
Insights from the Analysis of the Mariposa Botnet
Prosenjit Sinha, Amine Boukhtouta, Victor Heber Belarde, Mourad Debbabi

NCFTA Canada & the Computer Security Laboratory
Concordia University

Montreal, Canada

Abstract—Nowadays, botnets are among the topmost network
threats by combining innovative hacking capabilities. This is
due to the fact that they are constantly improved by hackers
to become more resilient against detection and debugging
techniques. In this respect, we analyze one of the most
prominent botnets, namely Mariposa, which infected more
than 13 million computers that are located in more than 190
countries. In this regard, we analyze the botnet architecture,
components, commands and communication. In this setting, we
detail the obfuscation and anti-debugging techniques it uses.
Moreover, we detail the infection and code-injection techniques
into legitimate processes. In addition, we explain the spreading
mechanisms that are employed in Mariposa as well as the
underlying communication protocols. More importantly, we
analyze the injected bot code. This is accomplished by a reverse
engineering exercise that uses both a network analysis together
with reverse-engineering analysis. The insights from this work
are meant to illustrate the know-how used in current botnet
technologies and enable the elaboration of analysis, detection
and prevention techniques.

Keywords: Botnet, Mariposa, Malware, Reverse-Engineering,
Obfuscation, Code Injection, Spreading, Communication Pro-
tocols, Encryption and Decryption.

I. INTRODUCTION

A botnet is a term that designates a network of autonomous
software robots (bots) compromising computers that are con-
trolled by a botmaster running a command-and-control center.
Nowadays, botnets constitute the delivery platform of choice
for the execution of a wide variety of cybercrime attacks
targeting identity theft, denial of service, spamming, etc.
Although the existence of botnets has been a known fact
for a long time, it is the recent growth of cyber crimes
and cyber warefare, mediated by botnets, which has attracted
the attention of IT security researchers. Accordingly, a surge
of interest has been expressed in understanding, analyzing,
detecting, eradicating and preventing botnet attacks. In this
context, the fight between hackers/cyber criminals on one side
and IT security experts on the other side, takes the allure of a
non-terminating cat and mouse fight. In order to counter the
escalation of hackers ideas and innovations, security experts
absolutely have to understand the threat and the employed
technologies and then design and implement techniques to
mitigate the risk underlying this threat.

One of the creative thoughts compiled by hackers, is the
integration of spreading components within botnets. These
components use existing technologies to widely distribute
malicious code and create an exponentiation of infection

within remote hosts. The spreading components are generally
threefold: P2P technologies, storage devices (USB keys, SD
card, etc.) and instant messaging tools (eg. MSN messenger).
The reasons underlying the use of these spreading mechanisms
are as follow:

• New generation botnets tend to employ automated prop-
agation of bots that result into wider infected networks.

• P2P technologies as well as instant messaging tools are
good candidates to spread malicious bots in the Internet.
In [13], the authors claim that organizations can be
targeted by bots that make use of spreaders. They stated
that among 363 sampled organizations, 85% of them have
at least one susceptible bot spreader (MSN messenger,
bittorent, emule, etc).

• Storage devices can also be targeted by bots for the
purpose of propagation. For instance, USB keys are
widely used by people to save their digital contents.
Their usage can vary from professional to personal, which
implies the occurrence of infections within both corporate
and home networks.

Mariposa is a new generation botnet, which embeds spread-
ing mechanisms. It was claimed that 13 million machines got
infected around 190 countries in the world by this botnet once
it appeared in May 2009 [9]. In addition to the spreading
capabilities, Mariposa bots are changed frequently to evade
antivirus detection. Mariposa is able to download and execute
malicious code on the fly, which makes the botnet extremely
harmful. Moreover, it can be associated with other botnets
since it has the capability to infect machines with other bots.
Furthermore, Mariposa botnet communication uses its own
protocol (Iserdo Transport Protocol), which is based on UDP.

It is the level of spreading together with the technical
sophistication that brought us to the analysis of the Mariposa
botnet. In this paper, we extend the work provided in [9]. We
present an in-depth analysis of Mariposa bot by conducting a
reverse engineering exercise. The primary intent of our work
on Mariposa is to: (1) uncover and remove its obfuscation
techniques, (2) circumvent its anti-debugging techniques, (3)
understand how the infection and code injection are performed,
(4) reveal the functionality of the bot, (5) understand and
divulge the inner working of the communication protocol used
by the bot and the botmaster. It is our firm belief that this type
of work will improve our understanding of botnet technologies
and pave the way for a better detection, eradication and
prevention techniques.

The remainder of this paper is organized as follows: In sec-
tion II, we present an overview of the Mariposa botnet. Section
III gives an account of Mariposa botnet network behavior. In
section IV, we report on the results of the analysis that was
done on the bot client. Section V puts forward a description
of the different modules that constitute the Mariposa bot. In
section VI, we discuss the related work. In Section VII, we
give some concluding remarks on this work together with a
discussion of future work.

II. OVERVIEW OF THE MARIPOSA BOTNET

In this section, we provide an overview of the Mariposa Bot-
net. We describe how the botnet works as well as the various
features of the bot. Different Variants that constitute Mariposa
botnet mainly evolved from the so-called butterfly bot [17].
The authors of Mariposa variants enhance the capabilities of
the butterfly bot to make it more robust, resilient, stealthy and
threatening. The botnet architecture consists of a set of clients,
a server and a master. The architecture is connectionless
because it is based on the UDP protocol [18] (no guarantee
to the upper layer protocols of message delivery). The server
plays the role of the relay between the master and the clients.
The UDP protocol is used due to its covertness: The UDP
connections are not generally logged in firewalls and gateways,
which is not the case with TCP connections. In order to check
the presence of bot clients, the server pings clients periodically
in a predefined time gap. If it does not receive any reply from
the bot, the server marks it as a time-out bot. Further details
about the communication protocol are described in the next
section that reports on the network analysis of the botnet. We
summarize Mariposa’s features as follows:

• Bot client: The bot has innovative capabilities comparing
to the majority of bots that exist in the wild. It has
the ability to make direct code injection into remote
processes. This injected code corresponds to the entry
point of all activities that are done by the bot. Mariposa
is capable to download any extra modules like the Zeus
botnet and execute them on the fly. Besides, it is capable
of performing UDP and TCP flooding, and can tune the
flood strength by acting on the data and packet size, and
send random data to the victim host. In addition, the
bot has mechanisms to spread through the infection of
USB keys or using MSN messenger and P2P applications.
Moreover, the Mariposa bot contains a module that tracks
the visited websites and a grabber that catches all the
posted data that are sent from Internet Explorer 6, 7,
and 8. On the other hand, the bot is endowed with
two downloaders: The first one can download via HTTP,
HTTPS and FTP protocols whereas the second downloads
files via the ButterFly Network Protocol. Additionally, it
has a built-in cookie stuffer for IE and Mozilla Firefox.
Recently, Mariposa authors added new features like a
slowloris flooder and a reverse proxy module, which can
turn all bots into proxy servers.

• Server: The server is a mediator between the master
and the bot clients. As such, it allows to control the

traffic between them by setting the number of frames per
second to diminish the CPU usage and the communication
latency ratio. We can also set up the maximum upload
on the server. The latter localizes the bots using GEOIP
localization.

• Master: The master represents the core of all operations.
It can get multiple server connections and has the ability
to enable and disable servers and clients. The master
sends commands to bot clients through servers. These
commands are various and can be used to customize the
operations that are done by clients.

The next section reports on the results of our network
analysis.

III. BEHAVIORAL NETWORK ANALYSIS

Before digging into the inner details of the analysis of the
bot code, we analyze the network behaviors of Mariposa in
a controlled environment to grasp the botnet behaviors. First,
let us explain the experimental setup for the network analysis.
The controlled environment is based on VMware Server 2.0.3
[20] running on a Windows XP system. This software allows
running multiple virtual machines in an isolated environment
and gives a certain flexibility to create different types of
network architectures. The network consists of a default virtual
network, which behaves as a stub network. In our analysis, we
use four hosts to build a virtual network. These hosts are used
to set up the botnet. We installed a master, a C&C server and
a host, which is infected by a Mariposa bot. The fourth host
is used as sniffing box. It runs a live-CD for network security
analysts [16]. The utility of this live-CD resides in logging
all communications promiscuously in order to correlate events
and monitor the network activities of the botnet. It also allows
to verify whether backdoors are set or not. In addition, it can
bind to any Linux DNS server. As a result, network records can
be created to simulate an Internet-connected network. For this
intent, we used c : \windows\system32\drivers\etc\hosts file
as a source of a domain name resolution. The communications
within the botnet breaks into three phases: initialization phase,
bot liveness phase and action phase. All the phases involve the
participation of the master, server and the bot client.

The initialization phase takes place after an infection. Once
a bot infects a machine, it sends a join server command.
This command allows a bot to register the IP address of the
bot within the server. The latter acknowledges the registration
by sending a join acknowledgement packet. By receiving this
command, the bot sends an acknowledgement to the server and
command\response packet. The latest message contains the
bot information like system information and the country code.
The server sends an acknowledgement to the bot and forwards
the command\response to the master, which acknowledges the
reception of this message to the server.

The second phase aims at checking the liveness of bot
clients. The server keeps sending command\response packet
to the bot client in a frequency of four minutes. If a given bot
is alive, it replies with an acknowledgement packet.

The action phase aims to instruct the bots to make actions
at the infected hosts. The master sends command\response
packet to the server. The server forwards this packet to the
bot. By receiving the packet, the bot performs the action that
is mentioned in the packet. It acknowledges its action by
sending an acknowledgement packet. The server sends an ac-
knowledgement packet to the master. Figure 1 summarizes the
different involved behaviors of the 3 phases of the Mariposa
botnet communication.

Fig. 1. Mariposa Botnet Protocol

The next section is devoted to the results of the static &
dynamic analysis.

IV. STATIC & DYNAMIC ANALYSIS

The static & dynamic analysis constitute a must when it comes
to reverse engineering of malware. Actually, it allows digging
into the inner-secrets of the malware code. In our analysis, we
used IDA pro [3] disassembler and decompiler to analyze the
Mariposa bot client. The MD5 hash of the malware variant
is 3E3F7D8873985DE888CE320092ED99C5. Before digging
into the details of the analysis, we used SysAnalyzer [8] to get
an initial insight about the client. After running this tool, we
noticed that Mariposa infects the explorer.exe process. This
process opens a UDP port, which has the identifier 1055.

Moreover, SysAnalyzer reveals the registry keys and external
references that are accessed by the Mariposa bot.

The analysis consists of getting over the obfuscation and
anti-debugging techniques that employed by Mariposa as well
as reaching the susceptible parts of the code that execute Mari-
posa bot features that we previously described in Section II.
The Mariposa binary has a metamorphic code [19], comprised
of various obfuscation and anti-debugging techniques. Figure
2 depicts the different phases of Mariposa bot metamorphose.
The execution of the bot client has three phases: the obfusca-
tion phase, the decryption phase and the injection phase.

In the sequel, we introduce the different phases that are re-
lated to the de-obfuscation, anti-debugging traps and different
decryption layers.

A. De-Obfuscation & First Decryption Layer

Code obfuscation is nowadays a standard practice within Mal-
ware. It constitutes the concealment of the intended meaning of
an integrated malicious code. It makes the code confusing and
intentionally ambiguous and more difficult to interpret. In the
Mariposa bot, the obfuscation starts with useless computations.
These computations are done within a loop that iterates
889,976,605 times. At the end of this loop, a jump to an
address is loaded into EAX register. As a consequence, a jump
is initiated to start a routine that XORs the range of data that
is located between the addresses 0x41D000 and 0x41D4C0
with the constant 0x0CA1A51E5. Afterwards, the address
0x41D047 is pushed onto the stack. As a result, the control
flow is transferred to this address. The latter corresponds to
an entry point of the anti-debugging traps.

B. Anti-Debugging Traps

Anti-Debugging techniques are ways for a program to detect
if it runs within a controlled environment or a debugger.
They are used by commercial executable protectors, packers
and malicious software to prevent or slow-down the process
of reverse-engineering [15]. The Mariposa bot client uses
several anti-debugging techniques. These techniques make the
reverse-engineering tasks as strenuous and difficult as possible.
They increase the time that is required for a full analysis
of the bot binary. The address 0x41D047 constitutes the
entry point of the code that employs anti-debugging traps.
The most important anti-debugging techniques that have been
encountered in the analyzed variant of the Mariposa bot are:

• ICE Breakpoint (In Circuit Emulator): It is one of the
Intel’s undocumented instructions with opcode 0xF1.
The execution of this instruction generates a single step
exception. This instruction pushes a debugger to think that
a normal exception is generated by the program. It sets
the single step bit in the flag register. Thus, the associated
exception handler is not executed. In order to bypass this
trap, we avoid the use of single step execution of the code
segments that contain ICE breakpoints.

• Stack Segment Register: The idea is to exploit a property
of the Intel x86 hardware debugging system. According
to Intel x86 architecture, hardware breakpoints are not

Fig. 2. Overview of Mariposa Bot

effective when it used after POP SS instruction. If the
program traced over POP SS instruction, the next instruc-
tion will be executed covertly. As a consequence, the trap
flag remains set. Malware checks the trap flag to detect
the presence of debugger.

• QueryPerformanceCounter Function: It is used to com-
pute the hardware performance. It reads the values of
performance counters that are stored in some processor
registers1. Mariposa uses this function to compare hard-
ware activities with a threshold value and checks if a
process is running under debugging mode or not.

• GetTickCount Function: It is located in kernel32.dll. It
returns the number of milliseconds that the system has
elapsed since its last reboot. The highest return value
is 49.7 days. Malware calls the GetTickCount function
consecutively to calculate the difference between two
function calls. It allows the malware to detect the presence
of a debugger.

• OutputDebugString Function: It is generally used by
encryption programs. The function receives a string as
a parameter. If a program runs under a debugger, then,
the returned value of this function (value of EAX reg-
ister) corresponds to the address of the string that is
passed as parameter. Otherwise, it returns the value 1.
To escape QueryPerformanceCounter, GetTickCount and
OutputDebugStringtraps, we used an IDA Pro plugin,
namely, IDAStealth [10].

C. Second, Third & Fourth Decryption Layers

This section describes all the decryption routines that are
executed. After unveiling and removing the obfuscation and
the anti-debugging routines, we reach the part of code that
contains the decryption routines. The second layer of the
decryption corresponds to an iteration of a XOR operation with
a 32 bytes key. Each byte within the data is XORed with a byte
from the key. This byte corresponds to the modulo result of
data byte position with the size of the key (32 bytes). This

1Contemporary processors use registers that act like performance counters.
They count performance of hardware activities within the processor.

algorithm is iterated three times for three different chunks
of data. The first location of data corresponds to the range
[0x401000, 0x415FB3], the second location of data resides in
the range [0x416000, 0x417A52] and the third location of data
is within the range [0x418000, 0x41A545]. There exist three 32
bytes keys; each one is used in the algorithm for each chunk
of data. These keys are located at the following addresses:
0x41D015, 0x41D155 and 0x41D1B4. Figure 3 illustrates the
pseudo code of the second decryption layer. The value x
corresponds to the key location, whereas r1 and r2 are the
start and the end addresses of data respectively.

Second_Decryption_layer()
{

Key_size =32 byte;
Key_location = x;
Key[]=getKey(x);//For first decryption layer.
Start_address=r1;
End_address =r2;
Enc_data []=getData(Start_address , End_address);
for(i=0;i<Enc_data.size();i++){

Dec_data=Enc_data[i] XOR key[i % 32];
}

}

Fig. 3. Pseudo Code of the Second Decryption Layer

After executing the second layer decryption, the control flow
reaches the part that is responsible of loading the imported
functions. The next step consists of running another decryption
routine. It XORs each byte of data in the range [0x41D000,
0x41D21E] with a constant key 0x39.

After executing the second and third layer decryption, the
program loads its process and thread identifiers by calling
GetCurrentProcessID and GetCurrentThreadID functions. It
uses some anti-debugging traps using the QueryPerformace-
Counter and GetTickCount functions. The intent behind this
is to check again whether the current process runs under
a debugger or not. In order to check whether it runs in a
sandbox technology, it verifies the presence of sbiedll.dll in the
system. By getting over these traps, we notice that the program
allocates 60,925 bytes of space from the stack. It decrypts the

data in the range [0x40FE5C, 0x41EC59] by using the fourth
decryption routine that is illustrated in Figure 4. The latter
loads the decrypted data into the allocated space of the stack.
Afterwards, Mariposa transfers its control to the stack.

Third_layer_decryption()
{

Key1=getByte(0x418CA2);
Key2=getByte(0x418CA3);
Key1=((! key1) + key2) / 2;
Source_address= 40FE5C;
Enc_data[0xEDFD] = getData(Source_address ,

Source_address +0xEDFD);
Dec_data[0xEDFD]=null;
Dest_address = 0xXXXX;//in the stack.
for(i=o; i<Enc_data.length ; i++){

Dec_data[i]= (Enc_data[i] + key1) XOR key2;
If(key1==0xFF){

Key2= (Key2+1) % 0xFF;
}
Key1= (Key1+1) %0xFF;

}
}

Fig. 4. Pseudo Code of the Fourth Decryption Layer

Until this point, Mariposa code passes several phases of
decryption. However, all the strings are encrypted. These
strings represent API functions and magic words that will
be used by the injected process. Once into the stack, the
program runs another decryption routine three times. This
routine decrypts all the strings that are located in .data section.
Figure 5 illustrates the pseudo code of the string decryption.

Decrypt_Strings ()
{

Start_add =0x4197E0;
Size=0xD65;
Enc_data []=Get_data(Start_add,Start_add+Size);

Key1=Get_byte(0x418CA2);
Key2=Get_byte (0x418CA3);
key=(key2+ ˜Key1) >> 1;
for(i=Size; i >= 0; --i){

Dec_data[i]=(Enc_data[i]+key) XOR key2;
key=(key++)%255;

}
}

Fig. 5. Pseudo Code of String Decryption Algorithm

D. Code Injection

This section describes the process of code injection that is
employed by Mariposa. Despite substantial improvement in
host-based security, the code injection technique still sustains
as the favorite method to compromise operating systems. The
method of code injection is used to conceal evil processes
inside legitimate processes. The execution of process inside
another address space can be achieved in several ways. We can
enumerate windows hooks [7], dll injection and direct code in-
jection [21]. The Mariposa bot uses the Direct Code Injection
(DCI) technique to inject malicious code inside the address
space of explorer.exe. Instead of writing a separate DLL,

the DCI technique copies the malicious code to the remote
process directly via WriteProcessMemory function and starts
its execution with an invocation of the createRemoteThread
function. The direct code injection (DCI) technique can be
summarized into the following steps:

• Retrieval of the handle of the remote process by calling
the OpenProcess function

• Allocation of memory in the remote process address space
in order to inject code. This is achieved by calling the
VirtualAllocEx function

• Writing a copy of the initialized INJDATA structure to the
allocated memory by invoking the WriteProcessMemory
function

• Execution of the injected code via the CreateRe-
moteThread function

Before code injection, Mariposa creates some directories
and files. The created directories and files are:

• Directory Path: C : \Recycler\s−1−5−21.
• Directory Path: C : \Recycler\S − 1 − 5 − 21 −

7524899924 − 6962119414 − 608760223 − 8454. The
directory access control is set to read,write and execution
permissions.

• File Name: C : \Recycler\S−1−5−21−7524899924−
6962119414−608760223−8454\Desktop.ini.

• File Name: C : \Recycler\S−1−5−21−7524899924−
6962119414−608760223−8454\windll.exe.

Afterwards, the program calls the GetVersion function to get
the version of the operating system. The reason behind this call
resides in checking whether the operating system is a Windows
NT or not. If so, it uses the CreateRomoteThread function 2.
At the beginning of the injection process, the program calls
the CreateToolhelp32Snapshot function to take snapshot of
the running processes in the system. It enumerates the ex-
isting processes by calling Process32First and Process32Next
functions. Once explorer.exe process is found, it retrieves its
process identifier (process ID).

After getting the process ID, the program calls OpenProcess
function to open explorer.exe process. Then, it calls VirtualAl-
locEX function to allocate memory within the targeted process
and NtWriteVirtualMemory function to write into explorer.exe
process. Once the code is written in a virtual memory location,
the program calls the CreateRemoteThread function in order
to run the injected code.

E. Injected Thread Activity

The code that is injected into explorer.exe is the pivotal
part of Mariposa bot. In this section, we discuss the behaviors
of the injected code. To this end, we attached the process
explorer.exe to IDA pro debugger and set a breakpoint
at the entry point of the newly created thread to get full
control of the execution. The thread creates a mutex object
namely c kdjcpeoij. The mutex object is used to ensure
singular execution of the bot. The intent is to avoid a
possible running of multiple bot instances, which can crash

2CreateRemoteThread function works only in Windows NT versions.

the system, or at best slow down the machine. It uses the
WaitForSingleObject function with a predefined waiting time
to ensure singular execution. Once the single instance checking
is ensured, it creates two files: C : \Recycler\S−1−5−21−
7344526690 − 8558129233 − 739613093 − 1787\windll.exe
and C : \Recycler\S − 1 − 5 − 21 − 7524899924 −
6962119414 − 608760223 − 8454\Desktop.ini. After the
file creation, the thread copies the whole bot code to
C : \Recycler\S− 1− 5− 21− 7524899924− 6962119414−
608760223− 8454\windll.exe. At this point of execution,
Mariposa uses the WsaStartup function to initiate the
use of Winsock DLL, which is responsible for the
socket communication. It also opens the registry key
so f tware\Microso f t\WindowsNT\CurrentVersion\
Winlogon, and creates a new entry , namely, Taskman. It
sets the value of this entry to C : \Recycler\S−1−5−21−
7524899924 − 6962119414 − 608760223 − 8454\windll.exe
in order to make a direct injection of code when the machine
reboots. It also creates another entry named shell with
the value C : \Recycler\S − 1 − 5 − 21 − 7344526690 −
8558129233−739613093−1787\windll.exe.

At this stage, the bot creates two pipes. The first one is
\\.\pipe\cdcpr55 whereas the second is an anonymous pipe.
The first pipe is created in pipe access inbound mode, which
supports client to server transfer only. Once the pipes are set,
the program calls the InternetOpen function in order to use the
WinInet library functions. Mariposa bot uses three hard-coded
domain names to resolve the IP address of the C&C server.
It picks the first domain name and sends the encrypted magic
word to the resolved IP address, and waits for the reply from
the server. If the server does not respond, it picks the second
or third domain name and tries to connect to the server using
the resolved IP address. The domain names that are used for
this Mariposa variant are:

• Shv4.no-ip.biz
• Shv4b.getmyip.com
• Booster.estr.es
The sequence of actions that are taken by the Mariposa bot

to reach the server and receive commands are:
• Inet addr function is called to convert the domain names

into a proper address.
• The bot retrieves the host information from the corre-

sponding host name using the gethostbyname function.
• It calls the htons function, which converts a unsigned

short number from host to a TCP/IP network byte order
3.

• It encrypts the magic word (bpr1 is the magic word
in this variant of Mariposa). The encryption/decryption
algorithm is detailed in [9].

• It sends the magic word using the sendto function.
• It receives a reply from the server using the recvfrom

function.

3Network byte order defines the bit-order of network addresses as they pass
through the network. The TCP/IP standard network byte order is big-endian.
In order to participate in a TCP/IP network, little-endian systems usually bear
the burden of conversion to network byte order [6].

• It decrypts and decodes the received command. The bot
can then trigger appropriate actions that are instructed by
the master.

V. MODULES

A. Spreader Module

The Mariposa bot comes with a spreader module. This
module breaks into three different components, namely, USB
spreader, MSN spreader, P2P spreader. In the Mariposa botnet,
the master can send commands to enable and disable the
spreaders. In the sequel, we introduce these different com-
ponents:

• USB spreader: At the beginning, the program creates
a new top-level window by executing CreateWindowEx
function. The returned handle is used by the RegisterDe-
viceNotification function in order to receive notification
from the system when a flash drive is inserted. Once a
user inserts a USB key, it locks the autorun.inf file and
modifies the file accordingly. As a result, no software or
malware can launch an auto-run. The file stays locked
until a user decides to remove the USB key. Mariposa
makes a copy of itself into the USB key. Figure 6 shows
the content of the autorun.inf file.

Fig. 6. The autorun.inf Content

• MSN spreader: The Mariposa bot infects MSN messenger
by hooking sending and receiving functions. The MSN
spreader is activated if a bot receives an enabling com-
mand. This command contains a custom link, which is
used to download a bot in the user’s machine.
After receiving the MSN spreader activation command,
the bot looks for the msnmsgr.exe process. This operation
is done periodically if the process is not running in the
system. Once the msnmsgr.exe process is found, the Mari-
posa bot retrieves its process identifier. Then, it calls the
OpenProcess function to get the handle of this process.
Afterwards, it creates a duplicate handle of the current
process by calling GetCurrentProcess and DuplicateHan-
dle functions. At this point, the Mariposa bot starts a new
routine, which is responsible for injecting code inside the
virtual address space of msnmsgr.exe process. This routine
is called twice. In the first call, it allocates 256 bytes
of space by calling VirtualAllocEX function and injects
code using NtWriteVirtualMemory function. In the second
call, it injects string utility functions and the custom link
that is sent by the master. It creates a thread by calling
CreateRemoteThread function.

After the injection process, the bot hooks ws2 32 send
function in order to make the injected code executed for
each message that is sent from a user to a recipient.
This is done by calling the VirtualProtectEx function to
allows writing in the virtual memory. At the end, it calls
the NtWritevirtualMemory function to overwrite with the
address of injected code.

• P2P spreader: When the bot receives a command that en-
ables the P2P spreader, the program calls the GetEnviron-
mentVariable function in order to get the registry entry for
the current user. The intent behind this resides in checking
if P2P applications are installed or not. The Mariposa bot
looks for the following P2P applications in the system:
Ares, BearShare, iMesh, Shareaza, Kazaa, DC++, eMule
and LimeWire. Once, it detects the presence of a P2P
application, it copies itself into the shared folder with a
fake name that is issued by the master. Figure 7 shows a
screenshot of P2P registry keys that are accessed by the
Mariposa bot.

Fig. 7. P2P Registry Keys

B. Uploader and Downloader Modules

During the analysis of the main thread activity, we noticed
that when the bot receives update/download commands, it
triggers two new threads. To debug these threads in IDA pro,
we set a breakpoint at the beginning of each thread. When
Mariposa bot transfers its control to one of these threads,
we suspended the original thread in IDA pro and continued
debugging with the new thread.

a) Thread 1: Mariposa starts this thread when the bot
receives a download command. After receiving this command,
the bot checks the command. If the latter corresponds to
descargar4, the thread launches the following activities:

• It targets the temporary location in the system to down-
load a new executable.

• It calls the InternetOpenUrl function with the supplied
url.

• If the InternetOpenUrl function succeeds, the bot creates
a file in the temporary location by calling the CreateFile
function.

• It downloads the file using the InternetReadFile function.
• It writes the file onto the disk by invoking the WriteFile

function.
• It uses the CreateFile function again to create the file.
After downloading the file, the bot checks the first two bytes

to ensure whether the downloaded file is an executable or not.

4Descargar is a Spanish word, which means download

If so, it runs the file by calling the CreateProcess function and
exits the thread by calling the ExitThread function.

b) Thread 2: This thread starts when the bot receives an
upload command. After receiving the command, the bot checks
the command and compares it with subir5. If the comparison
is successful, the thread executes the following activities:

• It calls the InternetCrackUrl function to read different url
components.

• By getting the url components, it calls the InterConnect
function to set a connection with the url.

• It uses the HttpOpenRequest function to create an HTTP
request.

• It invokes the InternetReadFile function to read data to
be sent.

• It sends the data using the HttpSendRequest function.
• Finally, it closes the connection handle using the Inter-

netCloseHandle function.

After uploading the file, the thread calls the exitthread
function to close the thread.

C. Components Diagram

By conducting a thorough reverse-engineering task, we
noticed that Mariposa bot has complex interactions between
its functional components. Figure 8 illustrates the different
interactions between the different functional components. For
the space constraint, we show only the key components of the
Mariposa bot.

VI. RELATED WORK

The analysis of botnets is a worthwhile exercise. It aims at
uncovering the employed technologies in terms of obfuscation,
encryption, injection and communication. It is only with the
insights gained from such analysis that we can design and
implement efficient detection, eradication and prevention tech-
niques. In the sequel, we discuss the state of the art proposals
in this area of research that is botnet analysis.

In [12], the authors presented the analysis of an HTTP
botnet, namely, BlackEnergy. The analysis provided a detailed
information about the botnet architecture, commands and
communication patterns. BlackEnergy is a web-based tool that
allows to build bot binaries. The main threat of this botnet
is Distributed Denial of Service (DDoS). Chiang and Lloyd
studied the Rustock rootkit in [1]. This rootkit contains a
spam bot module. The authors studied the network traces
and noticed that the traffic is encrypted by RC4 algorithm.
The Rustock rootkit has multiple levels of obfuscation, which
makes it hard to be detected. The main usage of this tool
resides in mail spamming. In addition to the network analysis,
the authors were able to extract the encryption key of the
communication. Daswani et al. [2] put forward a detailed case
study of clickbot.A. This bot is responsible of click fraud
attacks.Their analysis covered the main components of this
botnet as well as the commands and configuration. Porras et
al. reverse-engineered the Storm botnet in [14]. They detailed

5Subir is a Spanish word, which means upload

Fig. 8. Component Diagram

the techniques that were used to hide the binary and how it has
been obfuscated. Storm botnet uses the Overnet protocol for
the communication. This botnet is used to send email spams
and DDoS attacks. In [5], [11], the authors investigated the
the Storm botnet by studying the encryption key generation
algorithm that is used for communication between different
peers. In [4], the authors reported their analysis of the Nugache
instance.They analyzed the communication pattern between
different principals. The communication is based on a key
exchange protocol. In Nugache botnets, the bot herder instructs
bots to listen to a specific IRC channel in order to initiate
a DDoS attack. The authors addressed extra aspects of their
initial analysis and estimated the size of the Nugache botnet
using a bot client crawler.

VII. CONCLUSION

The Mariposa toolkit is a one of the most prominent botnet
technologies that are being used nowadays. This toolkit pro-
vides a lot of features, which make it interesting to investigate.
The bot employs direct code injection into explorer.exe pro-
cess, which makes it resilient against firewalls that consider
system processes legitimate and avoid to check for their
integrity. In addition, the bot shows some characteristics that
are atypical to the majority of other bots. It incorporates
spreading mechanisms, it infects USB keys and uses MSN

messenger and P2P applications to distribute itself widely
through the Internet. Furthermore, the Mariposa bot has the
ability to install different malware on the compromised ma-
chine. The capabilities of the Mariposa botnet together with its
wide propagation attracted us to investigate its inner-secrets.
Accordingly, we conducted a twofold analysis: First, we set
up a closed environment to analyze the network behaviors
of the botnet. This practice allowed us to grasp how the
different botnet components interact with each other at the
network level. By monitoring the traffic, we concluded the
existence of three protocols, namely, the initialization protocol,
the beaconing protocol and the action protocol. The second
phase of the analysis consisted of reverse-engineering the
code. This phase breaks into getting over the obfuscation and
encryption layers and understanding how the bot injects itself
into the explorer.exe process. This code represents the entry
point to different malicious activities that are performed by
the bot. By isolating the injected code, we managed to debug
it and reach the fragments of code that malicious actions.
By sending different commands, we grasped the behaviors
that these commands involve. Our general observation is that
botnets are becoming blended threats since they combine the
capabilities of worms, viruses and trojan horses. In addition,
from this exercise we learn that some sequences of API calls
can be a good source to detect nefarious bot activities. For

instance, a process that does not need to P2P registry entries
and do so by calling some API functions, can be suspicious.
Finally, the rise of UDP traffic in the network can give a clue
about the presence of a Mariposa infection in the network. As
future work, we intend to study other bots that are of interest
to the security community and also to elaborate detection,
eradication and prevention techniques.

ACKNOWLEDGEMENTS

We wish to express our appreciation to National Cyber-
Forensics Training Alliance-Canada for the fruitful collabo-
ration that we had with different members of the organization.
We would also like to thank Ms. Lynne Perrault for her
support. We would like also to acknowledge the precious
insights that we gained from the initial publications of Defence
Intelligence on the Analysis of Mariposa.

REFERENCES

[1] Ken Chiang and Levi Lloyd. A case study of the rustock rootkit and
spam bot. In HotBots’07: Proceedings of the first conference on First
Workshop on Hot Topics in Understanding Botnets, Berkeley, CA, USA,
2007. USENIX Association.

[2] Neil Daswani and Michael Stoppelman. The anatomy of clickbot.a.
In HotBots’07: Proceedings of the first conference on First Workshop
on Hot Topics in Understanding Botnets, Berkeley, CA, USA, 2007.
USENIX Association.

[3] DataRescue. Idapro - multi-processor disassembler and debugger. http:
//www.hex-rays.com/idapro/, 2009.

[4] David Dittrich and Sven Dietrich. P2p as botnet command and control:
a deeper insight. In 3rd International Conference on Malicious and
Unwanted Software (MALWARE), pages 41–48, Piscataway, NJ, USA,
7-8 Oct. 2008 2008. Appl. Phys. Lab., Univ. of Washington, Washington,
DC, USA, IEEE.

[5] Thorsten Holz, Moritz Steiner, Frederic Dahl, Ernst Biersack, and Felix
Freiling. Measurements and mitigation of peer-to-peer-based botnets: a
case study on storm worm. In LEET’08: Proceedings of the 1st Usenix
Workshop on Large-Scale Exploits and Emergent Threats, pages 1–9,
Berkeley, CA, USA, 2008. USENIX Association.

[6] IBM. Communications server. http://publib.boulder.ibm.com/infocenter/
zos/v1r9/index.jsp?topic=/com.ibm.zos.r9.halc001/oawshs.htm, 2009.

[7] Iczelion. Tutorial 24: Windows hooks. http://win32assembly.online.fr/
tut24.html, 2009.

[8] IDEFENCE. Sysanalyzer overview. http://labs.idefense.com/files/labs/
releases/previews/SysAnalyzer/.

[9] Defence Intelligence. Mariposa botnet analysis. Technical report,
October 2009.

[10] jan newger. Idastealth plugin. http://newgre.net/idastealth, 2010.
[11] Brian Krebs. Storm worm dwarfs world’s top supercomputers, August

2007.
[12] Jose Nazario. Blackenergy ddos bot analysis. Technical report, Arbor

Networks, 2007.
[13] Palo Alto Networks. Palo alto networks. http://www.paloaltonetworks.

com/researchcenter/2009/11/mariposa-how-at-exposed-are-we/, 2009.
[14] Phillip Porras, Hassen Sadi, and Vinod Yegneswaran. A multi-

perspective analysis of the storm (peacomm)worm. Technical report,
Computer Science Laboratory, SRI International, 2007.

[15] SecurityFocus. Windows anti-debug reference. http://www.
securityfocus.com/infocus/1893, 2009.

[16] securixLive. Securix-nsm project page. http://www.securixlive.com/
knoppix-nsm/, 2005-2009.

[17] Butterfly Network Solutions. Butterfly network solutions. http://
bfsystems.net/index.php?page=9&subpage=4, 2009.

[18] Butterfly Network Solutions. Butterfly network solutions. http://
bfsystems.net/index.php?page=6&subpage=4, 2009.

[19] P. Szr and P. Ferrie. Hunting for metamorphic. In Virus Bulletin
Conference, pages 123–144. Virus Bulletin, 2001.

[20] VMware. Vmware server. http://www.vmware.com/products/server/,
2009.

[21] Wikipedia. Dll injection. http://en.wikipedia.org/wiki/DLL injection#
cite note-Waddington-9, 2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

