Napoleon's Theorem

Napoleon

Most people have heard of Napoleon Bonaparte, the infamous emperor of France. He was well known for being vertically challenged (short), and for his failed attempt to take over the world. What most people do not know is that Napoleon was a talented student and had a great understanding of Euclidean geometry. Napoleon had weekly meetings with well-known mathematicians of his time to discuss mathematics. Napoleon had such a good understanding of geometry that he discovered and proved the following theorem.

If equilateral triangles are constructed on the sides of any triangle, then the centroids of the three equilateral triangles will themselves form an equilateral triangle.

Even though Napoleon was credited with this theorem, there are many who are skeptical that he discovered it.

Napoleon's proof involved the use of trigonometry to show that sides of the triangle formed by the centroids were congruent. However, I chose to find a proof that shows the angles formed by this triangle are all 60°, and therefore is an equilateral triangle. A proof that I have found is as follows:

Next, I will connect $A A^{\prime}$, B^{\prime}, and C^{\prime} '. It is known
that these 3 lines intersect at a common point F,
called Fermat's Point. Fermat's Point is the
location where the sum of the distances from the
vertices is the smallest. So Fermat's Point is the
point F that yields the smallest distance for
$A F+B F+C F$.
The circles centered at points Z and X intersect at
points B and G. Triangle $G Z B$ is isosceles because
and are both the radius of the circle with
center Z and are therefore congruent. If a line
were drawn from point Z to bisect chord $B G$, it
would split triangle $G Z B$ into two congruent
triangles. Since triangle $G Z B$ is isosceles, and the
line bisects chord $B G$ forming two congruent
triangles, then this line must also be perpendicular
to chord $B G$. It follows that if you were to do the
same from point X, that this line too would be
perpendicular to the common chord $B G$. Thus, the
perpendicular bisector of the common chord $B G$
must pass through points Z and X. So
is erpendicular to chord $B G$.

Napoleon's Theorem does not specify whether the equilateral triangles constructed need to be outward or not. Unfortunately my proof will not hold true if the triangles are constructed inwards. This is due to the fact that they must be outward in order for Fermat's point to be located. Thus, Napoleon's proof must be used for inward equilateral triangles.

van Aubel

Napoleon's Theorem can be related to van Aubel's Theorem. I was unable to find any information about van Aubel, even a first name, on the internet. The theorem is as follows:

Given a quadrilateral, place a square outwardly on each side, and connect the centers of squares on opposite sides. The two lines formed have equal length and are perpendicular to one another.

Philip LaFleur
Expository Paper

	Since N is the midpoint of and point R is the midpoint of , then by the Midpoint Theorem, is half the length of and parallel to . This same process can be applied to show that is half the length of and parallel to . Since , it follows that Since is parallel to , and is perpendicular to , then it follows that is perpendicular to . This means that This same reasoning can be applied to show that . Since three of the four angles in quadrilateral STRU are right angles, this means that Thus, and are equal in length and form right angle MRN.
	Now connect the midpoints of the other two squares to point R. As with before, and have equal length and form right triangle ORP. If you form triangles MRO and NRP, by side angle side, they are congruent to one another. Thus, is equal to

Interesting Extension

While playing around with these theorems, I wondered if there were any other polygons that this would work for. I tried pentagons and hexagons, but was unable to discover anything noteworthy. The one thing that I did find interesting I stumbled upon when trying to use van Aubel's theorem to help prove Napoleon's.

Philip LaFleur
Expository Paper

References

Gutierrez, A. (2007, February 14). Van aubel's theorem: quadrilateral with squares. Retrieved from http://agutie.homestead.com/files/vanaubel.html
A. Bogomolny, Napoleon's Theorem from Interactive Mathematics Miscellany and Puzzles http://www.cut-the-knot.org/proofs/napoleon_intro.shtml, Accessed 23 July 2010
A. Bogomolny, Napoleon's Theorem: a proof by plane tessellation from Interactive Mathematics Miscellany and Puzzles
http://www.cut-the-knot.org/Curriculum/Geometry/NapTess.shtml, Accessed 23 July 2010
CliffsNotes.com. The Midpoint Theorem. 23 Jul 2010
http://www.cliffsnotes.com/study_guide/topicArticleld-18851,articleld-18799.html.

