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Abstract ~ The source coding theorem and its con- 
verse imply that the optimal performance theoret- 
ically achievable by a Axed- or variable-rate block 
quantizer on a stationary ergodic source equals the 
distortion-rate function. While a Axed-rate block 
code cannot achieve arbitrarily closely the distortion- 
rate function on an arbitrary stationary nonergodic 
source, we show for the case of Polish alphabets that 
a variable-rate block code can. We also show that 
the distortion-rate function of a stationary nonergodic 
source has a decomposition as the average over points 
of equal slope on the distortion-rate functions of the 
source's stationary ergodic components. These results 
extend earlier Anite alphabet results. 

I .  INTRODUCTION 
In [l], Shields et al. show that for any stationary nonergodic fi- 
nite alphabet source, the distortion-rate function D(R) equals 
the infimum of the average of the distortion-rate functions of 
the source's stationary ergodic components, where the average 
is taken over points on the component distortion-rate func- 
tions whose rates average to at most R. The achievability of 
this bound by variable-rate block codes is shown in [Z]. 

We extend these variable rate quantization results from fi- 
nite alphabets to complete separable metric spaces, or Polish 
alphabets. We employ a simplified variable-rate and variable- 
distortion using a Lagrangian formulation. 

11. RESULTS 
Let ( A m , B m , p , T )  be a stationary dynamical system with 
Polish alphabet A. That is, let A be a complete separable 
metric space, let B be the Bore1 o-algebra generated by the 
open sets of A, let A" be the set of one-sided sequences z = 
(21, zz, . . .) from A, let B" be the o-algebra of subsets of A" 
generated by finite-dimensional rectangles with components 
in 8, let T be the left shift operator on A", and let p be a 
measure on the measurable space (Am,Bm), stationary with 
respect to T. 

Now let p ( z l ,  yl) < 00 be a fed-vdu+ nonnegative distor- 
tion measure for 21 E A, y~ E A, where A is an abstract repro- 
duction alphabet. Assume that p ( z ~ , y ~ )  is continuous in z1 
for each y1 E A and that there exists a reference letter y; such 
that E,p(Xi, Y;) < 00. Define p ( z N ,  a r N )  = Cf, p?,,y,). 

Finally let Q be a variable-rate block quantizer with block- 
length N .  That  is, let Q be  a map from A N  onto some finite 
or countable set of codewords {yN} C AN composing a code- 
book C = {(yN,IyNI)) in which each codeword yN has an 
associated variable-length binary description, with length de- 
noted l ~ ~ [ .  The description lengths must satisfy the Kraft 
inequality xyNEC 2 4 ' 1  I 1. 
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The optimal performance theoretically achievable by any 
variable-rate block quantizer is the operational distortion-rate 
function 6"(R,p) = infN6Lr(R,p), where 6gr(R,p)  is the 
N t h  order operational distortion-rate function 

6Lr(R,p) = i;f { ; E " p ( X N ,  Q ( X N ) )  ; iEpIQ(xN)I I E ] .  
Here, the infimum IS taken over all variable-rate block quantiz- 
ers Q with blocklength N .  We contrast this with the optimal 
performance theoretically achievable by fixed-rate block quan- 
tizers, 6fr(R, P )  = infN &(R, p ) ,  in which &(R, p )  is defined 
as 6Lr(R,p) but with the infimum taken over all fixed-rate 
block quantizers with blocklength N .  

The Shannon distortion-rate function is defined similarly, 
as D(R,p)  = infNDN(R, p ) ,  where D N ( R , ~ )  is the Nth  or- 
der distortion-rate function 

DN(R,  p )  = i;f { ?E,,p(XN, 1 Y N )  : k I p U ( X N ;  Y N )  I R }  . 
Here, U is a conditional probability or test channel from A N  
to  AN defining, with p ,  a joint probability or hookup pu on 
X N  and Y N ,  and I is the mutual information. 

I t  is well-known that both D(R, p )  and 6fr(R, f i )  are convex 
in R [3]; SVr(R,p) is likewise convex in R, by a timesharing 
argument. Hence 6"(R,p) and D ( R , p )  can be characterized 
by their support function& [4, p. 1351 the weighted opera- 
tional distortion-rate function !(A, p )  = infR [6"(R, p )  + XR] 
and the weighted Shannon distortion-rate function L(X, p )  = 
infR[D(R, P )  + XR] . 

The source coding theorem and its converse imply that 
when p is ergodic, 6"'(R,p) = &(R,p)  = D ( R , p )  for all 
R 2 0 (and hence P ( X , p )  = L ( X , p )  for all X 2 0). When 
p is nonergodic, let { p =  : z E A") denote the ergodic de- 
composition of p.  The ergodic decomposition exists since A 
Polish implies ( A , B )  standard [5, Theorem 3.3.11, and hence 
(Am, 8") is standard [5, Lemma 2.4.11 which gives the de- 
sired property by [5, Theorem 7.4.11. The main results of this 
paper are that under the conditions given above 
Theorem 1 ((A, p )  = 
Theorem 2 L ( X , p )  = s L ( X , p = ) d p ( z )  VX > 0, 
Theorem 3 C ( X , p )  = L(X, p )  VX 2 0, and hence hVr(R,p) = 
D(R, p )  VR 2 0. 

!(A, p.)dp(z)  VX 2 0, 
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