Variable-Rate Source Coding Theorems for Stationary Nonergodic Sources

M. Effros,† P.A. Chou,‡ and R. M. Gray †1

[†]Information Systems Laboratory, Stanford, CA 94305-4055 USA [‡]Xerox Palo Alto Research Center, 3333 Coyote Road, Palo Alto, CA 94304 USA

Abstract — The source coding theorem and its converse imply that the optimal performance theoretically achievable by a fixed- or variable-rate block quantizer on a stationary ergodic source equals the distortion-rate function. While a fixed-rate block code cannot achieve arbitrarily closely the distortion-rate function on an arbitrary stationary nonergodic source, we show for the case of Polish alphabets that a variable-rate block code can. We also show that the distortion-rate function of a stationary nonergodic source has a decomposition as the average over points of equal slope on the distortion-rate functions of the source's stationary ergodic components. These results extend earlier finite alphabet results.

I. Introduction

In [1], Shields et al. show that for any stationary nonergodic finite alphabet source, the distortion-rate function D(R) equals the infimum of the average of the distortion-rate functions of the source's stationary ergodic components, where the average is taken over points on the component distortion-rate functions whose rates average to at most R. The achievability of this bound by variable-rate block codes is shown in [2].

We extend these variable rate quantization results from finite alphabets to complete separable metric spaces, or Polish alphabets. We employ a simplified variable-rate and variabledistortion using a Lagrangian formulation.

II RESILTS

Let $(A^{\infty}, \mathcal{B}^{\infty}, \mu, T)$ be a stationary dynamical system with Polish alphabet A. That is, let A be a complete separable metric space, let \mathcal{B} be the Borel σ -algebra generated by the open sets of A, let A^{∞} be the set of one-sided sequences $x = (x_1, x_2, \ldots)$ from A, let \mathcal{B}^{∞} be the σ -algebra of subsets of A^{∞} generated by finite-dimensional rectangles with components in \mathcal{B} , let T be the left shift operator on A^{∞} , and let μ be a measure on the measurable space $(A^{\infty}, \mathcal{B}^{\infty})$, stationary with respect to T.

Now let $\rho(x_1,y_1)<\infty$ be a real-valued nonnegative distortion measure for $x_1\in A, y_1\in A$, where A is an abstract reproduction alphabet. Assume that $\rho(x_1,y_1)$ is continuous in x_1 for each $y_1\in A$ and that there exists a reference letter y_1^* such that $E_\mu\rho(X_1,y_1^*)<\infty$. Define $\rho(x^N,y^N)=\sum_{i=1}^N\rho(x_i,y_i)$.

Finally let Q be a variable-rate block quantizer with block-length N. That is, let Q be a map from A^N onto some finite or countable set of codewords $\{y^N\}\subseteq A^N$ composing a code-book $\mathcal{C}=\{(y^N,|y^N|)\}$ in which each codeword y^N has an associated variable-length binary description, with length denoted $|y^N|$. The description lengths must satisfy the Kraft inequality $\sum_{y^N\in\mathcal{C}}2^{-|y^N|}\leq 1$.

The optimal performance theoretically achievable by any variable-rate block quantizer is the operational distortion-rate function $\delta^{\rm VT}(R,\mu)=\inf_N \delta^{\rm VT}_{N}(R,\mu)$, where $\delta^{\rm VT}_{N}(R,\mu)$ is the Nth order operational distortion-rate function

 $\delta_N^{\rm VI}(R,\mu) = \inf_Q \left\{ \frac{1}{N} E_\mu \rho(X^N,Q(X^N)) : \frac{1}{N} E_\mu |Q(X^N)| \leq R \right\}.$ Here, the infimum is taken over all variable-rate block quantizers Q with blocklength N. We contrast this with the optimal performance theoretically achievable by fixed-rate block quantizers, $\delta^{\rm fr}(R,\mu) = \inf_N \delta_N^{\rm fr}(R,\mu)$, in which $\delta_N^{\rm fr}(R,\mu)$ is defined as $\delta_N^{\rm VI}(R,\mu)$ but with the infimum taken over all fixed-rate block quantizers with blocklength N.

The Shannon distortion-rate function is defined similarly, as $D(R,\mu)=\inf_N D_N(R,\mu)$, where $D_N(R,\mu)$ is the Nth order distortion-rate function

D_N(R, μ) = \inf_{ν} { $\frac{1}{N} E_{\mu\nu} \rho(X^N, Y^N) : \frac{1}{N} I_{\mu\nu}(X^N; Y^N) \le R$ }. Here, ν is a conditional probability or test channel from A^N to \hat{A}^N defining, with μ , a joint probability or hookup $\mu\nu$ on X^N and Y^N , and I is the mutual information.

It is well-known that both $D(R,\mu)$ and $\delta^{\mathrm{fr}}(R,\mu)$ are convex in R [3]; $\delta^{\mathrm{vr}}(R,\mu)$ is likewise convex in R, by a timesharing argument. Hence $\delta^{\mathrm{vr}}(R,\mu)$ and $D(R,\mu)$ can be characterized by their support functionals [4, p. 135] the weighted operational distortion-rate function $\ell(\lambda,\mu)=\inf_R \left[\delta^{\mathrm{vr}}(R,\mu)+\lambda R\right]$ and the weighted Shannon distortion-rate function $L(\lambda,\mu)=\inf_R \left[D(R,\mu)+\lambda R\right]$.

The source coding theorem and its converse imply that when μ is ergodic, $\delta^{\rm Vr}(R,\mu)=\delta^{\rm fr}(R,\mu)=D(R,\mu)$ for all $R\geq 0$ (and hence $\ell(\lambda,\mu)=L(\lambda,\mu)$ for all $\lambda\geq 0$). When μ is nonergodic, let $\{\mu_x:x\in A^\infty\}$ denote the ergodic decomposition of μ . The ergodic decomposition exists since A Polish implies (A,B) standard [5, Theorem 3.3.1], and hence (A^∞,B^∞) is standard [5, Lemma 2.4.1] which gives the desired property by [5, Theorem 7.4.1]. The main results of this paper are that under the conditions given above

Theorem 1 $\ell(\lambda, \mu) = \int \ell(\lambda, \mu_x) d\mu(x) \ \forall \lambda \geq 0$, Theorem 2 $L(\lambda, \mu) = \int L(\lambda, \mu_x) d\mu(x) \ \forall \lambda \geq 0$, Theorem 3 $\ell(\lambda, \mu) = L(\lambda, \mu) \ \forall \lambda \geq 0$, and hence $\delta^{VI}(R, \mu) = D(R, \mu) \ \forall R \geq 0$.

- REFERENCES

 REFERENCES

 1] P. C. Shields, D. L. Neuhoff, L. D. Davisson, and F. Ledrappier, "The distortion-rate function for nonergodic sources," The Annals of Probability, 6(1):138-143, 1978.
- [2] A. Leon-Garcia, L. D. Davisson, and D. L. Neuhoff, "New results on coding of stationary nonergodic sources," *IEEE Transactions on Information Theory*, 25(2):137-144, March 1979.
- [3] R. M. Gray, Entropy and Information Theory, Springer-Verlag, New York, 1990.
- [4] D. G. Luenberger, Optimization by Vector Space Methods, John Wiley and Sons, New York, 1969.
- [5] R. M. Gray, Probability, Random Processes, and Ergodic Properties, Springer-Verlag, New York, 1988.

¹This material is based upon work partially supported by an AT&T Ph.D. Scholarship, by a grant from the Center for Telecommunications at Stanford, and by an NSF Graduate Fellowship.