
Locking Down the Windows Kernel:
Mitigating Null Pointer Exploitation

Tarjei Mandt

Norman Threat Research
tarjei.mandt@norman.com

Abstract. One of the most prevalent bug classes affecting Windows ker-
nel components today is undeniably NULL pointer dereferences. Unlike
other platforms such as Linux, Windows (in staying true to backwards
compatibility) allows non-privileged users to map the null page within
the context of a user process. As kernel and user-mode components share
the same virtual address space, an attacker may potentially be able to
exploit kernel null dereference vulnerabilities by controlling the deref-
erenced data. In this paper, we propose a way to generically mitigate
NULL pointer exploitation on Windows by restricting access to the lower
portion of process memory using VAD manipulation. Importantly, as the
proposed method employs features already present in the memory man-
ager and does not introduce any offending hooks, it can be introduced on
a wide range of Windows platforms. Additionally, because the mitigation
only introduces minor changes at process creation-time, the performance
cost is minimal.

Keywords: null pointer vulnerabilities, exploitation, mitigation

1 Introduction

A null-pointer dereference takes place when a pointer with a value of NULL [1]
is used to as though it pointed to a valid memory area. From a remote code
execution perspective, vulnerabilities that operate on null pointers are rarely
considered exploitable (unless you control the offset from null as well) as the
program affected by the vulnerability is not likely to have the corresponding page
mapped. This also applies to web browsers and other scriptable applications,
despite an attacker having a large degree of control of the process memory.

From a local privilege escalation perspective, the situation is different. In
this case, the attacker already has a foothold on a system and is free to run
arbitrary code under the context of the current user. Because user processes
and kernel mode components share the same virtual address space, a kernel
NULL pointer deference will inadvertently operate on user-mode memory. As
users are free to allocate the null page on Windows for compatibility reasons,
kernel NULL pointer dereferences often end up being exploitable. Unfortunately,
Windows does not allow users to configure the behavior of the memory manager
to prevent mapping of the null page. Because many kernel vulnerabilities [8]



as well as recent exploitation techniques [7] rely on null page mapping to be
leveraged by an attacker, addressing this vector becomes an important goal in
mitigating kernel exploitation on Windows.

In this paper, we propose a method for mitigating exploitation of NULL

pointer dereference vulnerabilities on Windows. Specifically, our proposed solu-
tion leverages VAD manipulation to ensure that no running process may allocate
memory or load modules at the null page. As we operate completely within the
scope of the memory manager without using offending hooks of any kind, it can
be customized to work on any supported Windows platform. A proof of concept
driver has been developed to demonstrate the proposed method on both x86 and
x64 versions of Windows 7.

The rest of the paper is organized as follows. In Section 2, we review related
work on addressing NULL pointer exploitation on both Windows and other plat-
forms. In Section 3, we cover some of the internals regarding Windows memory
management, necessary to understand the remainder of the paper and on which
the proposed method is built on. In Section 4, we discuss various methods for
addressing null page mappings on Windows, while in Section 5 we outline the
proposed implementation. In Section 6, we discuss the advantages and disad-
vantages of the proposed method. Finally, in Section 7 and 8 we discuss future
areas of research and provide a conclusion of the paper.

2 Related Work

On Windows, the Enhanced Mitigation Experience Toolkit (EMET) [12] is a
toolkit developed by Microsoft designed to make it more difficult for an at-
tacker to exploit software vulnerabilities. It deploys mitigations such as manda-
tory ASLR1, DEP, heap spray pre-allocation, and export address table filtering.
EMET also features null-page protection (by marking the null-page NOACCESS)
to prevent exploits from referencing this area of memory. Although this mitiga-
tion may thwart remote exploitation attempts in certain scenarios, it does not
in any way prevent an attacker from gaining control of the null page once on
a local system or when code execution has been obtained. This is because an
attacker could easily modify its protection and thus leverage it in exploiting a
kernel NULL dereference vulnerability.

Although new to Windows, mitigations against NULL pointer vulnerabilities
have already been introduced on many other widely used platforms. Linux tra-
ditionally allowed null pages to be mapped, but have since the 2.6.23 kernel
enforced memory mapping restrictions using mmap min addr2. Specifically, this
tunable sets the smallest virtual memory address that can be allocated (e.g. via
the mmap() function) and thus acts as a mitigation towards kernel NULL pointer
dereferences. Although introducing the required checks may seem straightfor-
ward, Linux has yet to prove that its implementation is a proper one. This stems
from the fact that the mitigation is not added in a centralized way, but rather

1 Mandatory ASLR uses module rebasing on ASLR incompatible systems
2 FreeBSD uses the sysctl(8) variable security.bsd.map at zero



in all places where the null page could be allocated or mapped. This in turn
led to a number of interesting cases in which the mitigation could be bypassed,
either by leveraging setuid applications with the MMAP PAGE ZERO personality to
map the null page (CVE-2009-1895 [14]), or by leveraging functions that did not
call the appropriate security hooks (CVE-2007-6434 [10], CVE-2010-4346 [9]).
Because of the problems faced in Linux, it clearly becomes a goal to enforce the
null page mapping restriction in a more centralized manner.

A more aggressive way of preventing user-mode dereferences from the kernel
is using x86 segmentation. In ensuring that the kernel data segment ( KERNEL DS)
does not extend into the user-mode address space, any attempts at referencing
user-mode memory results in an access violation. This is exactly what the PaX
project does with a feature called PAX UDEREF [13] in order to mitigate kernel ex-
ploitation attempts involving user-mode dereferences. The challenge with using
segmentation is that it requires significant changes to how data is passed between
user and kernel-mode (in order to deal with the non-overlapping segments).
PAX UDEREF solves this by reloading the proper segment register with USER DS

within copy from user and copy to user for the duration of the copy. Unfor-
tunately, Windows lacks consistent APIs for passing data between rings, hence
the approach would be very difficult to implement without making significant
changes to the kernel. Another big drawback is the lack of proper segmentation
support on x64, which makes segmentation unsuitable for generically addressing
NULL pointer exploitation on Windows.

3 Memory Management

In order to understand how null page mappings can be addressed on Windows,
we will briefly review some internals regarding process memory management.
We begin by describing how the OS and the CPU manages virtual addresses,
and move on to more operating system specific details such as virtual address
descriptors (VADs).

3.1 Page Tables

In order for the CPU to translate virtual addresses to physical addresses, the
memory manager creates and maintains page tables. In Windows, each process
has its own page table, and stores the pointer to the physical base address of
the page directory in the CR3 register. When a context switch occurs, Win-
dows loads this register with the value held by the DirectoryTableBase field in
the KPROCESS structure, effectively granting each process its own process space.
Upon a memory read or write, the CPU uses the virtual address to look up the
corresponding page table entry (using a two, three, or four-level table lookup
depending on the running architecture) in order to determine whether the page
is present. Because page table address lookups are inefficient, the CPU uses a
translation lookaside buffer (TLB) to store recently translated entries.



As PTEs are 32 bit (Figure 1) and pages on the Intel platform are 4KB, only
20 bits need to be used to describe a physical page. The remaining 12 bits are
used by the hardware and the operating system to maintain control information
about the virtual page represented by this particular entry.

Fig. 1. Page table entry

One of the most important bits is the valid bit. If the bit is set, the memory
management unit (MMU) of the CPU can perform the address resolution on its
own and locate the corresponding physical page. If the bit is cleared, the OS
is invoked to take action (calls the page fault handler) and is free to use the
remaining bits of the PTE arbitrarily. Also, of particular interest to restricting
page access is the owner or U/S bit. When cleared, only kernel mode (super-
visor) may access the page referenced by the PTE. We look more into using
information held in the PTE to restrict page access in Section 4.2.

3.2 Virtual Address Descriptors

In order to conserve memory and enhance performance, Windows uses a lazy
evaluation algorithm in which a PTE is not actually created until the reserved
or committed memory is first accessed. This method significantly improves per-
formance for processes that allocate large amounts of memory which may only
be scarcely accessed. In order to support the lazy evaluation algorithm, Win-
dows needs to keep track of the memory that has not yet been accessed (and for
which PTEs have not yet been created). As such, each process maintains a set of
data structures known as virtual address descriptors (VADs). VADs are struc-
tured in self-balancing AVL trees and hold all the information on the memory
ranges allocated in a process, necessary to set up PTEs correctly. This includes
information such as the page protection, whether memory has been committed,



pointers to associated file objects in memory mapped files, and so on. A diagram
of an example VAD tree is shown in Figure 2.

VAD: 89838410
bb0 – c6f

EXECUTE_WCOPY
Mapped

VAD: 895eb770
1d0 – 1df

READWRITE
Private

VAD: 897e8b98
75c60 – 75d33

EXECUTE_WCOPY
Mapped

VAD: 8990d530
73250 – 73281

EXECUTE_WCOPY
Mapped

VAD: 897e41e8
76ff0 – 7709b

EXECUTE_WCOPY
Mapped

VAD: 892a8928
980 – 98f

READWRITE
Private

VAD: 89871d00
170 – 171
READONLY

Mapped

Control Area
Flags: Accessed,
File, Image, ...

File 
object

Fig. 2. Root of VAD tree for calc.exe

When a thread first accesses a memory region, the page fault handler notices
that the PTE has not been created (marked invalid) and inspects the associated
VAD in order to set it up correctly (in nt!MmAccessFault). If the memory region
does not have a corresponding VAD, the handler knows that memory was not
allocated by the process and therefore generates an access violation. The memory
manager also uses VADs to implement the PAGE NOACCESS protection, as valid
PTEs in the x86 architecture have no flags that restrict memory reads3. When
a VAD is marked NO ACCESS, the memory access fault handler simply returns
with an access violation without taking any further action.

The NO ACCESS property of a VAD provides an ideal entry point to address-
ing null page mappings on Windows. In the next section, we will show that
despite the lack of proper support for denying page mappings in user-space,
such restrictions can be enforced generically using VAD manipulation.

4 Denying Null Page Mapping

In this section, we discuss ways of denying null page mappings on Windows.
We begin by looking at traditional system call hooking and modification of page
table entries, before going more into what can be done using VAD manipulation.

3 In clearing the U/S flag, the page will only become accessible to the kernel



4.1 System Call Hooking

Historically, hooking system calls have been a popular way for security solutions
as well as rootkits to filter the information flow between user and kernel-mode
components. For preventing null page mappings on Windows, there appears to
be only two system calls that we’re concerned with: NtAllocateVirtualMemory
and NtMapViewOfSection. Both functions allow the null page to be mapped in
specifying a base address less than the size of a page, but above zero. Hence,
validating the BaseAddress parameter before passing the request to the kernel
could be used in preventing null page mappings.

It should be noted that system calls can also be called internally by the ker-
nel using the Zw prefixed functions4. For instance, in creating a VDM (16-bit)
process on 32-bit versions of Windows, the kernel maps the null page by calling
ZwAllocateVirtualMemory (with a BaseAddress parameter of 1) to support
the 16-bit execution environment. Moreover, memory management functions ex-
ported by the kernel may allow other kernel components such as third party
drivers to map the null page, e.g. via calls to MmMapViewofSection.

The biggest drawback of using system call hooking is that the mitigation
would not be introduced in a centralized way; hence any missing check could
result in a bypass. Moreover, hooking system calls is discouraged by Microsoft
and could very well introduce vulnerabilities on its own [4]. For instance, failing
to properly capture arguments (such as the BaseAddress pointer) could lead to
race condition issues between the hook and the real implementation and allow an
attacker to bypass the mitigation. Hooking also becomes measurably harder on
64-bit platforms due to the integrity checks enforced by Kernel Patch Protection
(aka PatchGuard) [3].

4.2 PTE Modification

In Section 3, we briefly discussed page table entries and their importance in
virtual to physical address translation. As PTEs hold several bits describing the
state and permissions of a page, PTE modification can also provide us with
some useful results. Specifically, in leveraging the U/S bit of a page table entry,
user-mode processes can be restricted from accessing certain pages in user-mode
memory, such as the null page. When the U/S bit is cleared, the memory access
fault handler (nt!MmAccessFault) sees that the page is owned by the kernel,
hence returns an access violation if the fault originated from user-mode. More-
over, as the kernel also allows user-mode pages to be secured in memory (e.g.
using MmSecureVirtualMemory5), users may not always be allowed to unmap
or free a mapped page. This is also how special regions of memory such as
the KUSER SHARED DATA section and thread and process environment blocks are
mapped into a user-mode process. The drawback of this approach is that the
null page, although inaccessible to users, will still be accessible from the kernel.

4 In updating the PreviousMode, these functions let the kernel bypass checks typically
enforced on user provided buffers.

5 http://msdn.microsoft.com/en-us/library/ff556374(v=vs.85).aspx



This could very well lead to exploitable conditions depending on how the kernel
uses the null page data.

4.3 VAD Manipulation

Having looked at both system call hooking and page table entries, we turn to
VADs. As these structures are used to describe the process memory space in
Windows, it becomes an ideal candidate for preventing null page mappings. Our
goal in this respect is to create an entry that prevents any attempt at null page
allocation. It is also important that we work within the confines of the memory
manager, as any low-level kernel modification could potentially affect system
stability and yield unpredictable results. In order to achieve our goal, we will
study how PEBs and TEBs are created, as these special structures use specifi-
cally crafted VADs to remain secured in memory. This is important because any
private allocation made in user-space (regardless of the U/S bit) can be deleted
by the process owner, unless secured in this way. We also want to avoid using
the MmSecureVirtualMemory API exposed by the kernel as it requires the pages
to be present, hence defeats the purpose of preventing null page mappings.

Specifically, the function we are interested in is nt!MiCreatePebOrTeb. With
some help from ReactOS6 (or the WRK7), we can make out how the VAD entry
is created.

NTSTATUS

NTAPI

MiCreatePebOrTeb( IN PEPROCESS Process ,

IN ULONG Size ,

OUT PULONG_PTR Base )

PMMVAD_LONG Vad;

/* ... */

/* Allocate a VAD */

Vad = ExAllocatePoolWithTag(NonPagedPool , sizeof(MMVAD_LONG),

’ldaV’ );

if (!Vad) return STATUS_NO_MEMORY;

/* Setup the primary flags with the size , and make it

commited , private , RW */

Vad ->u.LongFlags = 0;

Vad ->u.VadFlags.CommitCharge = BYTES_TO_PAGES(Size);

Vad ->u.VadFlags.MemCommit = TRUE;

Vad ->u.VadFlags.PrivateMemory = TRUE;

Vad ->u.VadFlags.Protection = MM_READWRITE;

Vad ->u.VadFlags.NoChange = TRUE;

6 http://www.reactos.org/
7 http://www.microsoft.com/resources/sharedsource/windowsacademic/researchkernelkit.mspx



/* Setup the secondary flags to make it a secured , writable ,

long VAD */

Vad ->u2.LongFlags2 = 0;

Vad ->u2.VadFlags2.OneSecured = TRUE;

Vad ->u2.VadFlags2.LongVad = TRUE;

Vad ->u2.VadFlags2.ReadOnly = FALSE;

/* Validate VAD range */

/* ... */

/* Build the rest of the VAD now */

Vad ->StartingVpn = (*Base) >> PAGE_SHIFT;

Vad ->EndingVpn = ((* Base) + Size - 1) >> PAGE_SHIFT;

Vad ->u3.Secured.StartVpn = *Base;

Vad ->u3.Secured.EndVpn = (Vad ->EndingVpn << PAGE_SHIFT) | (

PAGE_SIZE - 1);

Vad ->u1.Parent = NULL;

Listing 1. Function creating VAD for PEB/TEBs

The key to preventing deletion in Listing 1 is the NoChange flag as well as
the OneSecured flag used to secure the address range and prevent changes to the
memory protection. In order to further lock down the VAD and deny read and
write access, we also need to set the Protection flag to MM NOACCESS (0x18). This
protection is essentially equivalent to a guard page, but is not cleared on access.
Additionally, as we don’t want the memory manager to think that any memory is
actually committed (this will actually allow NtProtectVirtualMemory to alter
the page protection), we need to set the MemCommit flag to FALSE.

Although this gets us well on our way, there is still a fundamental issue we
need to address. It turns out that a user could still commit memory for a range
that has been reserved, hence be able to map the null page (create a valid PTE)
and circumvent the mitigation. Fortunately, the memory manager has a special
flag that prevents memory from being committed. If VadFlags.CommitCharge is
set to MM MAX COMMIT (0x7ffff on x86 or 0x7ffffffffffff on x64), any attempt at com-
mitting memory in the range will result in a STATUS CONFLICTING ADDRESSES

error. This effectively allows us to create a custom VAD that denies access to
the null page from both user and kernel-space.

5 Implementation

In order to implement the method described in Section 4.3, we create a kernel-
mode driver and add a process-creation callback routine using the exported
PsSetCreateProcessNotifyRoutine function8. The callback is invoked before
any threads are executed in a process (from within nt!PspInsertThread) and

8 http://msdn.microsoft.com/en-us/library/ff559951(v=vs.85).aspx



before the process terminates in nt!PspExitProcess. Within the callback, we
manipulate the VAD tree by inserting a crafted VAD entry to prevent subsequent
code from mapping the null page.

Before we can insert a VAD into the VAD tree, we need to check if the null
page has already been mapped by the process before the process-creation call-
back was invoked. This may happen in 16-bit processes where the null page is
used to store information specific to the 16-bit execution environment, such
as the interrupt vector table at address 0000h. The null page allocated by
nt!PspSetupUserProcessAddressSpace is using ZwAllocateVirtualMemory,
hence we could simply check for the presence of this allocation in our callback
and free it if needed. In turn, this would allow us to insert our crafted VAD
entry. Inspired by the PEB/TEB VAD, we initialize the crafted VAD as shown
in Listing 2.

Vad = (PMMVAD_LONG) ExAllocatePoolWithTag(NonPagedPool ,

sizeof(MMVAD_LONG), ’ldaV’);

// we probably don’t want this to happen (terminate process ?)

if (Vad == NULL)

goto ExitCleanup;

RtlZeroMemory(Vad ,sizeof(MMVAD_LONG));

Vad ->StartingVpn = 0 >> PAGE_SHIFT;

Vad ->EndingVpn = 0xffff >> PAGE_SHIFT;

Vad ->u.VadFlags.CommitCharge = MM_MAX_COMMIT; // special

value to prevent commit!

Vad ->u.VadFlags.MemCommit = FALSE;

Vad ->u.VadFlags.PrivateMemory = TRUE;

Vad ->u.VadFlags.Protection = MM_NOACCESS;

Vad ->u.VadFlags.NoChange = TRUE; // mark as non -deleteable

Vad ->u2.VadFlags2.OneSecured = TRUE;

Vad ->u2.VadFlags2.LongVad = TRUE;

Vad ->u3.Secured.u1.StartVa = 0;

Vad ->u3.Secured.EndVa = (PVOID) 0xffff;

// insert into process VAD tree

InsertVad(Vad ,Process);

Listing 2. Function crafting custom VAD to prevent null page mapping

InsertVad() inserts the VAD into the AVL tree (at the leftmost branch)
and increments the MM AVL TABLE.NumberGenericTableElements counter rep-
resenting the number of VAD entries in the AVL tree. This function is function-
ally equivalent to MiInsertVad() in the NT executive, but doesn’t include the



rebalancing algorithm9 as this is performed by the kernel on subsequent VAD
insertions. When the process terminates, nt!MmCleanProcessAddressSpace it-
erates over all the VAD entries and frees them as required, hence no special care
is needed for cleaning up the crafted VAD. In the output in Example 1, we have
inserted a crafted VAD entry that prevents users from accessing memory below
0x10000.

kd> !process fffffa800d122060

PROCESS fffffa800d122060

SessionId: 1 Cid: 063c Peb: 7fffffd5000 ParentCid: 05ac

DirBase: 322ec000 ObjectTable: fffff8a006b2e890 HandleCount: 71.

Image: calc.exe

VadRoot fffffa800d4b88c0 Vads 154 Clone 0 Private 1328. Modified 0.

kd> !vad fffffa800d4b88c0

VAD level start end commit

fffffa800d478f70 ( 7) 0 f -1 Private NO_ACCESS

fffffa800d2131b0 ( 6) 10 1f 0 Mapped READWRITE

fffffa800d3ec160 ( 7) 20 22 0 Mapped READONLY

fffffa800d1b5360 ( 5) 30 33 0 Mapped READONLY

...

kd> !pte 0

VA 0000000000000000

... PDE at FFFFF6FB40000000 PTE at FFFFF68000000000

... contains 0090000000B84867 contains 0000000000000000

... pfn b84 ---DA--UWEV not valid

Example 1: WinDbg output showing the crafted VAD entry in the AVL tree

6 Discussion

In order to circumvent the proposed mitigation, an attacker must find a way
to map the null page before the process creation callback, be able to remove or
modify the VAD entry, or find a code path that does not honor the NO ACCESS

restriction. In the former, even if the attacker somehow managed to load the
executable image at virtual address null (or below 0x10000), the driver could
still check for the presence of this memory mapping and terminate the affected
process on notice. However, it is worth noting that creating the logic necessary
to perform such verification may have slight impact on performance.

9 AVL trees rebalance after each insertion or deletion to optimize subsequent lookups.



Function Addr Type Protection Result

NtAllocateVirtualMemory 1 MEM RESERVE READONLY 0xC0000018

NtAllocateVirtualMemory 1 MEM COMMIT READONLY 0xC0000018

NtMapViewOfSection 1 MEM DOS LIM READONLY 0xC0000018

NtProtectVirtualMemory 0 READWRITE 0xC000002D

NtProtectVirtualMemory 0 READONLY 0xC0000045

NtFreeVirtualMemory 0 MEM RELEASE 0xC0000045

Table 1. Results of null page operations on Windows 7

In order to test the robustness of the implementation, a tool was developed to
perform several test cases. Specifically, paths to functions that operate on virtual
memory were exercised extensively to ensure that the introduced modifications
did not affect system stability or cause any unexpected behavior. Moreover,
in order to attempt to circumvent the mitigation, test cases were targeted on
functions that alter the state of VAD and PTE entries. If the crafted VAD entry
could somehow be removed using legitimate system calls, an attacker could easily
gain control of the null page. The results of these tests are summarized in Table
1, and conclude that an attacker cannot modify the VAD though any traditional
means.

One disadvantage of the proposed mitigation is having to rely on fixed offsets
in parsing the VAD tree. Specifically, the VadRoot pointer in the process object
structure (nt! EPROCESS) has a tendency to move around between versions of
Windows. Moreover, internal structures such as MMVAD and MMADDRESS NODE seem
to have been updated slightly between versions 5.x (2000/XP/2003) and 6.x
(Vista and later). Unfortunately, there’s no easy way of addressing this problem
other than maintaining a database of offsets as none of the internal memory
management APIs (Mi*) for operating on VADs and address nodes are exposed
by the NT executive.

Another disadvantage is that applications and legacy components that cur-
rently rely on null page access are likely to break. In the VDM subsystem case,
16-bit applications fail to initialize properly on execution. However, aside from
this minor inconvenience, no significant side effects have been observed while
testing the proposed mitigation on various system configuration. Due to the
significant number of exploitable NULL pointer vulnerabilities recently affecting
Windows kernel components [8][2], the added protection provided by the pro-
posed mitigation is believed to be far more important to the average user than
maintaining backwards compatibility. It should also be noted that the VDM
subsystem is not present on 64-bit Windows, hence the introduced changes will
have a less noticeable impact on such systems.

One of the big concerns in employing new exploit mitigations is the potential
impact on performance. In our case, the proposed mitigation only introduces
minor changes at process creation-time, hence has very little impact on perfor-
mance.



7 Future Work

There is still much work to be done in order to address kernel exploitation on
Windows. Although future versions of the operating system are likely to harden
frequently targeted areas such as the kernel pool [6][7] and add support for
recent hardware mitigations such as SMEP [11][5], an attacker will still have
a lot of opportunity at hand in exploiting kernel vulnerabilities. As privilege
escalation attacks require knowledge about the kernel address space to be suc-
cessful, randomizing modules and limiting information accessible to users is key
to mitigating kernel exploitation. Unfortunately, the Intel architecture was never
designed to provide the clear separation between user and kernel-mode that is
needed to fully address this problem. However, as mitigations make exploitation
considerably harder, continued work in this field will make the risk less severe
over time.

Acknowledgements

Thanks to Thomas Garnier and Dan Rosenberg for providing valuable feedback
and helping out with the paper.

8 Conclusion

In this paper, we have proposed a way to generically mitigate exploitation of
NULL pointer vulnerabilities in Windows by restricting access to the lower por-
tion of process memory using VAD manipulation. Importantly, as the proposed
method employs features already present in the memory manager and does not
introduce any offending hooks, it can be introduced on a wide range of Windows
platforms without significant portability or compatibility issues. Additionally,
because the mitigation only introduces minor changes at process creation-time,
the performance cost is minimal.

References

[1] Gynvael Coldwind: Why NULL points to 0? http://gynvael.coldwind.pl/?id=

399

[2] Nicolas A. Economou: MS10-048: Win32k Window Creation Vulnerabil-
ity (CVE-2010-1897) http://www.ekoparty.org/archive/2010/ekoparty_

2010-Economou-2x1_Microsoft_Bug.pdf

[3] Scott Field: An Introduction to Kernel Patch Protection. http://blogs.msdn.com/
b/windowsvistasecurity/archive/2006/08/11/695993.aspx

[4] Ken Johnson: Why hooking system services is more difficult (and difficult) than it
looks. http://www.nynaeve.net/?p=210

[5] Mateusz Jurczyk, Gynvael Coldwind: SMEP: What is it, and how to beat it on
Windows. http://j00ru.vexillium.org/?p=783

[6] Kostya Kortchinsky: Real World Kernel Pool Exploitation. SyScan 2008.

http://gynvael.coldwind.pl/?id=399
http://gynvael.coldwind.pl/?id=399
http://www.ekoparty.org/archive/2010/ekoparty_2010-Economou-2x1_Microsoft_Bug.pdf
http://www.ekoparty.org/archive/2010/ekoparty_2010-Economou-2x1_Microsoft_Bug.pdf
http://blogs.msdn.com/b/windowsvistasecurity/archive/2006/08/11/695993.aspx
http://blogs.msdn.com/b/windowsvistasecurity/archive/2006/08/11/695993.aspx
http://www.nynaeve.net/?p=210
http://j00ru.vexillium.org/?p=783


[7] Tarjei Mandt: Kernel Pool Exploitation on Windows 7. Black Hat Briefings DC
2011. https://media.blackhat.com/bh-dc-11/Mandt/BlackHat_DC_2011_Mandt_
kernelpool-wp.pdf

[8] Microsoft Security Bulletin MS11-034: Vulnerabilities in Windows Kernel-Mode
Drivers Could Allow Elevation of Privilege. http://www.microsoft.com/technet/
security/bulletin/ms11-034.mspx

[9] Tavis Ormandy: install special mapping skips security file mmap check. http://
article.gmane.org/gmane.linux.kernel/1074552

[10] Eric Paris: VM/Security: add security hook to do brk. http://lkml.indiana.

edu/hypermail/linux/kernel/0712.0/0874.html

[11] Dan Rosenberg: SMEP: What is It, and How to Beat
It on Linux. http://vulnfactory.org/blog/2011/06/05/

smep-what-is-it-and-how-to-beat-it-on-linux/

[12] Fermin J. Serna, Andrew Roths: Enhanced Mitigation Experience Toolkit 2.0.
http://technet.microsoft.com/en-us/security/video/gg469855

[13] Brad Spender: UDEREF. http://grsecurity.net/~spender/uderef.txt
[14] Julien Tinnes: Bypassing Linux’ NULL pointer dereference ex-

ploit prevention (mmap min addr) http://blog.cr0.org/2009/06/

bypassing-linux-null-pointer.html

https://media.blackhat.com/bh-dc-11/Mandt/BlackHat_DC_2011_Mandt_kernelpool-wp.pdf
https://media.blackhat.com/bh-dc-11/Mandt/BlackHat_DC_2011_Mandt_kernelpool-wp.pdf
http://www.microsoft.com/technet/security/bulletin/ms11-034.mspx
http://www.microsoft.com/technet/security/bulletin/ms11-034.mspx
http://article.gmane.org/gmane.linux.kernel/1074552
http://article.gmane.org/gmane.linux.kernel/1074552
http://lkml.indiana.edu/hypermail/linux/kernel/0712.0/0874.html
http://lkml.indiana.edu/hypermail/linux/kernel/0712.0/0874.html
http://vulnfactory.org/blog/2011/06/05/smep-what-is-it-and-how-to-beat-it-on-linux/
http://vulnfactory.org/blog/2011/06/05/smep-what-is-it-and-how-to-beat-it-on-linux/
http://technet.microsoft.com/en-us/security/video/gg469855
http://grsecurity.net/~spender/uderef.txt
http://blog.cr0.org/2009/06/bypassing-linux-null-pointer.html
http://blog.cr0.org/2009/06/bypassing-linux-null-pointer.html

	Introduction
	Related Work
	Memory Management
	Page Tables
	Virtual Address Descriptors

	Denying Null Page Mapping
	System Call Hooking
	PTE Modification
	VAD Manipulation

	Implementation
	Discussion
	Future Work
	Conclusion

