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This document describes how quantum annealing can be used as a heuristic approach to solving
certain classes of hard optimization problems.

INTRODUCTION

D-Wave processors are designed to harness a funda-
mental principle of nature that operates in both quantum
and classical regimes - the propensity for all physical sys-
tems to minimize their free energy [1].

Free energy minimization in a classical system is often
referred to as annealing [2]. For example, in metallurgy,
annealing a metal involves heating it and then cooling
it. This type of thermal annealing allows a metal that is
originally filled with defects (a metastable ‘high energy’
state) to become crystalline and defect-free (the mini-
mum free energy state).

The simulation of this type of thermal annealing us-
ing classical computers is known as simulated annealing,
which is a commonly used heuristic approach to solving
certain classes of hard optimization problems [3]. Instead
of having a fixed landscape through which to anneal (as
in the metallurgical example), in simulated annealing a
programmer defines what the energy landscape is. This
energy landscape is crafted so that its global minimum
is the answer to the problem to be solved, and low-lying
local minima are good approximations.

Free energy minimization in a quantum system is re-
ferred to as quantum annealing. As in classical annealing,
all quantum systems are driven to minimize their free en-
ergy. In non-programmable scenarios (the analog of the
metal annealing example, where Nature sets the energy
landscape), it has been demonstrated that quantum an-
nealing can hasten the energy minimization process [4, 5].

D-Wave processors compute by piggybacking on quan-
tum annealing. A quantum annealing processor can
be operated as a universal quantum computer. In this
regime of operation, the computational model is referred
to as adiabatic quantum computation (AQC), which can
be thought of as the long-time limit of quantum anneal-
ing.

D-Wave Hydra processors are analog embodiments of
the optimization version of the two dimensional Ising
model in a magnetic field problem. This problem is NP-
hard [6]. The design philosophy is to use quantum an-
nealing to hasten convergence of the energy of the system
towards the ground state energy. If the system can reach
its ground state, the configuration of variables returned
is the exact solution of the problem. If it can reach a
low-lying local minimum, the configuration of variables
returned is an approximate solution.

A Hydra processor has the Hamiltonian

H0(t) =
N∑

i=1

hiZi +
N∑

i<j=2

JijZiZj +
N∑

i=1

∆i(t)Xi (1)

where Zi ≡ σ̂i
z and Xi ≡ σ̂i

x are the Z and X Pauli
matrices respectively for qubit i, hi is the local bias on
qubit i, ∆i(t) is the tunneling matrix element for qubit
i, and Jij is the coupling strength between qubits i and
j.

A problem instance is encoded in the h and J values,
which are user-programmable. The transverse term is
used to control the quantum annealing schedule as de-
fined in the following section.

CLASSICAL, SIMULATED AND QUANTUM
ANNEALING

Consider first a classical system characterized by a vec-
tor p(x) giving the occupation probability of all states x.
Classically at finite temperature, p is determined by min-
imizing the free energy functional

FT [p] = Ep(V )−TS[p] =
∑

x

E(x)p(x)+T
∑

x

p(x) ln p(x)

(2)
where S[p] is the entropy of p and Ep(V ) is the expected
value of the energy function V (x). The free energy di-
vides into two terms. The entropy contribution is convex,
i.e. there is a single global minimum at the maximum en-
tropy state where all probabilities are equal. The second
contribution arises from the expected energy contribu-
tion and for V (x) with local minima is not convex, and
has local minima when viewed as a function of p. The
idea of simulated annealing is to start at large T so the
free energy has a single global minimum which is easily
located. As we cool T , the energy term begins to con-
tribute and new local minima can appear. But, if we are
at the global minimum of FT [p] then cooling T → T −dT
where dT is small enough means that we can follow the
gradient dF/dp to locate the global minimum of FT−dT .
In this way we ratchet down to T = 0.

In the simulated annealing algorithm we don’t actually
determine p, but instead set up a Markov chain which
samples from p at each temperature (assuming you let
things equilibrate at each T ).
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The broader story is that at finite temperature there
are two forces driving the evolution, a V minimizing term
and a term which wants to spread out p (make p uniform).
An exactly analogously thing is going on quantum me-
chanically.

In the QM case, instead of p we need to consider the
density matrix ρ. The free energy is now

FT [ρ] = Tr(ρH)− TS[ρ] (3)

where the entropy of ρ is S[ρ] = −Tr(ρ ln ρ). As above,
ρ is determined by minimizing the free energy. The same
story holds in this quantum case - the entropy func-
tional is convex while the expected energy is not. In the
QM case even at zero temperature (where the entropy
term vanishes) there remains a term which is minimized
by spreading the wave function out (like making p uni-
form classically). This is the ‘kinetic energy’ K where
H = K + V . In our case the role of kinetic energy is
played by the transverse field terms ∼ Xi while in con-
tinuous systems it is the negative Laplacian. In this zero
temperature case we have

F0[ρ] = Tr(ρV ) + Tr(ρK) (4)

The second term is convex and we can play the same
game weighting the importance of the two terms so that
we can define

F0[ρ] = Tr(ρV ) + Γ Tr(ρK) (5)

and gradually anneal out (Γ → 0) the convex term.
Viewed this way QA is just a different mechanism uni-
formizing occupation probabilities across states x.

Hydra processors operate in a regime where we must
consider the most general case, with free energy

FT [ρ] = Tr(ρV ) + Γ Tr(ρK) + T Tr(ρ ln ρ) (6)

We have the freedom to choose annealing paths within
the whole (T,Γ) space and not just (T, 0) paths (simu-
lated annealing) or (0,Γ) paths (quantum annealing).

PERFORMANCE CHARACTERIZATION OF
SIMULATED AND QUANTUM ANNEALING

Generic analysis of annealing heuristics on NP-hard
optimization problems is difficult for a number of rea-
sons, including instance dependence and the existence of
vastly differing time-scales characterizing short-time and
asymptotic (long-time) behavior.

A meaningful performance measure is the residual en-
ergy as a function of time. For both quantum and classi-
cal annealing, the residual energy is believed to approach
zero asymptotically. In other words, choosing an expo-
nentially long (in the problem size) annealing schedule

will, for both approaches, guarantee asymptotic conver-
gence to the exact solution. The functional forms de-
scribing the long-time asymptotic behavior for a range of
relevant instance types are believed to be

εc(t) = A log−2 αt (7)

for classical annealing and

εq(t) = B log−6 βt (8)

for quantum annealing, where A and B are prefactors
with units of energy and α and β are rates with units of
s−1. [5]

To make a relative performance characterization of
classical and quantum annealing when both are in their
long-time limits (where these asymptotic forms might be
expected to be indicative of real performance), we equate
the two residual energies and ask how long the quantum
annealer has to run (tq) in order to match the perfor-
mance of a simulated annealer running for some time tc.
This gives

tq =
1
β

2(B
A )1/6

log1/3 αtc (9)

In practice, a simulated annealing approach in the long-
time limit is typically operated for 1-10 hours. To com-
pare the time for a quantum annealer to achieve the same
levels of accuracy for these times, we can estimate the
quantities α ∼ 109, β ∼ 103 and A ∼ B. With these
assumptions we obtain times of ∼ 10ms for the quan-
tum annealer for 10 hours of simulated annealing time–a
speed-up of more than six orders of magnitude.

It is important to note that for any given problem,
heuristics superior to simulated annealing almost always
exist. Therefore comparing the performance benefits of
quantum vs. classical annealing does not fully answer
the question of what the expected speed-up of quantum
annealing over the best known classical approaches is. In
order to perform this analysis, more specificity with the
instance class involved and the specific heuristic being
used to solve the problem are required.

In the short-time limit, good heuristics exist that will
quickly find local minima–for example there are one-pass
heuristics for the two-dimensional Ising model in a mag-
netic field that scale at worst quadratically with the num-
ber of variables. However based on the analysis above,
after ∼ 10ms the quantum annealer will have already
produced a very good answer. Assuming that even in
the short-time limit a classical heuristic requires more
than this time, the relative performance of the quantum
vs. classical annealers will be even more dramatic.

Analyzing the performance of any heuristic approach
(and quantum annealing is explicitly heuristic) has many
pitfalls. Ultimately the actual performance of the quan-
tum annealer must be extracted empirically by measuring
the residual energy as a function of time on benchmark
problems of increasing size and complexity.
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DEFINITIONS

Adiabatic Quantum Computation

Adiabatic quantum computation (AQC) is an algo-
rithm that yields an exact solution to a computation
problem encoded in the ground state of a Hamiltonian
HP . The system is initialized in the ground state of
an initial Hamiltonian HB , whose ground state is eas-
ily accessible, and then is adiabatically evolved by slowly
changing the Hamiltonian from HB to HP . An example
evolution Hamiltonian is H = (1− s)HB + sHP , where s
changes monotonically from 0 to 1 during the evolution.
The performance of the computation is assessed by the
ground state probability P0f vs. the total evolution time
tf . The computation time is the value of tf that yields
P0f ∼ 1. In general there is no restriction on HB and
HP except that [HB ,HP ] 6= 0. The system must stay in
its ground state during the entire computation.

Quantum Annealing

Quantum annealing (QA) is an optimization algorithm
that uses quantum mechanics as a source of disorder
during the annealing process. In QA, the optimization
problem is encoded in a Hamiltonian HP . The algo-
rithm starts by introducing strong quantum fluctuations
by adding a disordering Hamiltonian H ′ that does not
commute with HP . An example case is H = HP + ΓH ′,

where Γ changes from a large value to zero during the
evolution. The disorder is slowly removed by removing
H ′ (reducing Γ). If the process is slow enough, the system
will settle in a local minimum close to the exact solution.
The slower the evolution, the better the solution that
will be achieved. The performance of the computation
is assessed via the residual energy (distance from exact
solution using the objective function) vs. evolution time.
The computation time is the time required to generate
a residual energy below some acceptable threshold value.
In QA, HP encodes an optimization problem and there-
fore HP is diagonal in the subspace of the qubits that
encode the solution, but the system does not necessarily
stay in the ground state at all times.

[1] The free energy referred to is the Helmholtz free en-
ergy F=E-TS; see for example http://en.wikipedia.

org/wiki/Helmholtz_free_energy.
[2] See for example http://en.wikipedia.org/wiki/

Annealing.
[3] See for example http://en.wikipedia.org/wiki/

Simulated_annealing.
[4] Brooke et al., Science 284, 779 (1999).
[5] Santoro et al., Science 295, 2427 (2002).

[6] For an introduction to complexity classes and the concept
of NP-hardness, see for example http://en.wikipedia.

org/wiki/NP-hard.


