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Napoleon’s Theorem 

Napoleon 
Most people have heard of Napoleon Bonaparte, the infamous emperor of France.  He was well known 

for being vertically challenged (short), and for his failed attempt to take over the world.  What most 

people do not know is that Napoleon was a talented student and had a great understanding of Euclidean 

geometry.  Napoleon had weekly meetings with well-known mathematicians of his time to discuss 

mathematics.  Napoleon had such a good understanding of geometry that he discovered and proved the 

following theorem. 

 If equilateral triangles are constructed on the sides of any triangle, then the centroids of the 

three equilateral triangles will themselves form an equilateral triangle. 

Even though Napoleon was credited with this theorem, there are many who are skeptical that he 

discovered it.  

Napoleon's proof involved the use of trigonometry to show that sides of the triangle formed by the 

centroids were congruent.  However, I chose to find a proof that shows the angles formed by this 

triangle are all 60:, and therefore is an equilateral triangle.  A proof that I have found is as follows: 

 

Given triangle ABC, with side lengths of a, b, and c.  
Construct equilateral triangles BCA’, ACB’, and 

ABC’, and cetroids X, Y, and Z respectively.  
Connect X, Y, and Z to form triangle XYZ. 
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Next, I will connect AA', BB', and CC'.  It is known 
that these 3 lines intersect at a common point F, 

called Fermat's Point.  Fermat's Point is the 
location where the sum of the distances from the 
vertices is the smallest.  So Fermat's Point is the 

point F that yields the smallest distance for 
AF+BF+CF. 

 

 In the picture at the left, I have isolated the pieces 
of the diagram that I need to show that triangle 
C'BC is congruent to triangle ABA'.  I know that 

AB=BC', BA'=BC, and  C'BC=60:+ x = ABA'.  Thus, 
by side angle side, the two triangles are congruent. 

 
Using the fact that triangle C'FA' is congruent to 
triangle ABA', I can discover the measures of the 

angles formed by Fermat's Point.  I know that 
BAA' = BC'C since they are corresponding parts 
of congruent triangles and C'EB = AEF since 
they are vertical angles.  Thus, triangle C'EB is 

similar to triangle AEF.  This means that C'BE = 
AFE.  Since C'BE = 60:, then I know that AFE = 

60:.  This same approach can be done to 
determine that 

C'FB= BFA'= A'FC= CFB'= B'FA= AFC'=60:. 
 

 

Next I will construct circumcircles for equilateral 
triangles BCA', ACB' and ABC' with centers X, Y, 

and Z respectively.  Points X, Y, and Z are the 
centers for both their respective triangle and 

circumcircles.  Since triangles ABC', BCA', and ACB' 
are equilateral, then triangles AZB, BXC, and CYA 
are isosceles with their largest angle being 120:. 
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The circles centered at points Z and X intersect at 
points B and G.  Triangle GZB is isosceles because  

 and   are both the radius of the circle with 
center Z and are therefore congruent.  If a line 
were drawn from point Z to bisect chord BG, it 

would split triangle GZB into two congruent 
triangles.  Since triangle GZB is isosceles, and the 

line bisects chord BG forming two congruent 
triangles, then this line must also be perpendicular 
to chord BG.  It follows that if you were to do the 

same from point X, that this line too would be 
perpendicular to the common chord BG.  Thus, the 

perpendicular bisector of the common chord BG 
must pass through points Z and X.  So  is 

perpendicular to chord BG. 
 

 

 

At this point, I must show that point G is in fact the 
same as point F (Fermat's Point). It is known that 
the Fermat Point is the common intersection of 

segment AA’, CC’, and BB’. So we need only show 
that G is on the segment AA’. A similar argument 

will imply that G is also on segment CC’ and 
therefore that G must be the Fermat Point.  To 

carry this out, notice that the vertices B, C’, A  are 
equally spaced around the circle, since BC’A is an 
equilateral triangle. Thus, BZC' = 120: = arc BC’.    
Since point G lies on the same circumcircle, I can 
use a theorem and  say that BGC' is going to be 

half of the measure of arc BC'.  Thus, BGC' = 60:.   
 

By the same process, it follows that arc A'B = 120: 
and  BGA' = 60:.   

 
 

 

I will use the same theorem as above to say that 
CGA, AGB, and BGC are all equal to 

.  Since AGB = 120 and 

AGB' BGA' = 60:, then B'GB A’GA = 180: and is 
therefore a straight line.  The same can be done 

with C', G, C and B, G, B'.  Since all three lines 
intersect at point G, then G=F, the Fermat point.   
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I have shown that AFB = 120:,  is 

perpendicular to , and  is perpendicular to 

.  I know that the sum of the angles in 
quadrilateral ZHFJ is 360:.  So 360: = 90: + 120: + 
90: +  Z.  Thus Z = 60:.  The same can be done 

for quadrilaterals XIFH and YJFI.  Since Z, Y, and 
X are all = 60:, triangle XYZ is equilateral.  Thus, 

proving Napoleon's Theorem.    

Napoleon's Theorem does not specify whether the equilateral triangles constructed need to be outward 

or not.  Unfortunately my proof will not hold true if the triangles are constructed inwards.  This is due to 

the fact that they must be outward in order for Fermat's point to be located.  Thus, Napoleon's proof 

must be used for inward equilateral triangles. 

van Aubel 
Napoleon's Theorem can be related to van Aubel's Theorem.   I was unable to find any information 

about van Aubel, even a first name, on the internet.  The theorem is as follows: 

 Given a quadrilateral, place a square outwardly on each side, and connect the centers of squares 

on opposite sides.  The two lines formed have equal length and are perpendicular to one 

another. 

 

Given quadrilateral ABCD, construct outward 
squares on each side.  Find the centers of squares 
ABEF, BCJI, DCLK, and ADHG, and label them N, O, 
P and M respectively.  Connect the centers of the 

opposite squares, forming  and .  These 
segments intersect at point Q. 
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Draw a diagonal segment from D to B, forming 
.  Find the midpoint of , and call it R.  

Connect R to the midpoints of two squares on 
adjacent sides, forming  and .  Then 

connect points F and D to form triangle FAD.  Next 
connect points G and B to form triangle GAB. 

 

 =  since they are sides of square FABE.   
=  since they are sides of square GADH.  

Since and , then 
.  Then by SAS, triangles FAD and 

GAB are congruent.   

 

This means that .  Since 
 are vertical angles, then they 

too are congruent.  I then know that 
 and the latter is 90:.  Therefore, 

.  Since  is a line and , then 
.   
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Since N is the midpoint of  and point R is the 
midpoint of , then by the Midpoint Theorem, 

 is half the length of and parallel to .  This 
same process can be applied to show that  is 

half the length of and parallel to .  Since 
, it follows that .  

 
Since  is parallel to , and  is 

perpendicular to , then it follows that  is 
perpendicular to  .  This means that 

  This same reasoning can be applied to show 
that .  Since three of the four angles in 

quadrilateral STRU are right angles, this means 
that . 

 
Thus,  and  are equal in length and form 

right angle MRN. 

 

Now connect the midpoints of the other two 

squares to point R.  As with before,  and  
have equal length and form right triangle ORP. 

 
If you form triangles MRO and NRP, by side angle 
side, they are congruent to one another.  Thus, 

 is equal to . 
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Since corresponding parts of congruent triangles 
are congruent, we know that SNR and QMR are 
congruent.  By the sum of the interior angles of a 
triangle, I know that NRS is 90:, so the sum of 

RNS and RSN must be 90:.  Since SNR and 
QMS are congruent, and MSQ and NSQ are 

vertical angles, I know that the sum of MSQ and 
QMS must also equal 90:.  By the sum of the 

interior angles of a triangle, Since MSQ + QMS 
= 90:, then MQS = 90:.  Thus, MQN = 90: and 

 is perpendicular to  .  Therefore, the 
segments formed by connecting the midpoints of 

opposite squares will be both congruent and 
perpendicular.  

Interesting Extension 
While playing around with these theorems, I wondered if there were any other polygons that this would 

work for.  I tried pentagons and hexagons, but was unable to discover anything noteworthy.  The one 

thing that I did find interesting I stumbled upon when trying to use van Aubel's theorem to help prove 

Napoleon's.   

 

I was attempting to show that  is 
perpendicular to , and thought that 

since van Aubel's theorem involves a right 
angle being formed, I thought that I might 

be able to manipulate things to work in 
my favor.  I began by taking the picture 

from Napoleon, duplicating and rotating 
triangle ABC, and formed parallelogram 

ABDC. 
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Next, I drew the outward squares from 
the sides of parallelogram ABDC.   

 

Then I found the midpoints of those 
squares and connected them to the 
opposite midpoints.  From van Aubel's 
theorem, I know that these segments are 
congruent and are perpendicular to one 
another.   I realized after looking at the 
picture that the segments connecting 
adjacent midpoints also form a square.   
 
Using Geogebra, I manipulated the 
parallelogram to see if any change in size 
would yield something other than a 
square.  However, I was unable to find 
any variances.  This makes sense, since 
the midpoint of  is also the midpoint 
of parallelogram ABDC.  To prove the 
resulting figure is a square, one would 
need to show that the diagonals bisect 
each other and the result would follow. I 
will leave the statement as a conjecture 
and invite the reader to arrive at a proof.  
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