a fully-functional system and our
complex prototype demonstrates many real-system behaviors. A
key limitation of our prototype is modest performance. When
work began, we were aware that our 1 Gb Ethernet prototype

could not match the performance of existing products. Instead,
our goals were to use this platform to identify sound
architectures and to extrapolate realistic performance,
functionality, and cost goals for future systems. The JNIC
prototype serves this purpose well. Any future product would
incorporate faster processors and network hardware as well as
better-tuned and more complete software. With our existing
prototype, we extrapolate across these limitations into the
future.

Figure 1: Future JNIC Systems—Future JNIC systems will
use multi-core processors, integrated on-chip NIC, and on-
load software.

The high-level, forward-looking vision of the JNIC system is
depicted in Figure 1. At the bottom, we show a 10 Gigabit (or
faster) Ethernet-based converged data center fabric. To
communicate with that fabric, a multi-core processor
incorporates tightly-integrated NIC hardware, with most of the
complex communications functionality implemented in software
running on the multi-core processor. This on-load software is
fabric-optimized to manage congestion and ensure the efficient
yet reliable transport of data. A software virtual NIC (VNIC)
service layer offers virtualized NIC devices that are efficiently
accessed by user- and kernel-mode clients with performance-
critical applications layering a variety of communications
services on the VNICs.
To achieve this vision, JNIC’s architecture combines a number
of key architectural elements. Coherent-attached NIC hardware
maps transmit and receive apertures into a multi-processor
address space as described in Section 3. JNIC’s on-load helper
software exploits the power of future chip multiprocessors to
provide reliable data transport and virtualized NIC services as
described in Section 4. JNIC Bulk Message Transport provides
copy-free autonomous data delivery as described in Section 5.
MPI is used to demonstrate JNIC as described in Section 6.

A central component of our prototype software is a driver that
provides reliable and low latency system-to-system
communication. This software runs in a helper task on a
processor dedicated to communications processing. While
ensuring reliability, this low-level software also regulates the
messaging rate between peers to manage congestion. The
Virtual NIC (VNIC) layer, which sits on top of this reliable
communications substrate, presents a reliable datagram service
to kernel and user clients. The device driver multiplexes
message requests from the various VNIC clients to the reliable
communications layer. Another component of our prototype
software, the JNIC Bulk Message Transport (JBMT) layer,
implements a remote DMA facility to support large message
transfers. JBMT uses VNICs to implement efficient, copy-free,
high-bandwidth data transport. MPI [16] has been ported to the
JNIC testbed to demonstrate high performance short and long
message transfers. We believe that other communication
services, including remote disk access, can be efficiently
supported by the VNIC and JBMT layers.

2. THE JNIC PROTOTYPE SYSTEM
We have developed a functional prototype (Figure 2) consisting
of optimized NIC hardware and software for communications-
intensive applications. Our hardware uses an FPGA-based GigE
NIC that plugs into an Intel® Xeon® processor socket, allowing
direct communication over the processor front side bus. With
this hardware, we can explore software for future JNIC-inspired
products, e.g. those based on 10GigE and next-generation
processor interconnects. The JNIC itself is implemented using
off-the-shelf FPGA, MAC, and PHY components.

Lo
ng

M
es

sa
ge

s

Figure 2: JNIC Testbed—The testbed combines a Xeon
Multiprocessor, an onload driver, and FPGA-based NIC
Hardware.

3. THE PROTOTYPE HARDWARE
The hardware testbed uses a 4-way multiprocessor server host
system with our prototype NIC replacing one of the 4

processors. The host system can be configured with the
prototype NIC, and one, two, or three CPUs. The prototype NIC
is a fully compliant symmetric cache-coherent agent on the FSB
(Front Side Bus) so the NIC can be accessed using coherent
memory as opposed to PCI transactions. Residing on the FSB
not only enables faster processor access to NIC registers, but
also faster NIC access to system memory when it DMAs packet
data to and from the network.
The prototype NIC is implemented in an FPGA. The NIC is
constructed as three stacked circuit boards, the NIC Baseboard,
external power board, and the IO mezzanine (Figure 3). The
NIC Baseboard contains the FPGA, an optional onboard
memory (currently unused), and a USB controller. The I/O
mezzanine contains 4 Gigabit Ethernet ports implemented using
discrete PHY and MAC (Media Access Controller) chips.

Figure 3: Physical hardware prototype—JNIC’s triple-
stacked board (with FPGA, MAC and PHY) plugs into a
processor socket.

A unique feature of the NIC is that it provides a coherent
network interface that is directly accessible by host CPUs.
Major hardware resources on the NIC (i.e. buffers) are made
visible as cacheable memory regions (apertures) that provide
direct read and write access by CPUs using coherent memory
transactions. On the transmit side, a CPU can directly push
packet data into the NIC, while on the receive side the CPU can
gain access to a packet even before it reaches system memory.
Coherent access provides a powerful tool for lowering latency,
reducing copy overhead, and increasing the efficiency of data
transfer between the host CPUs and the NIC device.
Four main hardware resources are exposed via the memory
apertures: the transmit command queue, the receive command
queue, the receive data buffer, and the control status registers
(Figure 4). These resources are updated and read via coherent
memory transactions. The NIC hardware sees all system bus
transactions and performs appropriate actions based on the
transaction’s type and address.
The NIC’s Control and Status Registers (CSRs) are mapped to a
single region of memory, with each CSR mapped to a single
cache line. The CSRs are written and read via the use of
coherent memory transactions. This is important since it allows
efficient software polling of CSRs. For example, when software
polls the receive buffer tail pointer to detect the arrival of data,
the tail pointer value is cached within the processor for efficient
repeated access that generates no front-side bus traffic. After the
NIC receives a new message and updates the tail pointer, the

pointer is invalidated by hardware permitting software to see the
updated value.

Figure 4: NIC System Memory Apertures—Apertures allow
the efficient exchange of data, control, and status, between
application and JNIC hardware.

In
di

re
ct

tra
ns

m
it

da
ta

Figure 5: NIC Transmitter—The transmitter supports
immediate commands for short messages and indirect
commands for long message DMA.

3.1 Transmit Operation
The transmit command queue (Figure 5) is a circular queue that
holds the commands for JNIC’s transmit DMA engine. Head
and tail pointers indicate the region of valid queue entries.
Information is pushed onto the transmit command queue using
coherent memory transactions. When the NIC observes a bus
transaction that writes to the transmit command queue aperture,
it captures the data and updates its local (in-NIC) hardware
buffer. This unique ability allows the CPU to directly push data
into the NIC hardware via coherent memory. The NIC transmit
engine supports two transmit command types immediate and
indirect transfer. For immediate transfers, which are used for
small messages, the command and the associated data are both
pushed directly into the transmit command queue. This saves
the time that would otherwise be necessary to invoke a DMA.
Indirect transfers are used for larger messages and require that
only command information and no data be written to the
command queue. Indirect commands direct the NIC to copy data
from system memory into the transmit stream using hardware

DMA. Each DMA is from a contiguous physical address region,
so multiple indirect commands are used to transfer a data region
that is contiguous only in virtual address space.
The hardware flow of packet transmission can be divided into
four parts: command transfer, command processing, data packet
transmission, and completion status update. During command
transfer, helper software writes a sequence of one or more
transmit commands into the transmit command queue (Figure 5)
by writing to the JNIC memory aperture. When a complete
packet has been described, software updates the tail pointer, and
launches hardware command processing of the region between
the head and tail pointers. An Ethernet packet is then assembled
in the NIC’s local transmit buffer based on the sequence of
commands. The first and last commands of each packet are
marked so hardware knows when packet assembly begins and
completes. Once the complete packet is assembled, data packet
transmission sends data to the network. Finally, during the
completion status update phase, the transmit command queue
head pointer is moved to signal hardware completion.

3.2 Receive Operation
The receive data buffer (Figure 6) holds data arriving from the
network. Processors have direct access to this buffer and
software can move packet data from the buffer directly to
system memory without requiring multiple copies. Software can
access received data in any manner it chooses, hence the
received packets can be accessed and processed in arbitrary
order. This feature can be used to reorder the delivery of
received packets to reduce memory copy costs.
The receiver provides a receive command queue to control
receive-side DMA processing. The receive command queue is
similar in construction to the transmit command queue and
holds commands that are executed by the receiver’s DMA
engine to process packets that are received by the NIC. The flow
of a received packet can be divided into the following steps:
receive data buffering, receive header processing, receive
command transfer and receive data transfer. During receive data
buffering, data received from the network is buffered within the
NIC. This buffer is mapped to a system memory address range
thereby making it visible to host software (Figure 4). Head and

tail pointers track the region of valid entries. For each arriving
packet, hardware delivers data into the receive data buffer and
updates the tail pointer. This action invalidates the cache line
containing the tail pointer within all processors caches and
notifies any processor that is polling the tail pointer that new
data is available. If a new packet arrives and the receive data
buffer is full, the packet is dropped. This could occur if receiver
software fails to keep up with the arriving packet stream. The
result would be equal to that of a dropped packet in the network
and might require software retransmission.
During receive header processing, software polls the receive
data buffer tail pointer. When the tail pointer indicates a new
packet is available, software reads only required header portions
of the receive data buffer. Software interprets headers to
determine whether to deliver data directly via software-copy or
via hardware DMA. Delivery in software eliminates DMA
overhead when the processor reads from the receive data buffer
and writes data directly into the receiving client’s address space.
For larger amounts of data, DMA is invoked.

During receive command transfer, software invokes
DMA by transferring one or more receive commands
into the memory aperture for the receive command
queue and advancing its tail. Each command invokes
a DMA with a source address that identifies data in
the receive data buffer and a physically addressed
target in system memory. The NIC reads all data
written to this aperture and updates its local (in-NIC)
receive command queue. Head and tail pointers
indicate valid commands in this queue. When a
newly written command is ready, software updates
the tail pointer, thereby launching receive command
processing of the region between the head and tail
pointers and initiating the data transfer phase.
During receive data transfer, hardware processes a
command by initiating DMA from the receive data
buffer to system memory. The receive command
provides all information needed to move the data,
including physical address pointers. As with the
transmit-side DMA, multiple physically contiguous

DMAs may be required to transfer data to a logically contiguous
virtual address space. Once a DMA has competed, hardware
indicates the completion status by updating the receive
command queue head pointer. Software polls the head pointer to
learn that the command has been processed by hardware.

4. JNIC SOFTWARE ARCHITECTURE
The JNIC software architecture exploits the increasingly
abundant processing power from future multicore architectures
to provide high levels of performance. Performance bottlenecks
encountered by traditional architectures include the system call
and interrupt processing overhead associated with conventional
Ethernet device drivers. In addition, the traditional sockets API
has copy semantics, requiring that messages be copied by
software from user buffers to kernel buffers or vice versa. These
copies are expensive for long messages and can account for a
significant fraction of the time spent in processing packets. The
JNIC architecture addresses these and other communications-
related difficulties using a variety of techniques.

Figure 6: NIC Receiver—The receiver supports software-based header
processing in memory-mapped receive data buffer. The receive command
queue processes DMAs for copy-free delivery.

A kernel task running on a dedicated processing core is used to
service hardware and user requests. System call overhead is
eliminated using memory mapped VNIC queue structures that
are shared by kernel user tasks. A user program uses simple
loads and stores to enqueue and dequeue elements. The kernel
task not only monitors these queues, but it also monitors the
JNIC hardware’s transmit command and receive data and
command queues. All queues are polled by dedicated cores so
interrupt overhead is not incurred.
The VNIC queues also (much like hardware) allow both copy-
based communications for short messages and copy-free
communications for long message. On top of this low level
support, we provide an RDMA-like bulk transport capability
that can be used by applications, such as MPI, to efficiently
move large messages.

4.1 Helper Thread Scheduler
A kernel thread, which we call the helper, is central to JNIC’s
software architecture. This thread is bound to its own dedicated
core and both VNIC-layer and JBMT-layer processing are
performed within a single helper thread. Both the VNIC and
JBMT implementations are decomposed into multiple subtasks.
Because of the importance of helper processing, the JNIC
software includes its own scheduler to manage helper subtasks
in an efficient, modular, expandable and OS-independent way.
Currently, the helper thread services all subtasks in round-robin
fashion although other policies could incorporate more
sophisticated quality-of-service mechanisms.

4.2 Virtual NIC Interface
Our architecture defines a VNIC interface that provides
communication services to a potentially large number of clients
with diverse needs. The interface uses shared memory queues
that are polled by helper software. This facilitates very low
latency communications as user mode clients do not need
system calls to transmit or receive data.
VNICs support a simple command interface that minimizes
overhead for simple communications. VNICs are also used to
implement more complex services such as the RDMA-like bulk
messaging described below. VNICs directly support reliable
communications. We believe that the majority of in-data-center
communications requires reliable communication and that
optimizing reliable communications within the lowest software
layer is most efficient.
VNICs support both immediate- and indirect-mode
communications. Immediate mode provides the fastest way to
communicate short messages especially when used in
conjunction with JNIC’s hardware immediate mode. This allows
rapid multiplexing (within onload software) of short messages
between multiple VNICs and memory-mapped JNIC transmit
and receive buffers. However, immediate mode requires costly
copying for large messages.
Efficient bulk data transfer is supported with the VNIC indirect
mode. VNIC indirect mode provides the utility of JNIC’s
hardware DMA to VNIC clients. Data is passed, by reference, to
lower layers and, when used in conjunction with JNIC’s
hardware indirect mode, copy-free transport can be
implemented. Since JNIC hardware is restricted to transfer data
between pinned pages, VNIC source and destination buffers are

also pinned. Indirect mode may require overhead including:
overhead for buffer registration, overhead to process separate
command and data streams, and overhead for indirect data
address lookup. Thus, while indirect mode is the most efficient
way to move large amounts of data, indirect data specification
may increase latency for short messages.
A client inserts commands into a VNIC command queue with
each command providing information needed to move a single
Ethernet packet of data from a sender to a receiver. These
commands describe how to collect data at the local end, where
to send the data, and how to distribute the data at the remote
end. After building a command in the queue, the client moves a
tail pointer across that command to notify the helper. This tail
pointer is isolated to its own cache line to permit responsive
polling of VNICs in a manner that generates no extra front-side
bus traffic.
A VNIC command is composed of several fields including a
header, a list of destination fields, and a list of source fields. The
header gives general information about the message including
information identifying the destination VNIC and the total
message length. The destination field list tells the destination
how to deliver the message when it is received. Each field in the
destination list specifies either immediate or indirect. A
destination immediate field instructs the receiving JNIC’s helper
thread to copy the next N bytes from the message directly into
the destination VNIC where it would be available to the client.
In contrast, a destination indirect field instructs the receiving
JNIC’s helper thread to copy the next N bytes from the message
to a location in the destination user’s address space represented
by a handle and an offset. The JNIC helper thread can choose to
copy the data directly via software or through use of the JNIC
hardware’s DMA engine.
The fields in the source list are also of the immediate and
indirect forms. They notify the VNIC as to how to acquire the
data to form the transmitted packet. By using combinations of
these primitive destination and source immediate and indirect
fields, more complex interactions can be built. For example, for
MPI, an unbounded length MPI message is decomposed into
Ethernet-frame-sized VNIC messages with MPI headers that
support features such as MPI’s message matching. MPI headers
are inserted and retrieved from the VNIC message using
destination and source immediate fields. MPI also uses our bulk
messaging protocol which uses destination and source indirect
fields for efficient long message transfer.

4.3 The VNIC Implementation
The VNIC helper task multiplexes all VNICs onto the physical
NIC hardware. It also provides both end-to-end reliability and
congestion control. Software running on a dedicated core close
to NIC hardware supports highly responsive and flexible packet
processing. The actions of the VNIC helper are partitioned into
four subtasks as shown in Figure 7. These helper subtasks use
simple producer-consumer relationships to facilitate lock-free
communications that can be seen as single-input single-output
queues that are used between: helper and application (blue),
helper and helper (pink), and helper and hardware (yellow).

Tr
an

sm
it

C
om

pl
et

io
n

Ta
sk

Tr
an

sm
it

E
nq

ue
ue

 T
as

k

JN
IC

 h
dw

tra

ns
m

it

R
ec

ei
ve

 D
eq

ue
ue

 T
as

k

JN
IC

 h
dw

re

ce
iv

e

JN
IC

 h
dw

D

M
A

R
ec

ei
ve

 C
om

pl
et

io
n

Ta
sk

Figure 7: VNIC Helper Tasks and Queues—The VNIC helper is decomposed into multiple sub-tasks needed to service user tasks
and JNIC hardware.

The low-level interface between the VNIC helper task software
and JNIC hardware can be seen in Figure 7 where hardware is
shown in yellow. To send data, the transmit enqueue task writes
into the JNIC hardware’s “tx pending” queue. This corresponds
to appending commands at the tail of the transmit command
queue of Figure 5. After hardware completes the transmit
operation, the transmit completion task senses completions in
the “tx done” queue by observing the motion of the transmit
queue head pointer caused by hardware. The receive dequeue
task observes received data in the JNIC hardware’s “rx data
ready” queue which corresponds observing the tail of the
receive data buffer in Figure 6. After header data has been
processed, messages are delivered either by copying data in
software, or by delivering data using DMA. To invoke DMA,
the receive dequeue task inserts a command into the “rx DMA
pending”, queue which corresponds to appending at the tail of
the JNIC hardware’s receive command queue. The receive
completion task senses DMA completions by watching the “rx
DMA done” queue which corresponds to watching the
advancement of the head of the receive command queue as
hardware completes each DMA.
The VNIC helper implements reliable communications and
ensures both reliable transmission and efficient use of network
resources. Because congested Ethernet switches drop packets,
reliability and congestion control are closely coupled. JNIC’s
software provides reliability using a TCP/IP like protocol. Our
communication layer uses highly responsive software to provide
low latency and high bandwidth. Typical TCP/IP
implementations are designed to accommodate both wide-area
and in-data-center communications and, as a result, are not
designed for low-latency. By minimizing round-trip latency, we
can respond quickly to, and minimize, fabric congestion.

4.4 The VNIC Reliable Datagram Service
While communication interfaces such as a TCP socket and
InfiniBand’s Queue Pair are reliable and connection-based,
JNIC’s VNIC is reliable and datagram based. Connection-based
interfaces support one-to-one communications between a local
and a single remote interface. High performance compute
clusters use hundreds or thousands of processing nodes
(computer systems) to run compute-intensive parallel
applications. Each node may consist of multiple CPUs or CPU
cores, and may concurrently run multiple application processes
(shown as “Users” in Figure 8 and Figure 9). Each user
communicates with many other users and may do so in an

unpredictable manner. To support such communication, each
user needs distinct connection-based interfaces to send and
receive messages from all other users. Thus, in an N-user
cluster, each user requires N-1 communication interfaces.

Figure 8: Connection-based Interface—Connection based
interfaces require a distinct receive buffer for each remote
interface.

For large-scale clusters, connection-based receive buffers cause
inefficient memory usage. Within a single MPI application, each
source user may send data to all destinations many times.
Sometimes, a large amount of data is exchanged over a single
connection and high bandwidth requires a substantial receive
buffer for that connection. If we assume that a buffer of M bytes
is needed to provide high bandwidth for a single connection,
then (N-1)M bytes are needed to support all connection-based
receive buffers for that user. Every user requires a similar
amount of space and thus the total space required is N(N-1)M
bytes. These buffers are used repeatedly and are often resident
in expensive main memory. When buffers are swapped to disk,
performance degrades severely as disk access is required to
sustain communications performance. However, the utilization
of these receive buffers is necessarily poor. It is rarely the case

that all users send messages to a single user and fill all receive
buffers for connections to that user. Hence, most receive buffers
are empty. For very large clusters, this problem is so severe that
complex techniques have been developed to reduce the number
of active TCP buffers [7].
Connection-based user interfaces require multiplexing and de-
multiplexing data from many virtual interfaces to a single
physical interface. This can be done with polling (shown using
blue ovals in (Figure 8), but polling is not scalable. The use of
doorbells improves scalability but introduces interrupts or other
complexity in VNIC access. Cache performance degrades as
data moves through memory addresses associated with a large
number of communication interfaces. Connection-based
interfaces may also incorporate connection state. For example,
TCP connections maintain state including a TCP window to
track data exchange with a single remote connection. For each
VNIC, connection state is virtualized and unaware of the
demands of any other connection.

Figure 9: JNIC’s Datagram-based Interface—Datagram
based interfaces share receive buffers across many remote
interfaces.

Unlike connection-based interfaces, datagram-based user
interfaces, such as the VNIC, support one-to-many and many-
to-one communications. Each datagram-based interface sends
to, and receives from, many remote interfaces providing buffer
sharing opportunities. Each user now uses only a single
datagram-based interface (Figure 9). Therefore the physical
transport supports far fewer interfaces because the number of
datagram-based interfaces is independent of the number of
connections. A single, shared, receive buffer holds messages
from many senders allowing communications to scale efficiently
without requiring dedicated per-connection buffers. However,
this key advantage is not without penalty. Prior techniques for
connection-based flow control must be extended to support
buffer space management for shared receive buffers. This is
discussed in greater detail in Section 4.5.

4.5 Flow Control for Reliable Datagrams
VNIC receive queues are shared for enhanced scalability. To
share queues, VNIC clients must guarantee adequate space
within fixed-size memory-pinned buffers. JNIC’s flow control
uses the notion of a buffer space availability guarantee, or
credit. Credits can be distributed to remote hosts as remote
credits or held locally as local credits. JNIC’s enhanced credit-
based flow control provides the dual benefits of low latency and
scalable use of shared buffers. Low latency is provided when
unpredicted data is sent using remote credits without waiting for
a round trip credit request. However, remote credits consume
valuable unused pinned memory when many users hold remote
credits to guarantee the right to send an unexpected message to a
common recipient. For large messages, a round-trip request
gathers local credits to transmit data without wasting unused
buffer space. JNIC’s flow control overlaps a request for
additional local credits with sending useful data. Flow control
has been implemented for the MPI and JBMT VNIC clients.

5. BULK MESSAGING
The JNIC bulk message transport (JBMT) provides an RDMA-
like facility that is implemented as a kernel mode client to the
VNIC interface. JBMT supports copy-free and autonomous
delivery of bulk data. JBMT uses the VNIC indirect mode for
both source and destination to eliminate software data copies
and, instead, copies are performed by JNIC’s hardware DMA.

Isend IrecvWait

Register Source
Buffer

Wait

Local Section
Request

Direct
Data
DMA

Direct
Data
DMA

Send
Message

Message
Complete

Deliver Frames

Remote Section
Complete

VNIC
Helper

RDMA
Helper

MPI

Send-side Receive-side

Source
Registration

Remote
Status

Registered
Buffer Table

Registered
Buffer Table

Local
 Status

JBMT
Port

JBMT
Port

Local
Section

Progress

Remote
Section

Progress

 Send
Status Receive

Status

Get
Requests

Message
Transmission

Message
Reception

VNIC VNIC

Isend IrecvWait

Register Source
Buffer

Wait

Local Section
Request

Direct
Data
DMA

Direct
Data
DMA

Send
Message

Message
Complete

Deliver Frames

Remote Section
Complete

VNIC
Helper

JBMT
Helper

MPI

Send-side Receive-side

Source
Registration

Remote
Status

Registered
Buffer Table

Registered
Buffer Table

Local
 Status

JBMT
Port

JBMT
Port

Local
Section

Progress

Remote
Section

Progress

 Send
Status Receive

Status

Get
Requests

Message
Transmission

Message
Reception

VNIC VNIC

Figure 10: MPI and JBMT Overview—JBMT provides
autonomous and copy-free bulk data transport. MPI uses
JBMT for long messages.

JBMT is implemented (Figure 10) with helper software that
receives requests and returns responses through virtualized
command and completion ports. Communications is
implemented by accessing the VNIC service with a VNIC
dedicated for JBMT. JBMT implements a GET operation
similar to that of RDMA. First, a memory region is registered by
the sender and the operation returns a registration token that
provides access control. JBMT registration does not pin the
region and consumes only a small kernel table entry. The
registration token is sent to a receiver using conventional VNIC
messaging. Then, a JBMT GET is submitted to JBMT by the
receiver. The GET specifies the registered source region’s
token, a source offset, a target region pointer, and a transfer

length. Legal transfers are limited to remote source regions for
which access was granted in prior source registrations. After
transfer, a completion is deposited in the JBMT port’s
completion queue.
DMA hardware access is restricted to pinned data to prevent
page relocation during DMA. Before initiating low-level VNIC
transfers, JBMT guarantees that source and target buffers are
pinned for DMA. Pinning is kernel-managed to eliminate user
control over critical page resources. JBMT decomposes large
messages into smaller, dynamically pinned, sections. First, a
receive-side local section is pinned. The local section can be any
subset of the GET’s target region as dictated by memory
availability. A request for a local section is then sent to the
remote (send-side) interface. A remote section is then pinned.
The remote section is again a subset of the requested source
region. The pinned remote section is fragmented into Ethernet-
packet-size frames and transmitted using the VNIC’s indirect
message feature.
After a remote section is transferred, it is unpinned and
additional remote sections are pinned, transmitted, and unpinned
until the entire requested local section is received. After the
local section is received it is unpinned and the next local section
is pinned, requested, and unpinned until the entire data transfer,
requested by the GET, has been processed. This procedure
transfers regions of unbounded size while ensuring forward
progress with limited memory resources.

6. MPI MESSAGE PASSING USING JNIC
In order to demonstrate message passing, the MVAPICH2 [10]
version of MPI has been ported to JNIC. Our MPI
implementation uses JBMT for long messages and a raw VNIC
interface for short messages. When MPI is initialized, it opens
VNIC and JBMT communication ports on each node in a
cluster. Connections are opened so that each VNIC messaging
port (for short messages), and JBMT messaging port (for long
messages) can communicate with all nodes in the cluster. MPI
allows out-of-order message matching between senders and
receivers. Each receive operation provides a match key to
indicate whether an arriving message should be delivered as the
matching received message.
Different approaches are used for short and long messages. The
decision to treat a message as short or long is made in software.
Message length thresholds are carefully set when JNIC is tuned
for a specific hardware and software approach. Short messages
are sent directly through a VNIC. After a matching receive is
found, the short message is copied, by MPI, to a user program
variable. Received messages may be matched and delivered out
of order. For example, if a first receive does not match the head-
of-queue message, but does match the second entry, the second
entry can be delivered before the message at the head of the
queue. When the head-of-queue message is matched and
delivered for a subsequent read, both entries are deallocated.
When a VNIC receive queue becomes congested with messages
for which there are no matching receives, messages are copied
into MPI’s receive status for later matching and deallocated
from the receive queue.
MPI transmits long messages using JNIC’s JBMT. MPI supports
asynchronous messaging which overlaps long message transfers
with computation. An MPI client executes an asynchronous

ISend to initiate message transfer. For a long message, an
envelope (a message with no data) carrying MPI rank and tag
information is treated much like a short message and sent to the
receiving interface where it is held until it matches a receive.
The receiving MPI client executes an asynchronous IRecv. After
successful receive-side matching, a bulk transfer is invoked by
submitting a GET command through the JBMT interface.
Performance is enhanced when application compute resumes
while JBMT autonomously transports data. When JBMT signals
the completion of the GET, MPI is informed that the transfer
has completed, first on the receiving side, and then the sending
side. The GET completion allows both receiver and sender to
proceed past MPI Wait commands needed for correct
asynchronous execution. At this time, the receiver may utilize
received data and the sender may overwrite sent data

7. EXPERIMENTAL RESULTS
We have working prototype hardware and preliminary software
capable of demonstrating our architecture’s functionality. Our
prototype provides a deep understanding of complex system
performance but also suffers prototype limitations. The
prototype uses dated 3GHz Intel® Xeon® processors, 1 Gb
Ethernet, and an FPGA-based NIC. The quad data rate front-
side bus provides a 64-bit wide data path with a 100MHz clock.
FPGA-based prototyping suffers performance limitations for
timing-critical front-side-bus circuits. These limitations reduce
performance for JNIC’s hardware command path and for JNIC’s
DMA. Similarly, JNIC software is first generation software
whose performance is neither fully characterized nor tuned.
With these limitations, we report JNIC’s performance for a
number of micro-benchmarks that characterize the technology.

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800 1000 1200 1400
Message Size (bytes)

La
te

nc
y

(u
s)

VNIC imm

VNIC ind

MPI VNIC

socket

MPI

socket

MPI socket

MPI VNIC

VNIC imm

VNIC ind

Figure 11: Latency versus message size—Latency for
immediate, indirect and MPI over VNIC immediate modes,
plus message latency for TCP socket and MPI over TCP
socket.

The VNIC-to-VNIC message latency is plotted in Figure 11.
This experiment was performed using a simple two-node
application that creates a VNIC on each node. Nodes were
directly connected with no switch latency. A message of given
length is sent from a node A to B while B waits. After the
message is received, then the message is sent from B back to A
while A waits. This process is repeated many (N) times and the
duration of the experiment is divided by 2N. This measures the
time needed to send a message of given length.

The experiment was first performed using VNIC immediate
(VNIC imm) mode. For immediate mode, all data was copied by
the client application through the VNIC interface. In addition,
data was copied by helper software to and from JNIC hardware
for transmit and receive. The experiment was also performed
using the VNIC’s indirect (VNIC ind) mode. For indirect mode,
software does not copy data. Instead, hardware DMA copies
transmitted and received data directly from and to user buffers.
While the immediate mode shows better performance for
messages less than 128 bytes, the indirect mode shows improved
performance for longer messages. A single byte immediate
mode message takes about 8 microseconds. This result can be
compared to the commonly reported ping-pong latency. To
demonstrate baseline results for a mature I/O attached solution
against JNIC, a similar experiment was repeated, on the same
system, using TCP socket software (socket) and an Intel®
PRO/1000 NIC. Latencies are also shown for MPI over VNIC
(MPI VNIC) and MPI over TCP (MPI socket).
Latency will improve with a number of enhancements. Better
hardware including faster processors, faster bus interfaces,
improved cut-through data transfer, and a 10-fold Ethernet rate
increase will all contribute to improved latency. Software
performance will improve substantially with modern processor
technology. Modern processors are twice as fast and NIC
hardware improvements should also provide at least a factor of
two latency improvement. Software improvements will result
from profiling and tuning. Software improvements will allow
JNIC’s DMA to be used for longer VNIC immediate messages.
Using DMA to copy long immediates from and to VNICs will
improve performance for long immediate messages. We
currently estimate that planned architecture improvements can
reduce the latency to about 2us.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 200 400 600 800 1000 1200 1400
Message Size (bytes)

B
an

dw
id

th
 (G

bi
ts

/s
ec

)

VNIC imm
VNIC ind
MPI VNIC
VNIC max

VNIC
max

VNIC imm

VNIC ind

MPI VNIC

Figure 12: Bandwidth versus message size—Bandwidth for
VNIC immediate, VNIC indirect and MPI over VNIC
immediate. A theoretical upper bound VNIC max is also
included.

Bandwidth is plotted in Figure 12. Each calculation measures
payload bandwidth for a reliable stream of messages from
source to destination client. Tests measure VNIC immediate
(VNIC imm), VNIC indirect (VNIC ind), and MPI over VNIC
(MPI VNIC) modes. A VNIC max plot is introduced to show a
theoretical maximum payload bandwidth for an optimal stream
of VNIC messages that fully saturates 1Gb Ethernet. The max
bandwidth diminishes for small messages as the overhead for

Ethernet headers, VNIC headers and inter-frame gap dominate
the payload. This experiment shows a modest indirect mode
bandwidth improvement at medium message lengths of about
300 bytes. Messages longer than about 500 bytes saturate the
1Gb network. Note that for both the immediate and indirect
modes, the 1GigE link approaches saturation. Effects due to 64
byte cache lines are clearly visible for medium sized data. The
achieved bandwidth for MPI is not yet as high as expected.

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400
Message Size (bytes)

M
es

sa
ge

 R
at

e
(k

 m
sg

/s
ec

)

VNIC imm
VNIC ind
MPI VNIC
VNIC max

VNIC
imm

VNIC
max

VNIC
ind

MPI
vnic

Figure 13: Message rate versus message size—Rate for
VNIC immediate, VNIC indirect, and MPI over VNIC
immediate. A theoretical upper bound VNIC max is also
included.

The VNIC message rate is plotted in Figure 13. Each calculation
measures the number of messages per second that can be sent
for messages of a given size for VNIC immediate (VNIC imm),
VNIC indirect (VNIC ind), and MPI over VNIC (MPI VNIC).
The maximum rate, achieved in immediate mode, is about 420k
messages per second. For short messages, immediate mode
achieves a higher rate than indirect mode. For medium size
messages, indirect mode is superior and cache line effects are
especially visible. For long messages, rates are identical and
limited by 1Gb Ethernet. Again, max plots the maximal VNIC
message rate assuming that headers plus data saturate 1Gb
Ethernet.
A number of factors will combine to improve future VNIC
message rates. FPGA prototype hardware retains key
limitations. Front-side-bus-interactions are slow and CPU-to-
NIC and NIC-to-CPU data rates are not equal to that of custom
circuits. Many future improvements will be found that increase
message rates for our first generation software. The use of a
modern CPU will increase rates substantially. We can also use
additional processing power to exploit task-level parallelism.
One strategy uses one processor for transmit and another for
receive. This would tap additional compute power when cores
are plentiful.
One of the strengths of the JNIC’s system is high bandwidth.
While at 1Gb, indirect mode communications is not very
important, indirect mode will be important for 10Gb where
software copy costs are relatively much higher. For indirect
mode, software overhead is per message and the payload is
processed by hardware DMA. With adequate frame sizes, and
with suitable DMA hardware, our architecture scales to very
high data rates. For example, at our currently achieved indirect-

mode message rates of 330k msgs/second, we could saturate
10Gb Ethernet with 3.8kB packets. If the message rate is
increased by 2.5 times, 10Gb Ethernet will saturate with
standard 1500 byte packets. This is a realistic goal with NIC
improvements, software improvements, and up-to-date
processor technology. Although much higher message rates may
be possible, this would have to be demonstrated in future
research and, with current techniques, longer frames are
probably needed to saturate future 100Gb Ethernet.
For systems consisting of thousands of nodes, TCP socket
connection-oriented clusters suffer scaling inefficiencies that are
so costly that alternative fabrics are currently required.
Compared to this, JNIC has clear scalability advantages. For
example, JNIC provides the inherently scalable JBMT for long
message transport. Since JBMT copies directly between user
buffers, no significant system buffers are needed for copy-free
transport. While JBMT is suitable for long messages, its
performance for medium-sized messages may be dominated by
buffer registration overhead, and round-trip messaging overhead
for buffer handles. Here immediate-mode communications
through a VNIC interface may be preferred.
When scaling VNIC immediate-mode communications, two key
factors are considered: connection bookkeeping data and VNIC
receive buffer space. At each local node, JNIC requires
connection-oriented bookkeeping for all remote nodes.
Inspection of key data structures indicates that for an example
4000 node cluster, less than 1MB of memory is required, at each
local node, to represent control information for all remote
communications.
VNIC receive buffer space is needed for immediate mode data.
We estimate VNIC buffers as follows. A credit request round
trip time is estimated at 40μs or about 2 times the MPI-to-MPI
round trip time. This estimates time needed for MPI to ask for
and receive remote credits. Assuming a 10Gb network, 50KB of
data can be sent from a given source before a credit reply is
returned. Assuming 4000 nodes, a pool of 200MB of buffer
space is needed to buffer unexpected sends arriving
simultaneously from all senders. While buffer sharing
techniques will improve, 200MB receive buffers per node in a
4000 node cluster is acceptable.

8. RELATED WORK
Prior work on Ethernet studied close-attach NIC architectures
and on-load software. Afterburner [5] investigated the use of an
I/O-attached NIC with on-load software to provide high-
performance communications. A prototype NIC was developed
and demonstrated.
Work by Mukherjee et. al [12] used simulation to explore
coherent attached network interfaces for fine-grained
communication. This work investigated microarchitectures for
attaching NICs to a processor cache. Work by Binkert et. al. [2]
investigated simple on-chip NIC hardware with on-load
software to provide high performance network communications.
This work was explored in conjunction with a simulation model
that runs a complete system including user code, kernel code
and hardware model.
Credit-based flow control has been studied in many contexts.
An early use for credit-based flow control was to manage
available buffer space across transmission links within switched

ATM networks [8]. Credit-based flow control has also been
enhanced to incorporate speculation [11] in order to improve
buffer usage efficiency. Both of these efforts focused on
managing credits between a single sender and a single receiver
whereas we focus on managing credits between many senders
and a single receiver. Work on scalable InfiniBand clusters [17]
extends credit management to treat shared receive buffers.
A number of previous research and product efforts have
developed network interfaces for high-performance
communications. The Virtual Interface Architecture [6] defined
an OS-bypass interface for low latency and high bandwidth
communications that allowed the elimination of unnecessary
data copying.
Users needing high-performance communications performance
typically rely on specialized Myrinet [3], Quadrics [14] and
InfiniBand [9] networks to construct scalable compute clusters.
Myrinet, Quadrics, and InfiniBand incorporate high-
performance communications interfaces into their architectures.
These solutions utilize expensive switch fabric hardware
providing features such as reliable delivery and link-level flow
control. Nodes use optimized NIC hardware and driver software
to deliver needed performance. Connection-based interfaces
such as InfiniBand’s Queue Pair suffer from scalability
limitations. Research by Sur et. al. [18] explores scalable
approaches for cluster based communications over InfiniBand.
The InfiniBand architecture provides powerful hardware
capabilities to help manage congestion and quality of service.
Service levels and virtual lanes allow for prioritized treatment of
packets. Each service level is mapped to a virtual lane that
supports lossless transmission with link-level flow control. A
weighting scheme controls the relative rate for service among
lanes. Qlogic (previously PathScale) offers Hypertransport-
attached InfiniBand NICs that utilize onload software to achieve
impressive performance.
Many specialized fabric vendors are now moving toward
Ethernet. Myrinet provides PCI express connected Myri-10G
NICs that communicate over both Myrinet’s proprietary fabric
and standard 10GigE. Myrinet’s NIC combines offload
processing and host driver software to offer high bandwidth and
low latency for demanding scalable applications. Similarly,
Quadrics is also investing in Ethernet. Specialized fabric
solutions are at risk of being overtaken by the rapid pace of
Ethernet development. Many experts predict that Ethernet will
dominate competing approaches as greater investment drives
Ethernet’s progress.
Many existing Ethernet solutions do not focus on scalable high-
performance in-data-center communications. Ethernet-based
systems use a TCP/IP software stack that is not well suited for
high performance communications. When TCP sockets are used
for cluster communications latency is high and TCP-socket-
based communications scales poorly for large clusters. Prior
work explored the use of TCP onload [15] to exploit multi-
processor architecures for TCP acceleration. However this work
was primarily for commercial applications and did not address
issues of low latency, copy-free delivery, and scalability needed
for cluster computing. Prior work also explored splintering TCP
[7] which improves TCP’s performance and improves the
scalability of current TCP implementions that require a system
buffer for each TCP connection.

Ethernet has been extended to provide RDMA with iWARP.
Vendors such as Chelsio and NetEffect support 10Gb adapters
that support iWARP. TCP Offload Engines or TOEs [1] can
improve Ethernet performance by offloading TCP from a host to
an intelligent NIC. However, many of these solutions do not
focus on low latency or the scalability needed for many in-data-
center applications. Research by Yoon et. al. [19] explored the
use of the VIA communication interface with Ethernet.
Research reported by Park et. al.[13] describes the architecture
of a VIA-based network adaptor for Gigabit Ethernet. In this
work an FPGA-based TOE was developed and benchmarked for
latency and bandwidth.
Until recently, Ethernet switches suffered from low bandwidth
and high latency and were not competitive with more
specialized hardware solutions. We now see vendors like
Fulcrum and Fujitsu who offer modestly priced Ethernet
switches that provide 10Gbps bandwidth and less than ½
microsecond latency. Fulcrum’s switch also supports fat-tree-
based fabrics needed to provide very large bandwidth across
scalable data centers. Woven systems incorporates fast Ethernet
switches within a data center fabric that provides high bisection
bandwidth, congestion-based load balancing, and fabric
partitioning.
We believe that using JNIC-like solutions with future Ethernet
components will alleviate many of Ethernet’s handicaps and
provide an architectural approach that achieves high
communications performance using Ethernet.

9. FUTURE WORK
We hope to advance JNIC research in a number of directions.
We will improve our understanding of JNIC’s current
performance, identify bottlenecks, and optimize performance for
common usage models. A better understanding is needed for
JNIC’s performance in realistic future product and application
settings. Of interest are 10GigE (and beyond), congestion in
data center networks, and large applications requiring virtual
memory. JNIC performance should be extrapolated to future
product-relevant environments to better understand JNIC’s
applicability.
We plan to continue to explore architectures for tightly coupled
NIC integration and improve our understanding of the best
attachment architectures for future multiprocessors. On-load and
off-load approaches should be compared to characterize
differences in ease of use, performance, cost, and power. We
hope to define on-load architectures that scale to 100GigE and
many cores. Also needed are architectures that combine the
responsiveness of polling and yet relinquish CPU resources
during idle periods for added performance or reduced power.
Can we dynamically scale on-load compute for needed
communications performance?
As diverse network traffic competes for resources within
converged fabrics, improved architectures are needed to prevent
troublesome system failures. Currently data-center
administrators are unwise to combine mission critical traffic
with general traffic on a common Ethernet fabric. Next-
generation converged fabrics must provide improved congestion
management and quality of service. JNIC provides an
architecture that facilitates improvements in congestion

management and quality of service and this is a key area for
future JNIC research.
System architectures are needed that incorporate JNIC benefits
while supporting both traditional and innovative application
interfaces. Future systems must support communications
between tiers in a multi-tiered server and storage
communication. While JNIC software currently demonstrates
high-performance MPI, we hope to develop software for
common communications APIs such as TCP or UDP. We will
also consider developing architectures that support important
interfaces such as iSCSI, RDMA, and DAPL.

10. CONCLUSIONS
The JNIC project has developed a prototype testbed to explore
future Ethernet architectures for high-performance in-data-
center communications. JNIC hardware and software
architectures demonstrate that high-performance
communications can be achieved within future low-cost data
centers. The hardware models inexpensive closely attached
NICs for future multi-core processors. The software
demonstrates that general-purpose cores can be coupled with
innovative software to deliver low latency, high message rate,
and high bandwidth.
While our prototype does not yet deliver performance that is
competitive with more specialized and higher-cost products,
projections indicate that future, low-cost JNIC solutions can
deliver the low latency, high bandiwdth, and scalability needed
for the vast majority of in-data-center communicains.
We believe that inexpensive NICs integrated into future chip
multiprocessor systems will provide a flexible platform that
supports most communications needs. Such architectures will
use flexible software for a broad spectrum of complex
communications requirements. Low-level network functionality
will be developed as on-load software to support network,
messaging, disk and other communication needs.

11. REFRENCES
[1] P. Balaj et. al., “Head-to-TOE Evaluation of High-

Performance Sockets over Protocol Offload Engines” Proc
IEEE International Conference on Cluster Computing,
Boston MA, Sept. 2005.

[2] N. Binkert, et. al. “Integrated Network Interfaces for High-
Bandwidth TCP/IP”, ASPLOS, 2006, pp. 315-324.

[3] N. J. Boden, et. Al.. "Myrinet: A gigabit-per-second local
area network." IEEE Micro, vol. 15, no. 1, pp. 29-36.

[4] L. Cherkasova, et. al. “Fibre Channel Fabrics: Evaluation
and Design.” 29th Hawaii International Conference on
System Sciences (HICSS'96), Volume 1: Software
Technology and Architecture, pp. 53-62.

[5] C. Dalton, et. al. “Afterburner [network-independent card
for protocols]” IEEE Network, July 1993, pp. 36-43.

[6] D. Dunning; et. al. “The Virtual Interface Architecture”,
IEEE Micro, Volume 18, Issue 2, March-April 1998, pp.
66–76.

[7] P Gilfeather et. al., “Making TCP Viable as a High
Performance Computing Protocol”, Proceedings of the
Third LACSI Symposium, Oct 2002.

[8] H. T. Kung and R. Morris. “Credit-Based Flow Control for
ATM Networks”, IEEE Network Magazine, pp. 40-48,
March, 1995.

[9] J. Liu, et. al. “High Performance RDMA-Based MPI
Implementation over Infiniband”, Proceedings of the 17th
Annual Conference on Supercomputing, June 2004, pp.
295-304.

[10] J. Liu, et. al., “Micro-Benchmark Performance Comparison
of High-Speed Cluster Interconnects”, IEEE Micro,
January/February 2004, pp. 42-51.

[11] C. Minkenberg and Mitchell Gusat, “Speculative Flow
Control for High-Radix Datacenter Interconnect Routers”,
IPDPS, 2007, pp. 1-10.

[12] F. S. Muckherjee et. al., “Coherent Network Interfaces for
Fine-Grained Communication”, ISCA, 1996, pp. 247-258.

[13] S. Park, et. al., “Implementation and performance study of
a hardware-VIA-based network adapter on Gigabit
Ethernet” , Journal of Systems Architecture, Vol 51, Issues
10-11, Oct. Nov 2005, pp. 606-616.

[14] F. Petrini, et. al. “The Quadrics Network: High
Performance Clustering Technology”, IEEE Micro, Feb.
2002, pp. 46-57.

[15] Regnier et. al., “TCP Onloading for Data Center Servers”,
IEEE Computer, November 2004, pp. 48-58.

[16] M. Snir et. al., MPI: The Complete Reference, MIT press
(Vols 1 and 2), 1998.

[17] S. Sur, et. al. “Shared Receive Queue based Scalable MPI
Design for InfiniBand Clusters”, IPDPS '06, April 2006.

[18] S. Sur, et. al., “High-performance and scalable MPI over
InfiniBand with reduced memory usage: an in-depth
performance analysis”, Proc 2006 ACM/IEEE conference
on Supercomputing.

[19] I. Yoon, et. al., “Implementation and Performance
Evaluation of M-VIA on AceNIC Gigabit Ethernet Card”,
Proc of Euro-Par 2003, August, 2003, pp. 995-1000.

