
Copyright 2005 Randy Dunlap, All rights reserved.

Linux Kernel Development:
Getting Started

Linux Kernel Developer,
Maintainer, Mentor, and Janitor

FreedomHEC
May, 2006

Randy Dunlap

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 2 -

Agenda

■ Timetable: began life as a 3-hour tutorial
■ Just hitting highlights today

■ Abstract:
■ Linux development is fast-paced and [as they say in

Oregon] “things are different here.” This tutorial
introduces some of the Linux culture and how to
succeed when working with the Linux development
community.

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 3 -

Topics
■ Open source development style, values, culture
■ Linux rapid development cycle
■ Linux “maintainers” and hierarchy
■ Communications methods
■ Advantages of having a driver in the mainline kernel tree
■ Coding style
■ How to submit Linux kernel patches
■ Some best known practices
■ Legal/Licenses
■ Testing
■ Working in the Linux kernel tree

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 4 -

Major Goals

■ Encourage new device driver development and support

■ Driver code merged and maintained in mainline (GPL)

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 5 -

Development Style, Values, and Culture

■ Learning curve, things are different

■ Meritocracy – good ideas & good code are rewarded

■ Chance to work on a real OS – any parts of it that
interest you

■ Massive amounts of open communication via email,
IRC, etc.

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 6 -

Linux Culture
■ Work in open, not behind closed doors (in smoke-filled

rooms) #
■ Community allegiance is very high
■ Do what is right for Linux
■ Meritocracy: good ideas and good code are rewarded
■ Often driven by ideals and pragmatism, bottom-up

development
■ Not driven by marketing requirements
■ Don't just take, give back too: #

■ Modifications are & remain GPL (if distributed)
■ Payment in kind, self-interest
■ Improve software quality, features used/understood

more

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 7 -

Linux Culture (2)
■ Committed to following and using standards (e.g.,

POSIX, IETF)
■ Committed to compatibility with other system software
■ Informal design/development: Not much external high-

level project planning or design docs (maybe some
internally at companies); can appear to be chaotic

■ New ideas best presented as code, not specifications or
requirements

■ RERO: Release Early, Release Often -- for comments,
help, testing, community acceptance #

■ Possible downsides: flames, embarrassment

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 8 -

Linux Culture (3)

■ Development community is highly technical
■ Motivated and committed, but since many are

volunteers, treat them with respect and ask/influence
them, don't tell

■ Continuous code review (including security)
■ Continuous improvement
■ Have fun!! :)

■ Follow the culture

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 9 -

Linux Development Values
■ Scratch your own itch
■ Weekenders -> big

business
■ Code, not talk
■ Pragmatism, not theory
■ Thick skin
■ Code producer makes

[most] decisions
■ Pride, principles, ethics,

honesty
■ Performance

■ Hardware & software
vendor neutral

■ Technical merit, not
politics, who, or money

■ Maintainability &
aesthetics: clean
implementation, not ugly
hacks (coding style)

■ Peer review of patches
(technical & style)

■ Contributions earn
respect

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 10 -

Some Things to Avoid

■ Patents, binary modules,
NDA

■ Proprietary benchmarks
■ Huge patch files
■ Adding more IOCTLs
■ Marketing
■ Design documents
■ Mention of

accomplishments outside
of the open source world

■ No patch rationale

■ How do I intercept a
system call (or replace a
syscall table entry)?

■ Making demands instead
of requests

■ This {driver / feature} must
be merged, it's important
to our company.

■ Date or release version
requirements

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 11 -

Some Good Terms to Use

■ Simpler
■ Deletes N lines of code
■ Faster (with data)
■ Smaller (with data)
■ Here's the code....
■ Series of small patches....

■ Tested... (how many
configs)

■ Builds on 8 architectures

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 12 -

When New Infrastructure Is Needed
■ If a driver needs some new general-purpose subsystem

infrastructure, don't try to merge it into the driver – that
will be rejected

■ Work with others (on m-l) to define and implement new
infrastructure

■ Multipath I/O (MPIO)
■ SCSI transport services
■ Wireless LAN stack
■ RAID ??
■ FC State of the Union:

http://lwn.net/Articles/132579/
■ Driver developers can have an impact on kernel

infrastructure

http://lwn.net/Articles/132579/

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 13 -

Drivers for New Hardware

■ If your company wants to develop a GPL driver and
merge it into Linux mainline, that's great news. Work
with the development community (on public mailing
lists) to accomplish that goal.

■ Short of that, if your company can make hardware
interface specs public and hardware available, there's a
good probability that someone in the development
community will develop a GPL driver for it.

■ Short of that, make the hardware interface specs
available privately to someone, but allow them to
develop and publish a GPL driver.

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 14 -

New Driver Development

■ Requires 1+ dedicated full-time software engineer to
keep up with mailing lists and kernel changes, stay
current, become a part of the development community

■ This is a continuous, ongoing commitment, not an
infrequent cameo appearance.

■ Submit drivers for mainline inclusion and acceptance,
not to distros. Major distros now require progress
toward mainline acceptance.

■ RERO for testing in the wild (“community”), in your lab,
and at the distros

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 15 -

Development Cycle
■ Moved from split “stable” (2.even) and “development”

(2.odd) trees – caused delay and backport mania
■ Now accepting development patches into the -mm

patchset and moving them to the mainline kernel tree
after a shakeout period (e.g., 2.6.11-mm3)

■ 2.6.x kernel version cycle: make patches against
Linus's tree (unless they only apply to some other tree
or patchset)

■ Time between 2.6.x releases, intermediate 2.6.x-rcN
■ Nightly snapshots; automated builds of releases;

commits mailing list
■ 2.6.x.y stable kernel patches

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 16 -

Linux 2.6 Kernel Tree & Branches

mainline

­mm patchset: review/test here before merge into mainline

stable patch series

2.6.11 2.6.12-rc1 2.6.12-rc2 2.6.12-rc3 2.6.12

 -mm1 -mm1 -mm1 -mm1 -mm1
 -mm2 -mm2 -mm2
 2.6.12-rc3-mm3

2.6.11.1 2.6.11.2 2.6.11.3 2.6.11.9

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 17 -

Merges to Mainline (with exceptions)

Mainline kernel.org
(Torvalds)

-mm patchset (Morton)
Subsystem maintainers

SCSI Block USB PPC XFS

Contributors (100s)

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 18 -

Development Cycles
■ Rapid development cycle, no timelines/schedules
■ Only online documentation has a chance of being up-to-

date
■ Accommodate large changes and high rate of change

without regressions
■ Open discussion (mailing lists, archives, not private) #
■ RERO, facilitates testing on a large variety of platforms

#
■ Maintainers available and accessible, don't disappear

for long periods of time
■ Test suites
■ Bug tracking

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 19 -

Rates of Kernel Change

■ first six months of 2.4 devel: -220,000 lines, +600,000
lines

■ first six months of 2.6 devel: -600,000 lines, +900,000
lines

■ 1.5M lines changed in a 6.2M line tree
■ 64 MB diff in six months - and that's the stable kernel

■ Current 2.6.11 -> 2.6.12-rc4 (10 weeks): 729 K lines,
22 MB diff

■ Current 2.6.12-rc4-mm1 patchset: 414 K lines, 13 MB
diff

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 20 -

Topics
■ Open source development style, values, culture
■ Linux rapid development cycle
■ Linux “maintainers” and hierarchy
■ Communications methods
■ Advantages of having a driver in the mainline kernel tree
■ Coding style
■ How to submit Linux kernel patches
■ Some best known practices
■ Legal/Licenses
■ Testing
■ Working in the Linux kernel tree

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 21 -

Maintainers and Hierarchy

■ Loose hierarchy with “benevolent dictator”
■ Kernel series maintainers (2.6) – Linus and Andrew

Morton
■ Patch (“stable”) maintainers (2.6.x.y) – Greg Kroah-

Hartman and Chris Wright
■ Top-level maintainers are gatekeepers, integrators,

tiebreakers or overrulers when needed
■ Delegate to lieutenants and individual maintainers;

share the load
■ Strong trust system -> begin with small patches for

credibility
■ Maintainers don't have absolute authority

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 22 -

Maintainers & Hierarchy (2)

■ Kernel Janitors, security kernels, some embedded
support

■ Arch and subsystem maintainers: coordinate
subsystems and maintain consistency

■ Driver maintainers: cover all current mainline kernels
and update to new kernel APIs, even development APIs

■ See files: linux/MAINTAINERS and linux/CREDITS

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 23 -

Communications
■ Communicating is hard, let's go shopping
■ Writing ideas/thoughts down is good (but too wordy may

be ignored)
■ Participate constructively
■ Mailing lists & archives (newsgroups)
■ Working in open/public (technical readers/writers) vs.

embarrassment
■ Discussion and decisions on lists, no meetings required
■ Work through concensus (with exceptions)
■ Project web pages, IRC channels
■ Developer conferences

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 24 -

Mailing List Etiquette
■ Use Reply-to-All, threaded (Message-ID, References)

■ > > Try A or B.
■ > I prefer A, sound OK?
■ yes

■ Be prompt with replies (being responsive is important)
■ No encoded or zipped attachments (inline preferred,

text/plain attachments OK); others are often ignored
■ No HTML or commercial email, no auto-replies

(OOO/vacation)
■ ALL CAPS == SHOUTING
■ Use < 80-column width lines (70-72 is good) for text (not

for patches)

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 25 -

Mailing List Etiquette (2)

■ Keep it technical and professional. If attacked (flamed),
stick with technical points, don't get involved with
attacks, & move on.

■ Trim replies (body) to relevant bits (don't modify To:/Cc:
recipient list).

■ Don't cross-post to closed mailing lists.
■ Non-English speakers
■ http://www.arm.linux.org.uk/armlinux/mletiquette.php
■ RFC 1855: Netiquette Guidelines:

http://www.ietf.org/rfc/rfc1855.txt

http://www.arm.linux.org.uk/armlinux/mletiquette.php
http://www.ietf.org/rfc/rfc1855.txt

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 26 -

Mailing List Etiquette: No top­posting
■ A: http://en.wikipedia.org/wiki/Top_post

Q: Where do I find info about this thing called top-
posting?
A: Because it messes up the order in which people
normally read text.
Q: Why is top-posting such a bad thing?
A: Top-posting.
Q: What is the most annoying thing in e-mail?

A: No.
Q: Should I include quotations after my reply?

http://en.wikipedia.org/wiki/Top_post

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 27 -

Mailing Lists

■ Most lists have spam filters [to get past]; you probably
need to use them also

■ LKML a.k.a linux-kernel (@vger.kernel.org)
■ LKML FAQ at http://www.tux.org/lkml/
■ Index: http://vger.kernel.org/vger-lists.html and their

archives
■ Kernel patch commits mailing list:

git-commits-head@vger.kernel.org

http://www.tux.org/lkml/
http://vger.kernel.org/vger-lists.html
mailto:git-commits-head@vger.kernel.org

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 28 -

More Kernel Project Mailing Lists

■ Networking development: netdev@vger.kernel.org
■ Index: http://oss.sgi.com/ecartis/
■ Subsystems: arches, filesystems, MM/VM (

http://www.linux-mm.org), security, drivers (ACPI
[SF.net], I2C, IDE, video, PCI, PCMCIA, IEEE 1394
[SF.net], USB [SF.net], SCSI, Infiniband, Bluetooth)

■ More mailing lists in MAINTAINERS file and at
http://kernelnewbies.org

mailto:netdev@vger.kernel.org
http://oss.sgi.com/ecartis/
http://www.linux-mm.org/
http://kernelnewbies.org/

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 29 -

Mailing Lists for Linux Starters

■ http://kernelnewbies.org - kernelnewbies@nl.linux.org
■ http://janitor.kernelnewbies.org -

kernel-janitors@lists.osdl.org
■ os_drivers@lists.osdl.org
■ kernel-mentors@selenic.com
■ Trivial patch monkey: trivial@kernel.org and

http://www.kernel.org/pub/linux/kernel/people/bunk/trivial/

■ http://vger.kernel.org/majordomo-info.html - has list info
and taboos

■ Kernel announcements:
linux-kernel-announce@vger.kernel.org

http://kernelnewbies.org/
mailto:kernelnewbies@nl.linux.org
http://janitor.kernelnewbies.org/
mailto:kernel-janitors@lists.osdl.org
mailto:os_drivers@lists.osdl.org
mailto:kernel-mentors@selenic.com
mailto:trivial@kernel.org
http://www.kernel.org/pub/linux/kernel/people/bunk/trivial/
http://vger.kernel.org/majordomo-info.html
mailto:linux-kernel-announce@vger.kernel.org

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 30 -

Mailing List Archives

■ Archives for almost all
■ http://gmane.org has interface
■ http://marc.theaimsgroup.com/ has many, with

Search
■ http://lkml.org -- kernel list only
■ Google groups

■ http://www.kerneltraffic.org/ -- summaries
■ http://lwn.net/ -- summaries

http://gmane.org/
http://marc.theaimsgroup.com/
http://lkml.org/
http://www.kerneltraffic.org/
http://lwn.net/

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 31 -

Project Web Pages

■ SourceForge.net (http://sf.net): web pages, mailing lists,
CVS, bug tracking, etc.

■ OSDL: http://lists.osdl.org - http://developer.osdl.org -
http://bugme.osdl.org == http://bugzilla.kernel.org

■ Hardware vendors: IBM, HP, Dell
■ Distro vendors (Red Hat, SUSE, Debian)

http://sf.net/
http://lists.osdl.org/
http://developer.osdl.org/
http://bugme.osdl.org/
http://bugzilla.kernel.org/

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 32 -

Development Conferences

■ Linux Symposium (Ottawa, July)
■ Linux Conference AU (LCA, usually March-April)
■ LinuxTag (Germany, June)
■ Linux Kongress (Germany, September)
■ Kernel (July), GCC (June), Desktop (July) summits
■ Focused mini-summits (networking, power

management, storage management, filesystems,
wireless, desktop)

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 33 -

Related Documentation
■ lwn.net articles: http://lwn.net/Articles/driver-porting/
■ LDD3 book: http://lwn.net/Kernel/LDD3/
■ Driver “DOs and DON'Ts”: at the KJ web site
■ Arjan: How Not to Write a Driver (OLS, at KJ web site)
■ Greg (PCI, USB maintainer): Coding Style, Writing

Portable Code, et al (http://www.kroah.com/linux/)
■ Andrew (top kernel maintainer): TPP: The Perfect

Patch:
http://www.zip.com.au/~akpm/linux/patches/stuff/tpp.txt
#

■ Jeff (net drivers maintainer):
http://linux.yyz.us/patch-format.html #

http://lwn.net/Articles/driver-porting/
http://lwn.net/Kernel/LDD3/
http://www.kroah.com/linux/
http://www.zip.com.au/~akpm/linux/patches/stuff/tpp.txt
http://linux.yyz.us/patch-format.html

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 34 -

Why Merge Into the Mainline Kernel Tree
■ Background on kernel API/ABI

■ Kernel API is not stable; no kernel binary API (ABI)
■ A static (stable) API limits innovation and adds

“cruft”
■ Userspace API is very stable and will remain so
■ Interfaces and structures depend on toolchain & kernel

config options and distro changes, so single kernel ABI
isn't feasible

■ Old interfaces are removed (sometimes after a
“deprecated” grace period), preventing their continued
use which could cause system outages and kernel bloat

■ See file: linux/Documentation/feature-removal-
schedule.txt

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 35 -

Advantages of Merging into Mainline (1/3)
■ Keeps the driver updated and working, even if its

maintainer disappears or the OEM stops
supporting/updating it

■ Kernel API changes are merged for you: performance
improvements, bug fixes, security fixes, parameter or
structure changes

■ Kernel changes increase quality of driver while
maintenance costs to the maintainer decrease (are
amortized)

■ Other people will add features to your driver
■ Others will find & fix bugs in your driver
■ Others will find & fix performance/tuning opportunities

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 36 -

More Merge Advantages (2/3)

■ Driver is automatically shipped in all Linux distros
without having to ask distros to merge & ship it so
all stay in sync

■ Driver is available for use on 20+ CPU architecutures,
not just a handful [still requires proper endian handling;
check with 'sparse']

■ Driver get broader testing and review
■ Driver maintainer is relieved from maintaining

external patchsets – difficult even if open-source
code

■ Offers a uniform feature set to all users
■ Becomes the de facto driver (with you as Maintainer),

keeping work focused on one driver

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 37 -

Merge Advantages (3/3)
■ Several large distro vendors require “upstream”

progress (e.g., public reviews on mailing lists)
■ Merging via distros can lead to incompatibilities with

mainline
■ Discourages mini-forking & fragmentation: bad for

users (different features & bugs) & for the fork
maintainer

■ Users with non-mainline drivers can end up helpless
or unsupported or locked into one distro

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 38 -

Disadvantages of Merging
■ Must adapt code to kernel coding style
■ Must go thru peer review and respond to feedback,

make changes
■ Remove compatibility layers, old kernel version support,

other OS support
■ May need to make it arch-portable (endianness, word

sizes)
■ May need design changes or features added
■ Probably will take several weeks of posting patches,

feedback, more changes, but that's a one-time thing
■ Cost of not listening: invest man-years in

development then told “the architecture is wrong,
redo it”

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 39 -

Merge to Mainline (summary)

■ Big effort to use mainline public kernel for merging
■ Keeps all distro vendors the same
■ Provides for more and better testing, review, and

bug-tracking

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 40 -

Topics
■ Open source development style, values, culture
■ Linux rapid development cycle
■ Linux “maintainers” and hierarchy
■ Communications methods
■ Advantages of having a driver in the mainline kernel tree
■ Coding style
■ How to submit Linux kernel patches
■ Some best known practices
■ Legal/Licenses
■ Testing
■ Working in the Linux kernel tree

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 41 -

Coding Style

■ Clean code, not for other OS-es or for other Linux
versions

■ Use comments, but not for obvious code; on data
structures

■ Drivers, filesystems, etc., are not arch-specific (must be
arch-portable)

■ Follow style in surrounding code
■ Very minimal use of typedefs (only for basic types)
■ Minimize use of #ifdef in C source files, use stubs in

header files instead (as much as possible/feasible)
■ Don't use #ifdefs to support multiple kernel versions
■ Documentation/: CodingStyle,

SubmittingPatches/Drivers, & web pages

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 42 -

Coding Style (2)
■ Don't abuse the kernel API
■ Simpler is better (“eschew obfuscation”)
■ Minimize macro usage (prefer inline functions for type-

checking)
■ Stubs: include/linux/highmem.h, init.h, module.h,

sched.h, swap.h, include/asm-generic/dma-mapping.h
■ Linux kernel is written in C, not C++
■ Use /* ... */ for comments (not //)
■ Function comments in “kernel-doc” style
■ Use (but don't abuse) 'goto', especially for error

handling (one function exit path) [and undo allocations
etc. in error handling]

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 43 -

Coding Style (3)
■ Use C99-style struct initializers
■ Use tabs for indentation, not spaces (Tab size is 8)
■ Don't disable or ignore compiler/build warnings
■ Use 'sparse' for even more warnings

■ $ make C=1 ...
■ Use 'make checkstack', 'make buildcheck', 'make

namespacecheck' to check for details
■ Don't make functions or data global unless needed

(mostly 'static')
■ Don't use deprecated kernel APIs
■ Don't use anonymous unions (gcc 2.9x tool problem)

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 44 -

Coding Style (4)

■ Avoid 'extern' in C files, use headers instead
■ #include file order

■ <linux/file.h> (alphabetically when possible)
■ <asm/file.h> (alphabetically when possible)
■ “localfile.h” (alphabetically when possible)

■ Don't #include files unless they are needed/used

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 45 -

Coding Style (5) (Policies)

■ Don't init static or global data to 0 (it's all cleared during
init)

■ Initialize data statically instead of during init run-time if
possible

■ Don't abuse the kernel stack (it's small)
■ Don't use recursion (sometimes OK if it has a low

bound)
■ Push data conversions (like graphics) to userspace
■ For locking (mutexes, critical regions), don't use

'volatile'; analyze and use locks or semaphores
■ Don't use or depend on BIOS calls or data except

during kernel init, and then as little as possible

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 46 -

Coding Style (6) (Policies)

■ Don't add IOCTLs, use /sys (sysfs)
■ Don't trust data coming from userspace
■ Don't read/write files from kernel space (exception:

firmware downloads)
■ Check that code compiles UP/SMP and MODULE/not

MODULE and on multiple arches if applicable and
possible (OSDL PLM will do 8 arch. cross-compiles of
one patch)

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 47 -

How to Submit Linux Kernel Patches
■ Patch -current mainline from kernel.org or -mm patchset
■ Send patches to subsystem maintainer, driver

maintainer, & mailing list #
■ Each patch (re-)submission should include feature

justification and explanation, not just the patch #
■ Use the DCO (“Signed-off-by: Your Name

your.name@example.com”) #
■ Patches should be encapsulated (self-contained) as

much as possible, not touching other code (when that
makes sense) #

mailto:your.name@example.com

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 48 -

Submitting Patches (2)

■ ONE patch per email, logical progression of patches,
not mega-patches, not attached and not zipped (cannot
review/reply) #

■ Don't do multiple things in one patch (like fix a bug and
do some cleanup)

■ Check your email client: send a patch to yourself and
see that it still applies (doesn't damage whitespace, line
breaks, content changed) before going public with it

■ Patch must apply with 'patch -p1'; i.e., use expected
directory levels

■ Don't use PGP or GPG with patches, they mess up
patch scripts

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 49 -

From: Randy Dunlap <rdunlap@xenotime.net>

register_chrdev() can return errors (negative) other then -EBUSY,
so check for any negative error code.

Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>

 drivers/pcmcia/ds.c | 4 ++--
 1 files changed, 2 insertions(+), 2 deletions(-)

diff -Naurp ./drivers/pcmcia/ds.c~ds_check_major ./drivers/pcmcia/ds.c
--- ./drivers/pcmcia/ds.c~ds_check_major 2005-05-12 13:16:41.000000000 -0700
+++ ./drivers/pcmcia/ds.c 2005-05-12 19:45:36.000000000 -0700
@@ -1592,9 +1592,9 @@ static int __init init_pcmcia_bus(void)

 /* Set up character device for user mode clients */
 i = register_chrdev(0, "pcmcia", &ds_fops);
- if (i == -EBUSY)
+ if (i < 0)
 printk(KERN_NOTICE "unable to find a free device # for "
- "Driver Services\n");
+ "Driver Services (error=%d)\n", i);
 else
 major_dev = i;

mailto:rdunlap@xenotime.net
mailto:rdunlap@xenotime.net

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 50 -

Some Best­Known Practices #
■ Track origin(s) of your software (COO: Certificate of Origin)
■ User DCO (Developer's Certificate of Origin) for kernel

contributions
■ Management approval and legal clearance to submit source

code
■ Some companies may require a Waiver of Copyright
■ Send patches directly to their intended maintainer for

merging (they don't troll mailing lists looking for patches to
merge)

■ Copy patches to the appropriate mailing list(s), not private
(don't work in isolation)

■ Subscribe to relevant mailing lists (or use one
representative for this)

■ Listen to review feedback and promptly respond to it

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 51 -

Best Known Practices (2) #
■ Linus normally does not acknowledge when he merges

a patch
■ Use correct 'diff' directory level (linux/ top-level

directory) and options (-up)
■ Use source code to convey ideas
■ Generate patch files against the latest development tree

branch (-rcN) or mainline kernel if there is no current
development branch

■ Make focused patches or a series of patches, not large
patches that cover many areas or that just synchronize
a (CVS) repository with the kernel source tree

■ Use the available docs.

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 52 -

Best Known Practices (3) #
■ Include Copyright and license:

MODULE_LICENSE(“GPL”);
■ Use an email client that supports inserting patches

inline (not as attachments)
■ Begin with small patches: use kernel-janitor m-list
■ For larger patches or complete drivers or features, use

the kernel-mentors m-list (for beginner
feedback/comments/corrections)

■ Don't misuse (abuse) the kernel API; e.g., avoid “void *”
function arguments

■ Don't post private email replies to a public m-list
(without permission)

■ Don't introduce gratuitous whitespace changes in
patches

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 53 -

Best Known Practices (4) #
■ Back up your patch with performance data (if

applicable)
■ Don't add binary IOCTLs unless there are no other

acceptable options; use sysfs (/sys) or private-fs or
debug-fs or relayfs or netlink if possible

■ Make Linux drivers that are native Linux drivers, not a
shim from another OS

■ Don't introduce kernel drivers if the same functionality
can be done reasonably in userspace

■ Try to be processor- and distro-agnostic (except for
CPU-specific code)

■ Don't be afraid to accept patches from others

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 54 -

Best Known Practices (5) #
■ Keep your patch(es) updated for the current kernel

version
■ Resubmit patches if they are not receiving comments
■ Release early, release often
■ Open, public discussion on mailing lists
■ One patch per email
■ Large patches should be split into logical pieces and

mailed as a patch series
■ Make testing tools available & easy to use; your

device(s) will get better testing
■ Giving hardware to developers can result in drivers

written for you

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 55 -

Topics
■ Open source development style, values, culture
■ Linux rapid development cycle
■ Linux “maintainers” and hierarchy
■ Communications methods
■ Advantages of having a driver in the mainline kernel tree
■ Coding style
■ How to submit Linux kernel patches
■ Some best known practices
■ Legal/Licenses
■ Testing
■ Working in the Linux kernel tree

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 56 -

Legal & License Points
■ IANAL, get legal advice
■ Open source is a business decision, free software is an

ethical one
■ http://www.opensource.org - Open Source Initiative,

many open source licenses listed, but desire is to
significantly reduce to number of licenses that are used

■ Track origins of your software used internally in
development

■ Use DCO for Linux kernel contributions #

http://www.opensource.org/

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 57 -

Legal & Licenses ­2

■ All distributed kernel modules must be open-source,
GPL-compatible licensed (dual)

■ EXPORT_SYMBOL(), EXPORT_SYMBOL_GPL(), and
EXPORT_SYMBOL_GPL_FUTURE()

■ GPL exports discussion:
http://www.kerneltraffic.org/kernel-traffic/kt20021021_189.html#32

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 58 -

Bug Reporting and Tracking

■ kernel bugs database: fix bugs or help update info:
http://bugzilla.kernel.org or (same)
http://bugme.osdl.org

■ Mailing lists are heavily used for bug reporting
■ Sourceforge.net project pages : some projects use this

bug tracker
■ Other project-specific bug tracking

http://bugzilla.kernel.org/
http://bugme.osdl.org/

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 59 -

Kernel Test Projects

■ LTP: http://ltp.sourceforge.net
■ Open POSIX test suite:

http://posixtest.sourceforge.net
■ OSDL PLM for building and cross-building patches:

http://www.osdl.org/plm-cgi/plm/
■ OSDL STP framework and servers:

http://www.osdl.org/stp/
■ http://test.kernel.org frequent tests & reports

http://ltp.sourceforge.net/
http://posixtest.sourceforge.net/
http://www.osdl.org/plm-cgi/plm/
http://www.osdl.org/stp/
http://test.kernel.org/

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 60 -

Virtualization for Kernel Testing

■ UML for testing
■ Virtualization for testing --Linux virtualization summary:

http://www.linuxsymposium.org/proceedings/reprints/
Reprint-Wright-OLS2004.pdf

■ XEN, qemu, Bochs (x86)

http://www.linuxsymposium.org/proceedings/reprints/

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 61 -

Working in the Linux Kernel Tree

■ About 18,000 source files
■ core functionality: kernel/, mm/, init/, ipc/, lib/
■ drivers/, fs/, net/
■ arch/, security/, crypto/,

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 62 -

Kernel Config

■ Generate or edit config with any of:
make {menuconfig, xconfig, gconfig, config, defconfig,
oldconfig}

■ Build kernel: make all
■ Install kernel:

■ 1: su to root
■ 2: make install
■ 3: make modules_install
■ 4: edit LILO config (+ run lilo) or edit GRUB config
■ 5: reboot

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 63 -

Patch Maintenance Tools
■ Use 'diff' to create patches (even for complete new files

or to add or remove files)
■ Manual diff-ing:

■ Can diff complete unmodified tree vs. a modified tree
■ Can diff one or a few modified files vs. their original

files
■ Use 'gendiff' or 'genpatch' to generate patchsets

■ Use 'patch' to apply patches that you create or receive
■ 'patch-kernel' to update kernel directory in place

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 64 -

Patch Tools (2)

■ Can use 'patch-scripts' or 'quilt' for patch management
■ http://www.zip.com.au/~akpm/linux/patches/patch-scripts-0.20/

■ http://savannah.nongnu.org/projects/quilt

■ Send a series of patches (e.g.):
http://www.speakeasy.org/~pj99/sgi/sendpatchset
or similar script in patch-scripts

■ SCMs: your choice, flavor of the day
■ 'git' for kernel source code management:

http://www.kernel.org/git/

http://www.zip.com.au/~akpm/linux/patches/patch-scripts-0.20/
http://savannah.nongnu.org/projects/quilt
http://www.speakeasy.org/~pj99/sgi/sendpatchset
http://www.kernel.org/git/

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 65 -

References (1/3)

■ http://lwn.net/Articles/driver-porting/
■ http://lwn.net/Kernel/LDD3/ - Linux Device Drivers 3rd

ed.
***** subscribe to LWN.net *****

■ http://kernelnewbies.org - articles, documents, scripts,
book recommendations, beginner Q&A, IRC, mailing list

■ http://janitor.kernelnewbies.org - docs, scripts,
Dos/DONTs, TODO list, IRC, mailing list

■ http://www.linuxsymposium.org/2005/ - OLS
proceedings

http://lwn.net/Articles/driver-porting/
http://lwn.net/Kernel/LDD3/
http://kernelnewbies.org/
http://janitor.kernelnewbies.org/
http://www.linuxsymposium.org/2005/

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 66 -

References (2/3)

■ http://www.kroah.com/linux/ - conference slides, papers,
talks, tools, coding style, development process, dealing
with kernel community, writing portable kernel code

■ http://people.redhat.com/arjanv/olspaper.pdf - How to
NOT write kernel code – actual examples (OLS 2002)

■ OLS 2004 keynote, Andrew Morton:
http://www.zip.com.au/~akpm/linux/patches/stuff/ols-2004.txt

http://www.kroah.com/linux/
http://people.redhat.com/arjanv/olspaper.pdf
http://www.zip.com.au/~akpm/linux/patches/stuff/ols-2004.txt

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 67 -

References (3/3)

■ Linux kernel source tree:
■ linux/ MAINTAINERS, CREDITS
■ linux/Documentation/

CodingStyle
SubmittingPatches
SubmittingDrivers
feature-removal-schedule.txt (deprecated)
stable_api_nonsense.txt
SubmitChecklist (currently only in -mm patchset)
HOWTO (do kernel development)

Copyright 2005-2006 Randy Dunlap, All rights reserved.- 68 -

Credits

■ Hugh Blemings
■ James Bottomley
■ Matt Domsch
■ Jeff Garzik
■ Clyde Griffin
■ Christoph Hellwig
■ Gerritt Huizenga
■ Greg Kroah-Hartman

■ Pat Mochel
■ Andrew Morton
■ Arjan van de Ven
■ Ric Wheeler
■ Cliff White
■ Chris Wright
■ Top-posting A&Q from a

.sig on the old
crackmonkey m-l

