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Jiu Ding

Mr. Tien-Yien Li, of Hunan ancestry, was born in June of 1945 in Sha
County, Fujian Province of China. His father, Ding-Xun Li, studied overseas
at the medical school of Tokyo Imperial University and received a medical
doctorate degree. In 1934, he returned to China and became a faculty mem-
ber of Hunan Xiang-ya Medical School. In 1939, he served as president of
Fujian Provincial Medical College. At age three, Tien-Yien Li followed his
parents to Taiwan, where he received his education until he graduated from
college. He graduated from the Department of Mathematics at the National
Tsinghua University in 1968, the first mathematics graduating class of the
University. After a year of mandatory military service, he went to the U.S.
and attended the University of Maryland to study for his PhD in mathe-
matics. He received his doctorate in 1974 under the guidance of James A.
Yorke.

Tien-Yien Li was an instructor in the mathematics department of the
University of Utah from 1974 to 1976. From 1976 to present, he taught
at Michigan State University, three years as an assistant professor and four
years as an associate professor. He has been a full professor since 1983. In
1998, he received the title of University Distinguished Professor. Tien-Yien
Li was a Visiting Associate Professor at the Mathematical Research Center
of the University of Wisconsin at Madison from 1978 to 1979. He has been a
Guest Professor at Jilin University (since 1987) and Tsinghua University in
Beijing (since 1991). As a Visiting Professor, he worked at Kyoto University’s
Research Institute of Mathematical Sciences(1987-1988), the Mathematical
Sciences Research Institute at the University of California, Berkeley (1998),
and the City University of Hong Kong (2000). In the summer of 1997, he
was a Senior Research Member in the Advanced Theoretical Science Research
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Center at the Tsinghua University in Beijing.
Tien-Yien Li, despite his numerous ailments, has been a trailblazer in

several important fields of Applied Mathematics and Computational Math-
ematics. Some of his monumental accomplishments include: he and Yorke’s
paper, “Period three implies chaos,” first introduced the concept of “chaos”
in the field of mathematics; his proof of Ulam’s conjecture is the fundamen-
tal work in the computation of invariant measures of dynamical systems; his
idea and numerical method with R. B. Kellogg and J. A. Yorke in computing
Brouwer’s fixed point opened a new era for the research in modern homotopy
continuation methods. His extensive and deep research with his collaborators
as well as his students on the algebraic eigenvalue problem and multivariate
polynomial systems has earned him the honor of being one of the world’s
leaders in the field.

Tien-Yien Li received the highly prestigious Guggenheim Fellowship in
1995, Michigan State University’s Distinguished Faculty Award as well as
Frame Teaching Award in 1996, and College of Sciences Distinguished Alumni
Award of National Tsinghua University in Taiwan in 2002.

1 “Period Three Implies Chaos”

Today, anyone who understands a little about dynamical systems would
know Li and Yorke’s extremely important paper “Period three implies chaos”
appeared in the American Mathematical Monthly in 1975. This article prac-
tically invented the term of chaos and turned over a new leaf in the research
of chaotic dynamical systems.

In the world of science, the discovery of chaos, the theory of relativity,
and quantum mechanics are considered the three monumental discoveries
of the twentieth century. As early as the end of the nineteenth century
and the beginning of the twentieth century, the great French mathematician
H. Poincaré already knew the sensitive dependence on initial conditions of
solutions of Newton’s differential equations for motions upon studying the
“three-body problem” in celestial mechanics. In the early 1960s, Professor
Edward N. Lorenz of the Massachusetts Institute of Technology’s meteorol-
ogy department used three simple ordinary differential equations to describe
a convection-diffusion problem that can be applied to weather prediction,
and he accidentally discovered the impossibility of long-term weather fore-
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cast, which is referred to as the “butterfly effect.” A decade later, Robert M.
May, a biology professor of Princeton University, utilized the logistic model
S(x) = αx(1 − x) for studying the species populations, and he surprisingly
found that when the number α approaches 4, the iteration sequence {Sn(x)}
becomes increasingly complicated. With these scientific researches as back-
ground, a mathematical definition of chaos emerged in Li and Yorke’s famous
paper.

In 1972, Lorenz’s four papers concerning a weather prediction model at-
tracted the attention of Professor Yorke in the Institute of Fluid Dynamics
and Applied Mathematics (it’s now called the Institute of Physical Sciences
and Technology) at the University of Maryland and his PhD student Tien-
Yien Li. When Tien-Yien Li appeared in Yorke’s office one afternoon in
March, 1973, Yorke said to him, “I have a good idea for you.” This idea has
evolved in Yorke’s head, yet he has not been able to prove it completely. Two
weeks later, Tien-Yien Li, skillfully manipulating his calculus techniques,
proved what is later known as the famous Li-Yorke Theorem: if a continuous
real function f on the real axis R has a point of period 3, that is there is a
point a such that f(a) = b, f(b) = c, and f(c) = a, where a 6= b 6= c, then
(i) f has a point of period n for any positive integer n; (ii) there is an un-
countable subset S of R such that for any two points x 6= y in S, the number
sequence |fn(x) − fn(y)| has a convergent subsequence that converges to 0
and a convergent subsequence that converges to a positive number. Moreover,
for any periodic point p of f and any x ∈ S, the sequence |fn(p) − fn(x)|
has a convergent subsequence that converges to a positive number. After
they finished it, according to Yorke’s intention, the paper was sent to the
highly acclaimed American Mathematical Monthly. However, the paper was
rejected because it does not appeal to the current issues’ pool of college read-
ers. The editor agreed that the paper may be re-submitted if the authors
could rewrite the paper so that average college students can understand it.
Since Tien-Yien Li’s busied himself with research on differential equations
and the others, this paper sat untouched on his desk for nearly a year.

The year 1974 is a “special year” of biomathematics in the department of
mathematics at the University of Maryland. In this year, top scholars in the
field were invited to give lectures every week. In the first week of May, the
department invited Professor Robert May of Princeton University to lecture
for a week. On the last day, he lectured about the logistic model S(x) =
αx(1 − x) and reported on its iteration sequences’ complicated dynamical
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behavior as the parameter α is near 4, yet he did not offer an explanation,
thinking that the phenomenon is perhaps caused by computation errors.
After Yorke heard this lecture, he gave Professor May the paper of the Li-
Yorke Theorem, which had rested on the desk for nearly a year, on their way
to the airport. May was stunned upon reading the conclusion to the paper,
and he recognized that this theorem had fully explained his uncertainties. At
once, Yorke returned from the airport and contacted Li, “We should rewrite
this paper immediately.” The task was completed within two weeks, and it
was accepted by the American Mathematical Monthly. It appeared in the
December issue of 1975.

The paper entitled “Period three implies chaos” first strictly introduced a
mathematical definition of chaos. Even though the former Soviet mathemati-
cian A. N. Sharkovsky proved the equivalent of the first part of the Li-Yorke
Theorem, yet only the latter part of the Li-Yorke Theorem thoroughly un-
veiled the nature and characteristics of chaos: the sensitive dependence on
initial conditions and the resulting unpredictable nature of the eventual be-
havior of the dynamics. Statistics show that this particular paper is one of
the most frequently cited papers in mathematics and physics. Up until 2001,
it had been cited more than 700 times.

2 Ulam’s Conjecture

Ergodic theory is a mathematical branch of statistical research that con-
cerns nonlinear dynamical systems; it is a composite field that combines
measure theory, functional analysis, topology, modern algebra, etc. It is
widely used in physical and engineering sciences such as statistical physics
and electrical circuits. An important topic in ergodic theory concerns the
existence and computation of an absolutely continuous invariant measure as-
sociated with a nonlinear mapping. This problem is reduced to the existence
and computation of a fixed density function of the corresponding Frobenius-
Perron operator defined on a space of Lebesgue integrable functions (i.e.,
an L1-space). To the chaotic dynamical systems, such an invariant measure
gives the probability distribution of chaotic orbits in the phase space, and it
is intimately related to crucial mathematical concepts such as entropy and
the Lyapunov exponent.

In 1960, a distinguished Polish-born mathematician Stan Ulam, father of
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the American hydrogen bomb, proposed a numerical method in his famous
book entitled “A Collection of Mathematical Problems” to calculate a fixed
density function of a Frobenius-Perron operator associated with a nonlinear
mapping S : [0, 1] → [0, 1]. He divided the interval [0, 1] into n subintervals
0 = x0 < x1 < · · · < xn−1 < xn = 1. Let Ii = [xi−1, xi] be the i-th
subintervals, i = 1, 2, . . . , n. Next, he defined an n × n nonnegative matrix
P̄n = [pij], in which the (i, j) element is pij = m(Ii∩S−1(Ij))/m(Ii), where m
is the Lebesgue measure. pij quantifies the fraction of those points in the i-th
subinterval Ii that are mapped into the j-th subinterval Ij under S. In Ulam’s
method, one computes a normalized nonnegative left eigenvector vn of P̄n

corresponding to eigenvalue 1, so that the corresponding piecewise constant
function fn with function values on each subinterval given by the components
of vn is a density function. This density function fn can be considered as an
approximate fixed density function of the Frobenius-Perron operator P . For
the convergence of this numerical scheme based on a probability argument,
Ulam presented his famous conjecture: if P has a fixed density function, then
fn approaches to a fixed density function f ∗ of P as n approaches infinity.

In 1973, Polish Academician Andrzej Lasota and Yorke solved another
problem that Ulam proposed in “A Collection of Mathematical Problems”,
which is now a classic paper on the existence problem of the Frobenius-Perron
operator. Ulam’s problem is: if S : [0, 1] → [0, 1] is a sufficiently “simple”
mapping (for example, a piecewise linear mapping or a polynomial mapping)
such that the absolute value of its derivative is not less than 1, then does the
corresponding Frobenius-Perron operator must have a fixed density function.
In fact, Lasota and Yorke proved the following existence theorem: if S :
[0, 1] → [0, 1] is a piecewise C2 mapping such that the infimum of the absolute
value of its derivative is greater than 1, then the existence of a fixed density
function of the corresponding Frobenius-Perron operator is guaranteed, and
every fixed density function is of bounded variation. The key to proving
this theorem is using an inequality discovered by Yorke on a relation of
variations between a function of bounded variation and its restriction to
some subinterval. For the given mapping S, the Yorke inequality implies
that a positive constant C exists such that for all functions f of bounded
variation, there holds the following Yorke inequality

1∨
0

Pf ≤ 2

inf |S ′(x)|

1∨
0

f + C
∫ 1

0
|f(x)|dx.
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When Tien-Yien Li read the aforementioned Lasota-Yorke theorem, he
keenly sensed that the concept of functions of bounded variation and the
theorem by E. Helly on the sequence of functions of bounded variation must
play a key role in proving the convergence of Ulam’s method, and he firmly
believed that Ulam’s conjecture should stand for the above Lasota-Yorke
class of interval mappings. He immediately began to study Ulam’s numeri-
cal method. First, he defined a finite dimensional discretization operator Qn

associated with the partition 0 = x0 < x1 < · · · < xn−1 < xn = 1 of the inter-
val [0, 1]. The operator Qn maps each integrable function f into a piecewise
constant function that takes the average value of f on each Ii = [xi−1, xi]
as its value on Ii. Moreover, Qn is not only a Galerkin projection operator
that projects the L1-space onto the subspace of piecewise constant functions,
but also a Markov operator that preserves the integral of functions. If we
compose Qn with the Frobenius-Perron operator P to form Pn = QnP , then
the matrix representation of Pn restricted to the subspace ∆n consisting of
all piecewise constant functions under the canonical density functions basis is
exactly that very row stochastic matrix defined in Ulam’s method. Utilizing
Brouwer’s fixed point theorem, Tien-Yien Li directly proved that for every
natural number n, Pn has a piecewise constant fixed density function, and
with the help of the Yorke inequality and Helly’s theorem, he proved Ulam’s
conjecture for the Lasota-Yorke class of interval mappings. Specifically, he
proved that the sequence of approximate fixed densities fn produced from
Ulam’s method converges in L1-norm to a fixed density function f ∗ of the
Frobenius-Perron operator.

In the following twenty years, the computation of invariant measures has
become an active branch of ergodic theory and nonlinear analysis. In al-
most all of the literature related to Ulam’s method and its variants for the
computation of invariant measures, this paper by Tien-Yien Li, published in
the Journal of Approximation Theory, became one of the most essential and
most widely cited papers. In addition, his thought process inspired his stu-
dent Jiu Ding and Ding’s collaborator Ai-Hui Zhou to prove the convergence
of Ulam’s method for the P. Góra-A. Boyarsky class of multi-dimensional
piecewise expanding transformations in 1996.
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3 Modern Homotopy Methods

Anyone who has studied algebraic topology or nonlinear functional analy-
sis would know the famous Brouwer’s fixed point theorem: a smooth mapping
g from an n-dimensional closed ball Dn into itself must have a fixed point.
A cunning way to prove this theorem is by contradiction. Suppose g has
no fixed point. Then for each x ∈ Dn let f(x) be the intersection of the
line segment from g(x) to x extended to the sphere. It is easy to see that
f(x) = x if x is on the sphere. Thus, we obtain a smooth mapping from
the closed ball Dn onto its boundary Sn such that its restriction to Sn is an
identity mapping. However, differential topology tells us this is impossible.

In 1973, while Tien-Yien Li audited Professor Bruce Kellogg’s graduate-
level course “Numerical Solutions of Nonlinear Equations” at the University
of Maryland and heard the above proof of Brouwer’s fixed point theorem’s
published by Morris W. Hirsh in 1963, a marvelous idea emerged: In Hirsh’s
proof by contradiction, if g were to have no fixed point at all, then for the
mapping f defined above, for almost all y ∈ Sn the smooth curve f−1(y)
would have no place to reach. Thus, g must have a fixed point. However, if
we admit g has fixed points in the first place, f can still be defined except
on those fixed points of g. Apparently for y ∈ Sn, f−1(y) must go toward
the set of fixed points of g. More precisely, let F be the nonempty set of all
fixed points of the smooth mapping g : Dn → Dn, we can define a smooth
mapping f : Dn\F → Sn from the n-dimensional manifold Dn\F to the
(n− 1)-dimensional sphere Sn. From Sard’s theorem of differential topology,
y is a regular value of f for almost all y ∈ Sn. It follows that the inverse
image of y under f, f−1(y), is a one dimensional manifold starting from y,
that is, f−1(y) is a smooth curve. The other end of this curve can neither
come back to the sphere nor stop inside Dn\F . Therefore it must approach
the fixed point set F of g. If this curve can be numerically followed, a fixed
point of g can be calculated. Under the encouragement of Professors Kellogg
and Yorke, Tien-Yien Li began to implement this idea on computer.

In the next three months, he spent nearly everyday with a computer
for which the data could only be inputted with cards, each time without
success. The stacks of paper that the computer spit out foreshadowed the
program’s failure. Tien-Yien Li was not defeated; he persevered in modifying
the program. He modified and fixed, taking small steps from a computing
novice down the path to expertise. At last, he beheld a single sheet of output
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from the computer, and on that sheet was a successful computation of a
Brouwer’s fixed point! He finally made it! Thus, a new numerical method
for computing Brouwer’s fixed points was born. It also paved the way for the
modern homotopy continuation method.

The classical homotopy continuation method had been emerged as early
as in the 1950s. In particular, D. Davidenko of the former Soviet Union
introduced a corresponding initial value problem of an ordinary differential
equation to numerically solve a homotopy equation. If we want to compute
a zero point of a nonlinear mapping f : Rn → Rn, we can construct a
homotopy that combines f with a trivial mapping f0 : Rn → Rn whose
zero point x0 is known (say, f0(x) = x − x0). More specifically, we define
a homotopy mapping H(x, t) = (1 − t)f0(x) + tf(x) with the parameter
0 ≤ t ≤ 1. The traditional idea of the homotopy algorithm is based on
the assumption that the zero points set H−1(0) of H can be represented
as a curve (x(t), t) ∈ Rn × [0, 1], 0 ≤ t ≤ 1, that connects x0 and a zero
point x∗ of f . Differentiating the identity H(x(t), t) ≡ 0 with respect to t,
we obtain the initial value problem of the Davidenko ordinary differential
equation: x′(t) = −Hx(x, t)−1Ht(x, t), x(0) = x0, that can be numerically
solved. By numerically integrating the above initial value problem from t = 0
to t = 1, a zero point x∗ of f can be found. However, this method has a fatal
weakness: in general, the homotopy curve x(t) of H−1(0) may not always
be monotonic in t. In other words, it may turn around with respect to t
and at the turning point where x′(t) = 0, Hx(x, t)−1 does not exist. The
revolutionary idea of Kellogg-Li-Yorke applied to the homotopy method is:
as long as 0 is a regular value of the homotopy mapping H(x, t), by means
of implicit function theorem, the smooth homotopy curve must exist, and
in this case the coordinate vector variable x and the parameter variable t
possess the same role. They may both be viewed as functions of the curve’s
arc length s for instance. Therefore, regardless of whether the curve “turns
back” with respect to t or not, one can numerically follow the homotopy
curve and find a solution by using the predictor-corrector technique. This
is an important application of modern theoretical mathematics, especially
differential topology, to the field of computational mathematics.

Interestingly, Kellogg-Li-Yorke’s calculation of Brouwer’s fixed point was
not the first time it was done. They did not know that in 1967, Yale Uni-
versity’s economics professor H. Scarf reduced the equilibrium point for a
model in quantity economics to a fixed point problem of a continuous map-
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ping f from an n-dimensional standard simplex into itself. According to the
Brouwer’s fixed point theorem, such a fixed point does exist. Scarf used the
so-called simplicial triangulation of the simplex and then utilized Lemke’s
complementarity pivoting procedure and eventually leads to an approximate
fixed point, resulting in a simplicial fixed point algorithm. In the seventies,
this algorithm was extended to a class of simplicial algorithms to solve sys-
tems of nonlinear equations, which became a hot research topic during that
period. In 1974, when the organizing committee of the First International
Conference on Computing Fixed Point with Applications held at Clemson
University found out Kellogg-Li-Yorke’s new method, the committee imme-
diately provided them with two airline tickets so that they may report their
findings at the conference. As Scarf wrote in the Introduction of the con-
ference proceedings “Fixed Point Algorithms and Applications,” “ For many
of us one of the great surprises of the conference at Clemson was the paper
by Kellogg, Li and Yorke which presented the first computational method
for finding a fixed point of a continuous mapping making use of the con-
siderations of differential topology instead of our customary combinatorial
techniques. · · · ” Today, Kellogg, Li, and Yorke together are widely regarded
as the originators of the modern homotopy method for solving nonlinear
problems, and they have contributed tremendously to this important field.

4 Solving Polynomial Systems

From the birth of the homotopy method for computing Brouwer’s fixed
point until today, Tien-Yien Li has been tirelessly excavating the way of solv-
ing polynomial systems. Solving the roots of polynomial systems is interest-
ing and appears frequently in the scientific world, such as formula construc-
tion, geometric intersection, inverse kinematics, computation of equilibrium,
etc. Meanwhile, these problems also arise in the research of chaos theory; for
example, stationary solutions of the chaotic system of four ordinary differen-
tial equations studied by Lorenz are actually the solutions of the polynomial
system in the right hand side.

Given a system of n polynomial equations with n variables, let di be
the degree of the i-th polynomial for i = 1, 2, · · · , n. Then the classic Bézout
theorem in algebraic geometry gives an upper bound d1d2 · · · dn to the number
of all isolated solutions of this system. This number is called the Bézout
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number associated with the polynomial system. Under most circumstances,
this upper bound is much bigger than the actual number of isolated solutions.
A typical example is the algebraic eigenvalue problem. The Bézout number
of the quadratic polynomial system is 2n corresponding to the eigenvalue
problem of an n× n matrix A, but A has at most n eigenvalues.

In recent years, using the homotopy method to find all isolated solutions of
a polynomial system has attracted much attention. In 1979, C. B. Garcia and
W. I. Zangwill first established a homotopy H : Cn × [0, 1] → Cn, H(x, t) =
(1 − t)Q(x) + tP (x) for solving a polynomial system of n equations with n
variables P (x) = (p1(x), p2(x), · · · , pn(x)) = 0. Here Q = (q1, q2, · · · , qn) and
each of its component functions qj : Cn → C is defined as qj(x1, x2, · · · , xn) =

x
dj+1
j − 1, where dj is the degree of pj. They proved that if 0 is a regular

value of H, then each isolated solution of P (x) = 0 is an end point of a
corresponding solution curve x(t) to the homotopy equation H(x, t) = 0 at
t = 1. The important fact is the curve x(t) never turns around. Thus, we can
solve the initial value problem of the ordinary differential equation x′(t) =
−Hx(x(t), t)−1Ht(x(t), t), x(0) = x0, where x0 is a solution of Q(x) = 0. In
doing so, we can numerically follow x(t) and find all the approximate isolated
solutions. By Bézout’s theorem, there are at most d = d1d2 · · · dn isolated
solutions to P (x) = 0 while Q(x) = 0 has d′ = (d1 + 1)(d2 + 1) · · · (dn + 1)
solutions. Thus, in order to find all isolated solutions of P (x) = 0, we must
approximate d′ different x(t) curves. When t → 1, many of those curves go
to infinity and it is a big waste to trace all of those curves.

One advantage of the homotopy method for computing all the isolated
solutions of polynomial systems is its parallelism, since one can solve the
same ordinary differential equation with different initial values on a parallel
machine. In order to overcome the inadequacies of Garcia-Zangwill’s ho-
motopy method mentioned above, S. N. Chow, J. Mallet-Paret, and Yorke
introduced another homotopy H(x, t) = (1− t)Q(x) + tP (x) + t(1− t)R(x),

in which qj = x
dj

j − bj and rj =
∑n

i=1 aijx
dj

i , j = 1, · · · , n. They proved that,

except for a set of measure 0, for all (a, b) ∈ Cn2 × Cn, following all the
d solution curves to the homotopy equation H(x, t) = 0 would find all the
isolated solutions to P (x) = 0.

At the beginning of the 1980s, Tien-Yien Li greatly improved the con-
struction of the homotopy mapping. He proved that for the initial polynomial
system qj(x) = ajx

dj

j −bj = 0, j = 1, 2, · · · , n, for almost all (a, b) ∈ Cn×Cn,
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following all the d solution curves emanating from the solutions of Q(x) = 0
of the homotopy equation H(x, t) = (1 − t)Q(x) + tP (x) = 0, one can find
all the isolated solutions to P (x) = 0. In the following years, Tien-Yien Li
continued to search for efficient numerical methods for solving polynomial
systems for which the number of isolated solutions is much less than the
Bézout number. This type of system is called the deficient system. If the
usual homotopy method is used to solve this deficient polynomial system, we
must follow d curves from t = 0 on, and when t → 1, the majority of the
curves go to infinity and only a small fraction of them would converge. This
is a great waste of computation time.

For the most important and most often seen deficient polynomial system
in numerical linear algebra - the matrix eigenvalue problem, Tien-Yien Li,
his collaborators, and his students proposed the homotopy idea to numeri-
cally compute all the eigenvalues of a large scaled matrix A: Using a same
order matrix D with all eigenvalues known or easy to get to, construct the
homotopy H(t) = (1− t)D + tA, and then numerically follow the eigenvalue
and eigenvector curves of H(t) from t = 0 until the eigenvalues and eigen-
vectors of A are reached at t = 1. He and his Korean PhD student Noah
Rhee were the first ones to apply this idea on the computer. Afterwards, he
directed his Chinese students Hong Zhang, Kui-Yuan Li, Zhong-Gang Zeng,
Liang-Jiao Huang, Luan Cong, and Min Jin to perfect this computational
method. They have successfully developed various homotopy algorithms for
computing eigenvalues and eigenvectors for real symmetric matrices, general
real matrices, and large scaled sparse matrices. Even without taking consid-
eration of the advantage of parallelism, the sequential homotopy algorithm
outperforms some standard algorithms based on the QR decomposition for
many large scaled algebraic eigenvalue problems.

For a general deficient polynomial system, the construction of a good ho-
motopy algorithm largely depends on a smart choice of the initial polynomial
system. This is because not only each isolated solution of the polynomial sys-
tem P (x) = 0 is reached via a homotopy curve starting from a solution of
the initial polynomial system Q(x) = 0, but more importantly we wish as
few homotopy curves as possible would go to infinity as t → 1. An ideal con-
struction is such that Q(x) and P (x) have the same number of isolated zeros
at infinity. In the last twenty years, Li, Sauer, Yorke, and his students Xiao-
Shen Wang, Xin Li, and Tang-An Gao used the theory and methods from
algebraic geometry to propose some powerful methods for choosing Q(x),
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for example, the random product homotopy method and Cheater homotopy
method. In the past decade, due to the application of D. N. Bernshtein’s the-
orem, the polyhedral homotopy method based on the combinatorial counting
of solutions has attracted great attention. In this new method, the compu-
tation of the so-called “mixed volume” is extremely important. Tien-Yien Li
and his students, past and present, have obtained a series of outstanding new
results in this area, and the details can be seen in his extensive survey paper
published recently. In the field of solving polynomial systems, Tien-Yien Li
well deserves a leading role.

5 Overcoming Obstacles

Incredulously, Tien-Yien Li’s major contributions in the last thirty years
were made while constantly combating excruciating pain. When he was
an undergraduate at National Tsinghua University in Taiwan, his nickname
was “baton.” Apart from being one of the top academic students, he also
excelled in athletics. He was once a member of the school’s soccer team
and captain of the basketball team. In the second year of working toward
his PhD at the University of Maryland, however, he experienced gradual
kidney failure. This did not hamper his unusual diligence, and he received his
doctorate degree after completing eight papers in 1974. The sixth week after
graduation, he discovered that his blood pressure was as high as 220/160.
He began a five-and-a-half-year kidney dialysis on May 4, 1976, three times
a week, five hours each time, not including time on the road. At the time, he
conducted most of his research on his sickbed. On January 29, 1980, Tien-
Yien Li underwent his first kidney transplant, but due to bodily rejection,
the procedure was a failure. On July 15 of the following year, he successfully
received a kidney from his sister. In the next three years, he recovered well.
Good health did not linger, however; on February 21, 1984, Tien-Yien Li
suffered from a stroke. As a result, the right half of his body was paralyzed,
and he underwent a major brain surgery to settle a brain aneurysm on April
26. His health was stable afterwords. He did not have any more major
surgeries in the next eight years, but minor operations still occurred often.
Despite his ailments, Tien-Yien Li seized the opportunity to develop the
important theory of homotopy continuation methods for solving eigenvalue
problems and polynomial systems, and he trained a group of PhD students
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from mainland China. In addition to giving lectures in Taiwan, he also visited
more than ten universities and research institutes of the Chinese Academy
of Sciences in mainland China from June to July, 1985, giving numerous
lectures on chaotic dynamical systems and homotopy methods. He began
to accept graduate students from China, and has been devoted to training
young Chinese scholars in mathematics since then.

On January 25, 1993, when Tien-Yien Li was teaching at Michigan State
University, he experienced physical discomfort and was taken to the hospital
in an unconscious state. The doctor diagnosed him with the blocking of brain
artery. His will-power eventually defeated his disease. Beginning in 1992, he
suffered from leg pains, and neither Western nor Eastern practitioner could
explain the source of his distress. It was found out latter the pain was caused
by spinal column arthritis, and a major surgery on May 30, 1995 severed the
inflamed part. In the next five to six years, he enjoyed relatively good health.
Yet in the first year of the current century, he underwent another spinal
column surgery. Although his leg sporadically bothered him, he embarked on
the journey to recovery in 2003. In the recent years, he devoted time to fitness
and exercise, swimming one thousand yards or walking two miles each day.
Consequently, his health has improved dramatically. When this biography
was written in June of 2003, however, Tien-Yien Li suffered another attack.
On June 24, the doctor successfully treated his clogged heart coronary artery
with stents.

In the past few decades, Tien-Yien Li suffered from many illnesses, yet he
fought against sickness and pain with all his might, time and again defeating
them with his optimistic spirit. Up until now, he has gone through ten
major operations and countless minor ones. His body is covered with surgical
scars. He is a person who rises above the current situation, who does not
give up without putting up a good fight, and who puts forth the best in
the harshest environment. He often tells his graduate students that if they
think of how he overcame excruciating pain when they encounter obstacles
in studying and research, then they will also have the courage to overcome
their own hindrances. It is this indefatigable spirit that enabled Tien-Yien Li
to efficiently work under the continuous financial support from the National
Science Foundation in the United States despite constantly being plagued by
illnesses.
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6 The Way to Success

Tien-Yien Li holds a strict attitude when it comes to academics. He
believes that his success, apart from having an excellent advisor like Professor
Yorke, stems mainly from perseverance. He often tells his students that he
himself is not smart, and that being smart is not as important as being able
to dig down to the root of the problem. He emphasizes that he merely spends
one more minute on a problem than do his peers. That precious minute may
well be the minute leading to success. A big shot not being able to solve a
problem does not mean that a small fish also cannot, and a big shot’s train
of thought does not mean it will lead to a solution. “Endure; persevere; do
not give up” is the maxim that he shares with his students. He also says that
one who studies must understand the material thoroughly, especially when
the subject is mathematics; vaguely memorizing logical procedures is useless.
He once gave this example: why the row rank of a matrix equals its column
rank? Anyone who has taken Linear Algebra can prove it. But what is its
geometric significance? What is its significance in physics? If you look at the
problem from many different angles, then you will reap surprising rewards.

Tien-Yien Li attended college in Taiwan, thus he is familiar with, and
strongly opposed to, the general method of pure memorization in Chinese
institutions of higher learning. He once told the following story: when a
graduate student took the oral part of the mathematics qualifying exam, the
professor wanted to test her on a special case of the Tychonoff theorem in
Topology: the product of two compact sets is compact. She begged the pro-
fessor to let her prove the general Tychonoff theorem: the product of any
number of compact sets is compact, because she remembered every detail
of that general proof, yet she did not know how to prove the simpler case
with only two compact sets. Tien-Yien Li is strongly opposed to pure mem-
orization without true understanding. All the graduate students who have
participated in his mathematics seminars will not forget his basic require-
ment: Do not just speak with the “ε − δ” language; that is merely logic. If
you speak, speak about the “basic idea.” He requires his students to clearly
explain concrete or unusual cases before demonstrating a proof to a general
theorem and not play hide-and-go-seek with abstract concepts. He firmly
believes that if a person truly understands a course, then he can explain it in
a way that even an average person can understand. He also practices what he
believes. He always started his invited mathematics lectures throughout the
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world from the most elementary concept, and his audiences were attracted
by his vivid and thoughtful talks. He also uses this standard to train his
students. In 1986, when he let his new Chinese student report the paper
“Rudiments of an average case complexity theory for piecewise-linear path
following algorithms” by S. Smale’s student J. Renegar (now a full professor
at Cornell University), his first sentence was, “You must pretend that I am
ignorant of anything.” At that time, the student was puzzled: the famous
professor, because of whom he applied to Michigan State University, claims
that he is “ignorant.” It is facing this “ignorant” mathematician, this student
learned what is researching mathematics, what is talking about mathematics.

Because of Tien-Yien Li’s unique research and teaching methods, he not
only received Michigan State University’s Distinguished Professorship and
Distinguished Faculty awards, but he also encouraged his graduate students
to pursue research and teaching simultaneously. His course of erudition is
truly an inspiration to the growth of a mathematician.
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