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Abstract — The source coding theorem and its con-
verse imply that the optimal performance theoret-
ically achievable by a fixed- or variable-rate block
quantizer on a stationary ergodic source equals the
distortion-rate function. While a fixed-rate block
code cannot achieve arbitrarily closely the distortion-
rate function on an arbitrary stationary nonergodic
source, we show for the case of Polish alphabets that
a variable-rate block code can. We also show that
the distortion-rate function of a stationary nonergodic
source has a decomposition as the average over points
of equal slope on the distortion-rate functions of the
source’s stationary ergodic components. These results
extend earlier finite alphabet results.

1. INTRODUCTION

In [1], Shields et al. show that for any stationary nonergodic fi-
nite alphabet source, the distortion-rate function D(R) equals
the infimum of the average of the distortion-rate functions of
the source’s stationary ergodic components, where the average
is taken over points on the component distortion-rate func-
tions whose rates average to at most R. The achievability of
this bound by variable-rate block codes is shown in [2].

We extend these variable rate quantization results from fi-
nite alphabets to complete separable metric spaces, or Polish
alphabets. We employ a simplified variable-rate and variable-
distortion using a Lagrangian formulation.

II. RESULTS

Let (A®,B%,u,T) be a stationary dynamical system with
Polish alphabet A. That is, let A be a complete separable
metric space, let B be the Borel g-algebra generated by the
open sets of A, let A be the set of one-sided sequences z =
(z1,z2,...) from A, let B® be the o-algebra of subsets of A®
generated by finite-dimensional rectangles with components
in B, let T be the left shift operator on A, and let u be a
measure on the measurable space (A*,B™), stationary with
respect to T

Now let p(z1,¥1) < 0o be a real-valued nonnegative distor-
tion measure for z; € A, y1 € A, where A is an abstract repro-
duction alphabet. Assume that p(z1,y1) is continuous in z;
for each y1 € A and that there exists a reference letter y1 such
that Eu.p(X1,¥7) < 0o. Define p(zV,y") = Z.N=1 (=i, 9i).

Finally let Q be a variable-rate block quantizer with block-
length N. That is, let Q be a map from AY onto some finite
or countable set of codewords {y"¥} C AY composing a code-
book € = {(¥",|y"])} in which each codeword y" has an
associated variable-length binary description, with length de-
noted [y"|. The description lengths must satisfy the Kraft
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inequality ZyNEC 2~ <
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The optimal performance theoretically achievable by any
variable-rate block quantizer is the operational distortion-rate
function §¥7(R, p) = infy 8}F(R, 1), where 63F(R, ) is the
Nth order operational distortion-rate function
SR ) =t { 5 Bup(X™, QX)) - BulQ(X™) < B}
Here, the infimum is taken over all variable-rate block quantiz-
ers Q with blocklength N. We contrast this with the optimal
performance theoretically achievable by fixed-rate block quan-
tizers, 8 (R, ) = infn 6% (R, 1), in which 8 (R, ) is defined
as 83 (R, p) but with the infimum taken over all fixed-rate
block quantizers with blocklength N.

The Shannon distortion-rate function is defined similarly,
as D(R, p) = infy DNn(R, p), where Dn(R, i) is the Nth or-
der distortion-rate function
Dv(R, ) =inf {—IIVE,‘.,;:(XN,YN) : %I,,.,(X”; Y¥) < R}.
Here, » is a conditional probability or test channel from AN
to AV defining, with u4, a joint probability or hookup uv on
X% and Y”, and I is the mutual information.

It is well-known that both D(R, x) and 5t (R, p) are convex
in R 3]; 6"7(R, u) is likewise convex in R, by a timesharing
argument. Hence 6'(R, ) and D(R, p) can be characterized
by their support functionals [4, p. 135] the weighted opera-
tional distortion-rate function £(), u) = inf r [§Y7(R, s} + AR]
and the weighted Shannon distortion-rate function L(A, u) =
infr[D(R, u) + AR) .

The source coding theorem and its converse imply that
when 4 is ergodic, §Y (R, u) = Efr(R,p) = D(R,p) for all
R > 0 (and hence £(A, p) = L(A,p) for all A > 0). -When
u is nonergodic, let {u: : £ € A} denote the ergodic de-
composition of u. The ergodic decomposition exists since A
Polish implies (A, B) standard [5, Theorem 3.3.1], and hence
(A%, B®) is standard [5, Lemma 2.4.1] which gives the de-
sired property by [5, Theorem 7.4.1]. The main results of this
paper are that under the conditions given above
Theorem 1 £(A, 1) = [ £(X, pz)dp(z) YA > 0,

Theorem 2 L(), ) = fL(,\,;z,)dp(z) YA >0,
Theorem 3 (A, ) = L(X, p) VA > 0, and hence 6""(R, u) =
D(R,p) YR > 0.
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