General Motors Fuel Cell Research

Andrew Bosco
Manager Fuel Cell Stack Research

Fuel cell industry entering a transition phase in which engineering and manufacturing will become as important as technical leadership

Fuel Cell Activities Formed in 1997 Stack Research Locations

Warren (MI, USA):

Bipolar Plate & Catalyst Diagnostics, Modeling

Honeoye Falls (NY, USA):

Stack Design, MEA, DM, Catalyst,

Diagnostics, Modeling, Freeze

Mainz-Kastel (Germany):

Stack/Vehicle Integration,

Material Development, Modeling

Stack/Electronics

Interface

Fuel Cell Propulsion System

Fuel Cell Propulsion System (FCPS)

Vehicle Connections, Controls, Thermal Integration:

Fuel Storage $(H_2 \text{ on board} \rightarrow H_2 \text{ to FCPM})$ Fuel Cell Power Module (FCPM) $(H_2 \text{ in} \rightarrow DC \text{ electrical power out})$

Traction (DC in \rightarrow Torque out)

Liquid

Compressed

Stack

Stack components

FCPM Subsystems

Automotive Stack Research

Cost

- Stack:
 - Material
 - Processing
 - Assembly
- Low Pressure
- Humidifiaction
- Passive Anode Control

Life

- Durability
- Start/Stops
- Degradation
- Coolant Compatibility

Performance

- Volumetric Power Density
- Gravimetric Power Density
- Transients
- Freeze Capable
- High Temperature

Fuel Cell Stack Technology Progress

St 3 - 1997

St 4 - 1998

St 7 - 1999

Stack 2000

Current

Max. Power: 37-41 kW 40 kW 50 - 120 kW 80 - 120 kW 102 kW Power density: 0.26 kW/l 0.77 kW/l 1.10 kW/l 1.44 kW/l 1.75 kW/l 0.31 kW/kg 0.16 kW/kg 0.47 kW/kg 0.83 kW/kg 1.25 kW/kg 500 cm² 500 cm² 800 cm² 800 cm^2 250 cm² Active area:

Pressure: 2.7 bar 2.7 bar 2.7 bar 1.5 - 2.7 bar 1.2-1.5 bar

Temperature: 80 °C 80 °C 80 °C 80 °C 80 °C

Electrochemical Stack Model

Stack Research Driven by System Interactions & Requirements

"Device"	1 1	- 3	2 3	4	5	1 6	7	8	0	10	11	12	12	14	15	16	17	10	10	20	21	22	22	24	25	26	27	28	20	30	21	32	
Anode side pressure system	x	x	_		_	+ -	+-	x	- 9	10	-11	-12	13	-14	_10	x		10	19	X	X X	22	23	24	20	20	23	:20	29	- 20	91	32	-
Anode side temperature system	x	0	_	_	X	-	+	X	-	-	-	\vdash	\rightarrow	-		x	×.	-	_	x	х	х	-	-		-	-		-	÷ :	_	-	
Anode side humidification system	x	x		_		-	+-	-	\vdash	-			\rightarrow	-	x	x		x	-	X	-	x	-	-		_	-		-	-	_		_
Anode side flow control	×	x	_			-	1				-				_x_	x		X	-	X	x	x	-	-	-		-		-	-		-	
Cathode pressure control system	x	X	X	0	0	x	x	x	x	х	x		-	5-5	_	x	х			X	x	×	-							9 0		3 - 1,	
Cathode pressure control system Cathode humidification System	- ^	-		1	х	0	x	x	x	X	X				x	х	x		x	, A	x	x											
Cathode from Cathode temperature System	_			-	x	x	0	x	x	X	x						x		X		x	x										7	
Cathode pressurization system	x		1	-	x	x	x	0	x	x	x				_	x	x	\vdash	_	x	x	X				_	_		_				-
Cathode flow control system Cathode flow control system	_ X	-	+	-	x	X	x	x	0	x	x		-		_	X	x			x	x		-	-	-					-		-	
Uster vapor recovery system	-	-	+	-	x	x	x	x	x	0	x		-		×	-	x	_	х	x	x	х	-	-		_	-		-	9-1	_	-	_
1 Liquid water recovery system		-	+	-	x	x	x	x	x	x	0		-	-	x x	-	x		x		x	x		-		_	_		-	-	_		_
2 Water Cleaning system		-	+	1	х	X	X	X	X	X	0	0	-	-	_x_	-	X		X	х	x	x	x	-	x		-		-	-	_	-	
Water Clearing system Heat Rejection system (temperature sink)	-		1	-		100		1 1				0	8	765	*	- 0				Х	х	X	X	-	х					0 0			
4 ICOOLANT FLUID		-	-	-	1		-						0:	X	<u> </u>				-				×	х	x	x	-			121			
COOLANT FLOWFIELD	-		x		1	-	1			_			X)	0	_ <u>X</u>	х	x						<u> </u>	х	Х	x							
ANODE FLOWFIELD	-		-	-	-	Х	-			Х	X		X	X	_	0	_	х	1			х				X	_					3 5	-
7 CATHODE FLOWFIELD	x	х	X	x	x	-	-	X	-				_	-	x		х	X					-	-	_					-		-	
DIFFUSION MEDIA-A	x	÷	- 01	-	x	х	х	х	х	х	X	_	-	-	x	x	0	-	x	770		-	-	_	_		<u> </u>			-		-	
DIFFUSION MEDIA-C		-	X	-	1	1000	+	-		284	TOWN.			_	_	x	1000	0	1122	х	1194	-	<u> </u>	-			_			-		-	_
CATALYST LAYER-A	- 22	1000	221	520	202	x	-	7-20	850	x	x	522		-	_		Х	- 22	0	70	х	1000	<u> </u>	_	V3=1	25	-			-		_	
	X	х	X	X	x	1000	100	х	х	- 10	1000	х		-	_	3 - 23		x	3000	0		X		-	х	х						2 2	
	X	100	48	х	х	x	X	X	х	X	X	х		-		2 2			X	24	0	X	100	20-15 20-12	x	х				100			
MEMBRANE	2250	X	X	_ X_		X	<u> x</u>			X	X	Х	-		_x_					<u> x</u>	<u>x</u> .	0	х	х	х	х							
B PLATE MATERIAL			\perp	-	1	-	-					х		X	_	_						X	0		Х	Х	_			_			
4 SEAL			+	_	-		-							X			_					x		0	X		_						
PLATE COATING		-		_	1				_	_		х		X		_				х	х	х	х	х	0	Х	_						
ADHESIVE			4	_	_	-	-	_	_	_	_			X	Х	_			_	x	X	х	х		х	0							_
7 CVU		.:	+	-	-	-	-		_	_	-				_	- 4	_		-			-	_	_	_		0	000	163	x	х	100	_
BASEPLATES		-		-	-	, is	-	0 0						-	_	1 1						-	_					0	X	х	х	х	
SIDEPLATES				_	1		-							-	_													х	0				
MANIFOLDS			_		ļ	ļ.,													_								X	х		0	<u></u>		
INSULATOR PLATES				1	1		1																				Х	х			0	х	
2 TERMINAL plates			1		1		1																					х			х	0	
		Ш	1		L							_								-					-								
			Ar	oc	اما		Н	0	ath	000	اما	-										Sta	ck	8	-						-		_
		8	AI.	IOC	10		Н	0	au.	IOC	iC.									-		<i>-</i>	CIN		-								
		d.	ıbs	T 7001	ton	×	H	d.	Language	2222	100/200														1								
		DL	ios	ys	(CI)	Ц		ou	bsy	/St	em:									-		_											
							1					-								1.0													
																i i	-	-	_		-									90.00			
					-		-						Γ he	ern	na l	-	S	oft	CO	mp	8			Re	ne.	ata	hle	s	1	Vot	n-r	epe	at
					-								- 11,	-11	LLCH	-				. 8.				2	574							100	
					-											-		Flc	XXZ	fiel	d		18	Ha	rde	Ot	nn		Ţ	Tar	de	om	n
					-													110	, vv.	LIUI	-			та	ıuı	VOI	ıЪ	•	4	TGI	uc	OIII	Ρ.
												-				_						- "	_						-				

System & Stack Trade-offs

	in	npact on	system	requ'm	ent
	weight	volume	complexity	system	stack
Operating pressure	X	X	X	low	high
Operating temperature	X	X		high	med
Reactant stoichiometry	X	X	X	low	high
Inlet Relative Humidity	X	X	X	low	high
Stack weight	X			low	low
Stack volume		X		low	low
Stack voltage			X	high	low
Stack Efficiency (cell voltage)	Χ	Х		high	high
Durability				high	high
Start time @ freezing temps			X	low	low
Cost				low	low

System Simplification – No External RH

System Simplification - Power Management

Engineering Focus

Single module development approach across product applications

End users requirements have outgrown current technology solutions

Gas Turbines

Very difficult to site

Reciprocating Generators

Noisy and dirty

Uninterruptible Power Supplies

Battery failures and expensive

Fuel Cell solutions exploit vulnerabilities of existing technologies

Interactions

Key interfaces that exist in Fuel Cell Systems

 Batteries and Fuel Cell Stacks have different voltage characteristics

DC Source Resistance

	DC Resistance							
В	attery	Fuel Cell Stack						
soc	Resistance (Ohms)	Resistance (Ohms)						
0	0.789	0.160						
0.1	0.718							
0.2	0.656							
0.3	0.522							
0.4	0.374							
0.5	0.293							
0.6	0.254							
0.7	0.239							
0.8	0.227							
0.9	0.229							
1	0.237							

- •The DC source resistance for a battery is dependant on it's State of charge
- Stack Resistance is constant, and is dependent on materials development

Comparing Stack and Battery

"Polarization Curves"

Material & System design can impact fuel cell stack resistance

Voltages

Voltages											
	Battery	Fuel Cell Stack									
SOC	Open Circuit	Full Load	Open Circuit	Full Load							
100%	1.00	0.76	1.00	0.65							
30%	0.93	0.42									

- •The output voltage for a battery will depend on its state of charge.
- •At full load the battery output voltage as function of SOC can vary as much 55%
- •Battery full load voltage is 64% lower than that of a stack

Summary

- General Motors Research is Focused on Fundamental Material & Design Development
- Traction System, Power Conditioning & Stack Development Required to meet Automotive Targets

