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We have constructed a high resolution tunnel-diode oscillator based measurement system

suitable for measuring the temperature dependence of the magnetic penetration depth of

superconductors, λ(T), at very low temperatures. I report on measurements of λ(T) in high

quality single crystals of the perovskite superconductor Sr2RuO4 down to 0.04 K. We observe

quadratic temperature dependence at low temperatures. There is no sign of the crossover or

second phase transition predicted for a multi-band superconductor. We argue that power law

behavior is consistent with an energy gap with nodes, and discuss how the observed quadratic

dependence can arise from several possible mechanisms. We propose that non-local effects

may be more important in determining the temperature dependence than impurity scattering,

and are sufficient to explain the deviation from the linear behavior expected for local

superconductors with line nodes. These results are inconsistent with the candidate p-wave

states predicted by leading theories.
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1 Review of Experimental Techniques

In this chapter I will review a number of experimental techniques which have been used

successfully to measure the penetration depth of superconductors. Since the experiments

described in this thesis use a self-inductive tunnel diode oscillator technique, I will start with a

fairly detailed discussion of oscillator measurements of superconducting samples. I will also

discuss the techniques of mutual inductance, microwave surface impedance, torque

magnetometry and Josephson junction modulation.

1.1 Self-Inductive Resonant Oscillator Techniques

One of the most useful devices, for many different kinds of measurements, is the

resonant oscillator. The technique is quite simple in its design. An oscillation is established

whose frequency can be made to depend on the physical quantity under investigation with a

known relationship. The frequency can be measured with great precision simply by counting

the number of cycles of the oscillation, and this can be converted to a precise value of the

physical quantity in question.

Perhaps the best known example of the oscillator is the use of a pendulum to measure

the acceleration due to gravity. If the length L of the pendulum is known, the frequency of

oscillation Lg /=ω  gives the acceleration. A very useful oscillator technique for solid state

physics employs an electronic rather than mechanical resonance. An inductor-capacitor (LC)

resonant circuit is constructed, and provided with a source of gain in a positive feedback

configuration. The result is an oscillation at the resonant frequency of the LC circuit. By

rendering the inductance or capacitance sensitive to a physical property of a sample, such as
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dielectric constant or magnetic susceptibility, the resonant frequency will shift with changes to

these properties.

 There are a number of advantages of electronic oscillators over their mechanical analogs.

The frequency can be made significantly higher, which allows for a precise measurement of

frequency in a shorter time interval. These higher frequencies are accompanied by sharper

resonance (greater quality factor, Q) which contributes to a stable and sensitive frequency

response. If designed and constructed well, electronic oscillators can be made fairly insensitive

to mechanical and electrical disturbances, and to other environmental factors as well.

In this thesis we will be primarily interested in the measurement of magnetic

susceptibility of a solid state sample–specifically in the susceptibility of a superconductor,

which will be proportional to its magnetic penetration depth. One of the earliest reports of such

a measurement was by Schawlow and Devlin1, who used a parallel LC oscillator to measure the

temperature dependence of the penetration depth, λ(T), for a rod-shaped single crystal of tin.

The sample was placed inside the inductive coil of the oscillator, where it was subject to the

magnetic fields generated therein by the oscillating current in the coil. The resonant frequency

of a parallel oscillator is given by

LC
f 1

2
1
π

= . (1.1)

A small change δL in the inductance due the changes in λ of the sample will result in a relative

shift δf in the resonant frequency

L
L

f
f δδ

2
1= . (1.2)
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Using a simple relation for their cylindrical sample, that the ACLL // ⋅= δλδ , where C

is the sample circumference and A is the cross sectional area of the coil, they determine the

penetration depth as

ffrA /)/( δπδλ = , (1.3)

where r is the radius of the sample rod, and A is the cross sectional area between the sample

and the coil. It is difficult in practice to measure A accurately, but a reasonable value can be

obtained by calibrating with samples of different size. It is noteworthy that while this will affect

the conversion from frequency (Hz) to units of length (Å), the functional dependence of δλ on

an independent parameter, such as temperature, is not affected by uncertainty in the value of A.

In general the penetration depth will be related to the frequency by a factor, G, which depends

only on the geometry of the sample and the coil

fGδδλ = . (1.4)

Schawlow and Devlin’s oscillator was constructed using a vacuum tube amplifier, at

room temperature as the gain mechanism. The inductor, capacitor and sample were all at low

temperature, immersed in liquid helium. The oscillation frequency was about 100 kHz, quite

low for this type of application, where frequencies in the MHz range are more typical. For a tin

crystal sample with diameter 7.4 mm, the frequency shift  between T>Tc and T = 3.6 K was

about 350 Hz, or ~0.3%. The resolution was determined by the stability of the oscillator, which

would hold steady to within 1-2 ppm/hr (0.1-0.2 Hz/hr).

Schawlow and Devlin’s technique includes most of the features used in subsequent

resonant oscillator experiments. There were several refinements incorporated by experimenters

in later years. In 1966 Boghosian et al.2 used a tunnel diode as the feedback mechanism for an

oscillator which they used to measure the density, by way of the dielectric constant, of liquid
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3He under pressure. In this case the liquid He filled the space between the plates of the

capacitor, thus changes in dielectric constant were measured through the change in capacitance,

rather than inductance. The use of a tunnel diode as the gain mechanism improved the system

in several ways. First the frequency of the circuit was made higher, ~10 MHz, allowing a

measurement with greater relative precision. Second, due to the low power requirements of the

tunnel diode, the entire circuit, except for power supply, was maintained in the low temperature

part of the cryostat, contributing to improved short term stability of the oscillator of  0.2 ppm.

Lastly, the higher frequency increases the Q ~ f/∆f, also contributing to improved sensitivity.

Figure 1.1 shows the IV curve for the tunnel diode used in our circuit (Germanium

Power Devices model BD-3). The important feature of the tunnel diode is the region of

negative differential resistance. The shape of this characteristic curve comes from a

combination of  ordinary exponential diode behavior and quantum mechanical tunneling across

the diode depletion layer (see for example Chow3). The negative resistance, Rn (a negative

quantity), characterizes the gain of a given tunnel diode: a diode with greater gain has a smaller

magnitude of Rn.
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When biased in the negative differential resistance region, and connected to a resonant circuit,

the tunnel diode acts as a negative resistance for small ac signals converting some dc power to

ac power in the form of oscillation of the tuned circuit. A typical arrangement of an LC tuned

circuit is shown in Fig. 1.2.

LP

LT

C

BD3

CB

R1

R2

RP

CC

To Room
Temp.x

Figure 1.2

Low temperature electronics

Boghosian et al. found that some additional work was necessary to determine the frequency.

Originally a simple transistor amplifier was used to increase the RF oscillation signal before

counting the frequency. But it was found that this arrangement caused unwanted coupling

between external parts of the apparatus and the oscillator frequency. A more satisfactory

solution was found by using a mixer, with the 10 MHz clock signal from the frequency counter

serving as the local oscillator.  We use such an arrangement in our version of the tunnel diode

oscillator, which is discussed in detail in the next chapter.

Another example of a tunnel diode oscillator measurement was done by Clover and

Wolf4 in 1970 to measure the paramagnetic susceptibility of several different materials.

Frequencies from 3 to 55 MHz were possible in this oscillator system. Oscillator frequency was
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stable to 1 ppm when immersed in liquid nitrogen, but only 10 ppm in liquid helium. The

increased fluctuation is attributed to bubbles in the helium which could enter the coil. When the

helium bath temperature was reduced below the lambda point, so that the boiling stopped, the

fluctuations were reduced. The design of our system allows (actually, requires) that the coil and

sample occupy a vacuum space, so the interfering effect of bubbles was not a problem.

However, this arrangement lacks the very stable temperature which is achieved by immersing

the oscillator circuit.

The publication of Van Degrift5 describes the design and operation of a tunnel diode

oscillator (TDO) with stability of 0.001 ppm at low temperatures. This treatment of precision

TDO design served as our primary reference when putting together our oscillator. I will discuss

the details of our implementation of this design in the next chapter. In principle, other

techniques are possible for creating oscillators. For example, the gain mechanism could be

provided by a FET amplifier. A number of FETs suitable for use at low temperatures are listed

by Wagner et al.6

1.1.1 Calibrating an oscillator

One of the challenges of using the oscillator technique for experiments like the ones

described here is the problem of calibration. Though glossed over in many discussions, making

an accurate conversion from frequency response to changes in the physical quantity under

study is often more difficult than it would first appear. In our case we must determine how

changes in the frequency, in units of Hz, correspond to changes in penetration depth, in units of

length. This calibration represents a simple multiplication of the raw data, so the functional

dependence of ∆λ(T) will not be affected. However, other quantities calculated from ∆λ(T), in
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particular the absolute magnitude of λ, are affected by this scale factor, so it is best to have an

accurate calibration, if possible.

We need to know the relationship between the expulsion of the magnetic field by the

sample and the change this causes in the inductance of the coil, and hence the frequency of the

oscillator7. The energy of a coil of inductance L0 carrying a current I is given by

2
02

1 ILU = . (1.5)

The energy is contained in the magnetic field and can be determined from the distribution of

magnetic induction, B0, and magnetic field H0 for the empty coil:

∫ ⋅=
space all

008
1 dVU HB
π

. (1.6)

If a sample is placed inside the coil the fields become B and H, the inductance becomes L, and

the change in energy is

∫ −=⋅−⋅=∆
space all

2
000 )(

2
1)(

8
1 ILLdVU HBHB
π

. (1.7)

It turns out that if the sources of magnetic field (the wires and current) are fixed, then this

expression can be rewritten as

∫ ⋅=∆
sV

dVU 02
1 BM , (1.8)

where M is the magnetization of the sample, and the integral extends only over the volume Vs

of the sample (see for example, Jackson8). If an ellipsoidal sample with magnetic susceptibility

χm is placed in a uniform magnetic field, B0, the magnetization induced in the sample will be

041
4

B
N

M
m

m

χπ
πχ

+
= , (1.9)
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where N is the demagnetizing factor, which depends only on the shape of the sample (N = 1/3

for a sphere). The inductance of the empty coil can be found, in the long solenoid limit, from

π8/
2
1 2

0
2

0 cVBIL = , where Vc is the effective volume of the coil. The change in inductance,

∆L, relative to the empty coil, when the sample is placed inside is

c

s

m

m

V
V

NL
L ⋅

+
=∆

χπ
πχ
41

4

0

. (1.10)

This will cause a change in frequency, according to Eq. 1.2, of

m

m

c

s

NV
V

f
f

χπ
πχ
41

4
20 +

⋅=∆ . (1.11)

The idea of the calibration procedure is to measure the frequency shift, relative to an

empty coil, when we insert a sample of known dimension and demagnetizing factor (a sphere

of aluminum, diameter 0.79 mm, N = 1/3). The electromagnetic skin depth of the sphere is

much less than its size, so we can take the sphere as perfectly screening, which corresponds to a

susceptibility χm = –1/4π. From the frequency shift we determine Vc from Eq. 1.10 as

sphere

s
c f

fV
V

∆
= 0

22
34π . (1.12)

Now the volume and shape of the real sample are measured from microscope

photographs. The shape is approximated as an ellipsoid to determine the approximate

demagnetizing factor. Using Eq. 1.10 again χm = -1/4π, and with N appropriate to our

approximated ellipsoid, and we find

c

s

V
V

Nf
f

2)1(
4 δπδ
−

= (1.13)
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 The frequency shift we measure is δf(T) = f(T)–f(Tmin). This represents small changes in the

penetration of the field around the perimeter. The penetration depth is much smaller than the

dimensions of the sample (except very close to Tc). We can picture the change in volume as a

ribbon of excluded field around the perimeter of the sample (see Fig. 1.3), representing a

volume

δλδ ⋅= PtVs (1.14)

where t is the thickness of the (plate-like) sample and P is its perimeter. Using Eq. 1.2, putting

in the expression for Vc and solving for δλ we find

f
Pt

N
f

V

sphere

sphere δδλ )1(
2
3 −

∆
= . (1.15)

Referring to Eq. 1.4 we would define )2/()1(3 PtfNVG spheresphere ∆−= .

t

λλλλ

B

Figure 1.3

The sample in a magnetic field. The shaded volume is

penetrated by the field. The thickness of the crystal is t.

This technique should work for ellipsoidal samples, in which the interior field is

proportional to the applied field. However, for other shapes this is not true, and this technique

will be accurate only to the extent that the shape of a given sample can be approximated as an

ellipsoid. There is an alternative approach which does not require that we approximate the

sample shape. We can determine G, which depends only on geometrical factors, for a sample of

known response with the same shape as the sample we wish to study. We make G an adjustable
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parameter and fit the data to the expected response. We can use the same G for the sample of

unknown response which we wish to study. This has the advantage that we do not need to

calculate G directly from the shape. One drawback is that if each sample has a different shape,

then we need a different calibration sample for each real sample. In addition, depending on the

shape of the sample, it may not be trivial to manufacture a calibration sample in the same

shape. However, from our experience this technique works better for our samples than the other

technique.

1.2 Microwave Surface Impedance

The microwave surface impedance (MSI) technique is fundamentally very similar to the

oscillator techniques described in the first section. But because of the historical importance of

this method in determining λ(T) for the cuprates, which will be discussed in a later chapter, it

warrants a more specific treatment.

The absorption of microwaves by a superconductor, at frequencies corresponding to less

than the gap energy, depends on the density of quasiparticle states. At low temperatures,

absorption in the superconducting state is extremely small. To amplify the effect of the

absorption, a cavity can be constructed whose walls are made of, or coated with, the

superconductor one wishes to study. Microwaves can then bounce back and forth many times

off the surfaces, multiplying the absorption. The absorption is measured in terms of the Q of the

cavity, which is measured as follows9: A pulse of rf power from an external source, at the

cavity resonant frequency, is introduced by a coaxial cable into the cavity. The detected waves

are observed on a fast oscilloscope, and the decay time, τ , is measured, giving Q = ω0/τ . The

value of Q can cover many orders of magnitude as a function of temperature, from as small as

104 to as large as 1012. The resonant frequency, typically in the range of ~10 GHz, will also
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vary with the temperature, because the variation of penetration depth will modify the effective

size of the cavity.

It is not always convenient to make the entire cavity out of the superconductor under

study. Sridhar et al.9 devised a cavity, coated inside with superconducting Pb, maintained at 4.2

K by a helium bath. Into this cavity extends a sapphire rod which carries the sample–in this

case a single crystal of high temperature superconductor. The cavity is under vacuum, allowing

the sapphire rod and sample to be varied in temperature independently from the cavity walls.

Meanwhile, the Pb coating on the walls, well below Tc, will have very small absorption,

allowing the sample response to be detected independently.

In terms of the surface resistances RPb and Rs of the Pb and the sample, the Q of the

cavity can be expressed as

sRR
U

Q
βα

ω
+

=
Pb

0 (1.16)

where U0 is the energy stored in the electromagnetic field in the cavity, and α and β are

constant factors which depend on the geometry of the cavity and sample. The change in

penetration depth is given by

)(
)()()( 0

Tf
TTT

s∆=
−≡∆

ζ
λλλ

(1.17)

where ζs is another constant which depends on the geometry of the cavity and sample. The

penetration depth is proportional to the surface reactance Xs. So from the measurement of Q

and ∆f the surface impedance Zs = Rs + iXs can be determined. Determination of the geometrical

factors has been accomplished in most cases by measuring a sample of known response, such

as a well known superconductor, with a shape identical to the real sample. Using a substantially

similar design, but with an improved “split ring” cavity configuration oscillating at 900 MHz,
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Hardy et al.10, 11 have reported resolution in measurements of ∆λ(T) on single crystals of

YBCO of better than 1Å.

1.3 Mutual Inductance

A very useful technique for measuring the penetration depth is based on the screening of

the mutual inductance which occurs when a superconducting film is placed between a driving

and receiving coil. Such an experiment is described, for example, by Fiory and Hebard.12 In

this experiment the drive coil and the receiving coil, placed on opposite sides of the film, are

each wound with half their turns clockwise and half counterclockwise (astatic). Other

configurations are possible. For example, the coils can both be placed on the same side of the

film, and different variations of coil winding are possible. However, the general principle

remains the same: The magnetic field from the drive coil induces a screening current K(r) in

the film, which depends on the complex impedance of the superconductor Z(ω) = R + iL. For an

oscillatory field and zero temperature the film would be purely inductive with a sheet kinetic

inductance FsK dencmLi 22* /=ω , where dF is the film thickness. The measured inductive

component is related to the in-plane penetration depth by the relation

F
K dc

L 2

2
||4πλ

= . (1.18)

The kinetic inductance is determined from measurements of the in-phase and quadrature

components of the mutual inductance between the drive and receive coils. By assuming values

for complex impedance, Z, the distribution of screening currents, K(r), can be numerically

calculated self-consistently in terms of the vector potential, A(r), produced by the particular

arrangement of coils as follows:
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










−

+−= ∫−−

film
dcc

Z
i '

'
)'()()( 11 r

rr
rKrArK ω . (1.19)

This simulation is performed for various values of L and R, and the mutual inductance is

calculated. A lookup table is constructed which then allows the values of L and R to be deduced

from measurements of the mutual inductance.

There are a number of advantages of this technique. First it allows non-destructive

testing  of  unpatterned films, making it a convenient tool for characterizing a film prior to

patterning it for device fabrication. Second, the technique allows for a wide range of different

frequencies to be used, from ~10 Hz up to perhaps 10 MHz, with a value around 10 kHz

typical. Unlike the oscillator technique which requires a modification of the circuit to change

the frequency, the frequency can be changed with the turn of a knob in the mutual inductance

experiment. Another advantage is that if the geometry can be accurately determined or

calculated, there are no adjustable parameters required to determine numerical values for λ.

One disadvantage is the requirement that the sample be in the form of a thin film with a fairly

large area. While it is possible to grow high quality thin films of many of the cuprates, there are

materials for which high quality samples are available only in the form of small crystals

(Sr2RuO4, to name just one). While it might be possible to adapt the mutual inductance

technique to this form, it is not as convenient as a thin film. To give a recent example of this

technique, Paget et al.13 made measurements of the penetration depth as a function of

temperature for films of the cuprate La2-xSrxCuO4. They report a noise level in their

measurement of λ(T) of 10 Å.



14

1.4 SQUID Magnetometry

One of the most valuable tools in low temperature physics is the superconducting

quantum interference device (SQUID), an exquisitely sensitive detector of magnetic flux. A

SQUID is adaptable to a large number of different measurements. Not surprisingly, one such

application is the measurement of magnetic flux excluded by a superconductor, i.e. the

penetration depth. Just one example of this technique is the measurement of the temperature

dependence of the penetration depth of the heavy fermion superconductor, UBe13, by Gross et

al.14 Here the SQUID is configured in a bridge circuit using coils and wire made entirely of

superconducting Nb. (See Fig. 1.4) Because the flux enclosed by a loop of superconductor is

trapped inside, the wires and coils act as a so-called flux transformer. Currents are established

by applying a small field to coils L1 and L'1 using copper coils Lp and L'p. The currents divide

among the coils according to the inductance of each, and some of the current flows through

coils Ls, coupled to the SQUID, and L2 and L'2 containing the sample, and a reference sample of

Sn. The change in the inductance in coil L2 as a function of the penetration depth of the UBe13

sample is the same as in the oscillator technique. In this case the change in inductance is

detected as a change in current flowing through coil Ls coupled to the SQUID. One of the

principle advantages of the SQUID technique is that the currents and magnetic fields are all dc.

The behavior of the penetration depth has been shown to have some dependence on high

frequencies for certain heavy fermion superconductors,15, 16 and in these cases the SQUID

technique is most appropriate.
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Figure 1.4

Superconducting SQUID bridge

circuit used by Gross et al.14

1.5 Torque Magnetometry

A clever technique employing a torsion balance torque magnetometer17  has been used recently

by Waldmann et al.18 to measure λ(T) and λ(0) for BSCCO based upon the magnetization of

the sample in the vortex lattice state. A single crystal of the cuprate superconductor BSCCO is

placed in a magnetic field oriented perpendicular to the ab-planes of the crystal. The torque for

a highly anisotropic material with magnetization ⊥M  perpendicular to the planes is

θµτ sin0 HVM ⊥−= (1.20)

where V is the volume of the sample, µ0 is the permeability of free space and θ is the angle

between the field and the planes. Hao and Clem19 calculate the reversible magnetization of a

superconductor as a function of applied magnetic field, H,  when vortices are present in a field

intermediate between the upper and lower critical fields, Hc1 < H < Hc2. They show that the

approximate London model, which predicts a linear relationship between magnetization, M,

and ln(H), is quantitatively incorrect because the energy associated with the cores of the

vortices must be included in the calculation of the magnetization. The exact behavior of M is
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not linear with ln(H), but they find that in an intermediate region of field the curve is close to

linear and the magnetization due to the vortex lattice can be well approximated by

θ
β

λπµ
α

cos
ln

8
2

2
0

0

H
HM c

ab

⊥
⊥

Φ= , (1.21)

where α = 0.77 and β = 1.44 are determined by fitting to the more exact theoretical results, and

Φ0 is the magnetic flux quantum. We see that the magnetization is proportional to λ-2 and can

be extracted from the torque measurement.

The “pico-torquemeter” is constructed from a 22 mm long, 50 µm diameter PtW torsion

wire with a plastic disk carrying the sample. Deflections in angle as small as 2⋅ 10-6 degrees are

measured by non-contact differential capacitance between a fixed plate and a gold plate on the

torsion wire. Typical resolution is ~1 Å for sample weights of ~100 µg. Fields up to 16 T can

be applied by a superconducting solenoid. The large fields allow the neglect of demagnetizing

factors, since the sample is fully penetrated by vortices.

1.6 Muon Spin Relaxation

One of the most important of the modern techniques for measuring the penetration

depth in superconductors is positive muon spin relaxation (µSR). The experiment is performed

as follows: The superconducting sample is cooled in a magnetic field between Hc1 and Hc2,

where Hc1 and Hc2 are the lower and upper critical fields, respectively, of the superconductor,

such that a regular vortex lattice is formed inside the sample. The penetration depth λ

characterizes the spatial extend of the field of a vortex. A beam of spin polarized muons is

directed at the sample and the muons come to rest, one at a time, inside the sample. The state of

the muon evolves in the local magnetic environment, its spin precessing in the field. The muon

decays with an average lifetime of 2.2 µsec, emitting a positron preferentially along its
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direction of spin. Detection of the emitted positron allows one to determine the polarization of

the muon at the time of its decay. By building up a large sample of such decay events, the

average distribution of magnetic fields inside the sample can be determined. From this

distribution, by making certain assumptions about the vortex lattice, the penetration depth can

be calculated.

The number of detected positrons as a function of time is given by

( ) ( )[ ]{ }tAtBNtN P00 1)/exp( −−+= µτ (1.22)

where B is a time-independent background, τ µ = 2.2 µsec is the lifetime of the muon, P(t) is the

component of muon polarization in the direction of the detector. The polarization precesses in

the local field Blocal according to

)cos()()( local φγ µ += tBtGt xxP (1.23)

where γ µ is the gyromagnetic ratio of the muon and Gxx(t) represents the polarization relaxation,

for which it is usual to take a Gaussian approximation, ( ) )2/exp( 22ttGxx σ−= . The width, σ,

of this polarization decay distribution gives us λ through the relation 
3

02

16πσ
λ Φ= . Physically,

this result comes about as a root-mean-squared average of the field variations due to the vortex

lattice.20

An important advantage of the µSR technique is that it measures bulk behavior, and is

insensitive to surface properties, effects of shape, thermal expansion, multiple connectivity of

the sample, etc. In addition, it allows an accurate absolute determination of λ. In contrast, the

technique of microwave surface impedance, and other resonant techniques which measure the

Meissner currents circulating on the sample’s surface, can be more susceptible to surface

effects. And they likewise do not allow an absolute determination of λ.
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One might ask why anyone would use techniques other than µSR at all, given their

shortcomings. The µSR technique has a number of significant disadvantages from which some

other techniques, notably microwave surface impedance, do not suffer. A source of muons is

required for the µSR technique, which requires the experiment to be performed at the site of a

particle accelerator beam line. Such facilities are in heavy demand, which requires that they be

shared among researchers from around the world. Experiments using the beam line must

therefore be designed and built off site, transported to the beam line, and measurements taken

in the short time allotted. Aside from such administrative issues, there is another important

difference between µSR and microwave techniques. While microwave surface impedance

cannot always accurately determine the absolute value of λ, it can measure variations of λ with

much higher sensitivity than µSR. Also, while the theory used to extract λ from µSR

measurements is well developed, there is a significant amount of modeling involved, and some

results may depend on the details of the model. Other techniques are able to measure variations

of λ directly.

The technique of µSR is more general than it might appear from the above treatment. In

fact it provides a useful measurement of the magnetic properties of a wide variety of different

material types. An important example is the measurement of µSR in superconductors in zero

applied field. If the superconductor exhibits time-reversal symmetry breaking, spontaneous

magnetic fields are predicted to appear within the material. Such effects have been observed in

UPt321, UBe1322 and Sr2RuO423, as I will discuss in more detail in a later chapter.
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1.7 Josephson Junction Modulation

A unique technique has been used by Froehlich et al.24 to measure the penetration depth and its

variation with temperature in epitaxial films of YBCO. A grain-boundary Josephson junction is

prepared. The critical current of this junction will be modulated by magnetic flux Φ passing

through the junction according to the Fraunhofer diffraction-like expression

( )
0

0sin
)0(

ΦΦ
ΦΦ

=Φ
π

π
cc II (1.24)

where Φ0 is the flux quantum. The flux is given by the product of the field H and the effective

area of the junction which depends on the penetration depth of the material giving

( )wHt λ2+=Φ , where t is the barrier thickness, and w is the width of the junction. Since the

junction geometry is known, the penetration depth can be determined in a simple and direct

way. In their paper, Froehlich et al. read the flux off at the flux values where the critical current

has its maxima, at approximately 02
1

max )( Φ+=Φ nn . As temperature is varied, the flux value of

the maxima can be followed to determine λ(T).

The expression for Ic(Φ) assumes the width of the junction w is less than the Josephson

penetration depth, λJ. If this condition is not satisfied, then the effective area of the junction

will no longer be temperature independent but will depend on the reduced junction width

)(/ Tw Jλ . Froehlich et al. point out that this effect becomes less important as the higher values

of n are chosen, i.e. lobes farther out on the diffraction pattern. A second assumption implicit in

Eq. 1.24 is that the critical current density Jc is uniform across the junction. If this condition is

not satisfied then measurements must be interpreted as )0()()( λλλ −=∆ TT  rather than an

absolute measurement. Finally, flux focusing effects can give a substantial error in the effective

field applied to the junction. While an exact determination of this focusing effect is necessary
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for an absolute measurement, the effect should be independent of temperature, and so once

again allows a relative measurement.
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2 Experimental Design

The principles of resonant oscillator measurements in general, and tunnel diode oscillators

in particular were discussed in chapter 1. In this chapter I will discuss the details of the

construction and performance of our tunnel diode oscillator system. We will first consider the

design of the electronic oscillator circuit and then discuss the pieces that mechanically hold the

system together.

In this experiment we measure the temperature dependence of the penetration depth in

the temperature range from 1 K down to lowest temperature that can be attained in our 3He-4He

dilution refrigerator (DR). Under the full heat load of the experiment, our DR can reach a

temperature of approximately 30 mK. Our DR, an Oxford Instruments Kelvinox 25, has a

rather modest cooling power of only 25 µW at 100 mK. The cooling power of a DR will drop

as 2T ,1 so below 100 mK the cooling power drops rapidly. It is only through careful design

that this low a temperature can be reached in a DR of this power. The dewar which houses the

DR is surrounded by a dual-layer mu-metal shield which shields the experiment from the

earth’s field, to a level less than 1 mT. This prevents the effects of vortices becoming trapped in

the sample as it cools below Tc.

Craig Van Degrift2 conducted a systematic study of low temperature tunnel diode

oscillators, and presents design specifications for a tunnel diode oscillator (TDO) with

frequency stability of 0.001 ppm. Our experiment is modeled after the design described in this

paper. One of the main advantages of a TDO over other methods of generating oscillations is

the small size and low power requirements of the tunnel diode, which permit the oscillator

circuit to be located in the low temperature portion of the apparatus–even immersed in liquid

helium. Immersion, in particular, provides a very stable temperature environment for the
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components of the oscillator, contributing to a very stable oscillation frequency. If the circuit

cannot be immersed, as in our case, it is possible to use temperature control techniques to

maintain a stable low temperature in the circuit.

LP

LT

C

BD3

CB

R1

R2

RP

CC

To Room
Temp.x

Figure 2.1

Schematic diagram of low temperature oscillator circuit. The circuit components used in our experiment are C =

100 pF, RP = 300 Ω,  CB = 10 nF, R2 = 300 Ω,  Cc = 20 pF, R1 = 1400 Ω

2.1 Tunnel Diode Oscillator Circuit Design

The design of the experiment is based directly on the design described by Craig Van

Degrift2. The oscillator portion of the circuit, a parallel LC resonant circuit, is inside the

cryostat, at low temperature. The gain required for oscillation is provided by a tunnel diode

(Germanium Power Devices model BD-3).
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Figure 2.1

Schematic diagram of room temperature electronics.

The dc bias for the tunnel diode circuit is generated at room temperature by a

semiconductor reference voltage source (Burr-Brown model REF10), which provides a very

stable 10 V output. This voltage is buffered with a low noise op-amp and filtered before

passing out to the cryostat through a semi-rigid coaxial cable. The rf oscillation signal (10-30

MHz) is carried back out on this same coax cable. The ac component is coupled through a

capacitor to an rf amplifier (Trontech, Inc. model W50ATC) and then to a balanced mixer

(Hewlett-Packard model 10514A). The frequency output from the mixer is the difference

between the signal frequency and the frequency of the local oscillator (LO) signal from a

synthesizer (Stanford Research Systems model DS345). The LO frequency is adjusted to set the

mixer output frequency to a convenient value, usually 10-20 kHz. The signal passes through an

audio frequency amplifier, a bandpass filter and then to a universal frequency counter (Hewlett-

Packard model 53131A). The frequency counter is equipped with an optional high stability

time base, which provides stability of 1 ppb. This 10 MHz time base signal is also used to

generate the synthesized local oscillator signal.
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We have found it very effective to use the input stage of a lockin amplifier as the audio

amplifier. The usual lockin output is not used, instead an output on the back of the instrument

provides access to the preamplified, filtered signal, before it goes to the lockin stage of the

amplifier. The filter is a bandpass type centered at the lockin reference frequency, with a

bandwidth of 1/5 of the reference frequency. The center frequency can conveniently be

adjusted by adjusting the reference frequency input. The signal frequency should stay within

the pass band as it shifts due to the temperature dependence of the sample. The frequency from

the mixer is typically ~10 kHz, so the bandwidth is ~2 kHz. If the frequency shift over the

temperature range of interest is greater than 2 kHz, then the LO frequency and lockin reference

frequency can be easily adjusted to a different value.

2.2 Mechanical Design

The mechanical design of the low temperature part of the system is constrained

primarily by the requirement that different portions be maintained at different temperatures,

and by the limited cooling power of the dilution refrigerator. The system can be divided into

three parts. The cold finger, which carries the sample must allow the temperature to vary from

the base temperature of the fridge up to about 1 K. The electronics, which includes the tunnel

diode as well as the capacitors, resistors, and tap coil which form most of the oscillator circuit,

must be at a constant temperature because the frequency will change when the temperature of

these components changes. Lastly, the primary coil must also be at constant temperature. In our

design, the coil can be maintained at a different temperature from the electronics. I will

describe the construction of each of these parts in detail.

The cold finger is made in three pieces. The main portion is made from a single piece of

gold-plated, oxygen free high conductivity (OFHC) copper. It has a round flat plate which
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covers the entire bottom mounting surface of the mixing chamber of the fridge, where it is held

with stainless steel screws threaded into tapped holes in the mixing chamber. A cylindrical

finger extends from the center of the flat part. Attached to the end of the large finger with silver

conducting epoxy is a smaller diameter finger of OFHC copper. At the end of this smaller

finger, a 1.25 mm diameter sapphire rod is affixed with Stycast 1266 epoxy. The sample is held

on the end of the sapphire rod with a small amount of silicone vacuum grease or GE varnish.

Near the end of the small copper finger is a small chamber formed by hollowing out a portion

of the copper and covered by a cylindrical shield. Inside this chamber is a calibrated RuO2 chip

resistor (called “RuO2 A”) which we use to measure the temperature of the sample. This

thermometer was calibrated against two different calibrated resistor thermometers and against a

60Co nuclear orientation thermometer. Whether the temperature of the thermometer on the

small copper finger, and the sample on the end of the sapphire rod are the same, of course,

depends on establishing thermal equilibrium. I will discuss this in more detail later in this

chapter.

The primary coil is made from 0.0025" diameter (42 gauge) copper wire. It is made by

hand in the following way: A drill bit is selected with the desired inner diameter of the finished

coil. A small piece of very thin Mylar is wrapped several times around the shank of the drill bit.

Then two pieces of wire are wrapped side-by-side over the Mylar with the windings packed

close together until the desired length is reached. A small amount of clear Stycast 1266 epoxy

is applied to the wires and the curing accelerated by careful application of heat with a heat gun.

When the glue is nearly fully cured, one of the two wires is carefully unwound, leaving behind

a single wire which forms the coil with uniform spacing between turns equal to one wire

diameter. The advantage of this technique over simply winding the turns closely packed
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together is that the shunting capacitance between adjacent turns is significantly reduced.

Several additional thin layers of Stycast are applied to the coil to strengthen it before the coil

and Mylar are then slid off the end of the drill bit. The Mylar is peeled away from the inside of

the coil, leaving the coil as a free-standing piece of wire and Stycast.

coil

cold finger

sample

epoxy cylinder

coil wires

copper can
Figure 2.1

The primary coil with cold finger and

sample inserted.

Stycast 1266 is cast into a solid cylinder, and this is machined into a small tube. The

coil, with only a thin layer of hardened Stycast supporting it, is glued into the Stycast tube, and

the tube is then glued inside a cylindrical copper can with more Stycast. This shields it from

any stray signals and also allows the temperature of the coil to be regulated.

The copper can containing the primary coil is glued with GE varnish into a small recess

in a round flange made from gold-plated OFHC copper. This flange has a threaded hole which

allows a screw to affix a silicon diode thermometer and a small heater to measure and control

the temperature of the flange and coil. The coil is controlled at a constant temperature usually

from 1.4 K up to a few Kelvin using a Lakeshore model 340 temperature controller, which is

capable of controlling within ~0.2 mK of the setpoint. In order to provide a source of cooling

for the coil, a heavy copper wire is connected through a copper rod to the 1 K pot of the

dilution fridge and held to the coil flange with a screw at the same point where the thermometer

and heater are attached.
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The sample, on the end of the cold finger’s sapphire rod, must be positioned in the

center of the primary coil. A hollow tube is used to hold and align the coil flange in position

relative to the cold finger. The tube is made from Vespel SP-22 (available from DuPont) which

is selected for its extremely low thermal conductivity at low temperatures. To maximize the

thermal resistance, the Vespel support tube is machined to 0.050" wall thickness. It is

constructed from three separate pieces which are nested, one inside the other, and connected

with brass flanges on their ends as shown in Fig. 2.2. This arrangement allows the length of the

tube to double back on itself, adding to the thermal path length without adding to the overall

length of the part. We have taken great care to minimize the amount of heat which can flow

from the coil (at a temperature of several Kelvin) to the other end of the Vespel support tube,

which is fixed to the cold finger and mixing chamber (at a temperature down to 30 mK). Any

excess heat load on the mixing chamber will raise the temperature, and we will be unable to

reach the lowest temperatures needed for the experiment.

The oscillator electronics is housed inside a small gold-plated copper can constructed

such that half of the cylinder can be removed, allowing adjustment of the circuit inside. The

circuit itself is held on both sides of a piece of copper plate, which stands vertically inside the

housing. Connections between components on opposite sides of the plate pass through drilled

holes. The wires are secured in the holes, thermally anchored to, but electrically insulated from

the plate, using black Stycast 2850 epoxy. The copper plate is the ground for the circuit.

Several pins made from thick copper wire are soldered to the plate using Sn-Ag solder (97%

Sn, 3% Ag, Kester Lead-Free solder), which has a lower superconducting temperature (3.7 K)

than ordinary Pb-Sn solder (7.3 K). Ground connections in the circuit are soldered to these pins

using Pb-Sn solder. A short piece of semi-rigid coax with an SMA coaxial connector on its free
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end is soldered into the fixed side of the circuit housing. The shield of the coax anchors the

ground for the housing and the center conductor carries the signal and bias voltage. The center

conductor of the coax is exposed inside the housing and passes from behind the copper plate

through a hole to the front and is soldered to the circuit. A heavy copper wire is soldered to the

housing at the point where the coax enters, and is soldered to the circuit, providing both

electrical ground and thermal anchoring of the circuit to the housing. To further increase the

thermal anchoring of the copper plate a copper braid is attached to the plate at one end with a

small screw. The other end is connected with a screw to the outside of the cylindrical enclosure.

The wires from the primary coil pass through a small copper tube, through a hole in the top of

the electronics housing and connect to the oscillator circuit with a tiny two-pin connector

(Microtech Inc.).

The circuit employs a tapped inductor coil. While the original paper by Van Degrift

used a single coil with a tap connection in the middle, we have found it easier to make two

separate coils. The tap coil is wound on and glued permanently to a piece of quartz tubing, and

held by a small nylon spacer inside a copper can in the electronic circuit housing. This tiny can

is fixed to the copper plate with an 0-80 screw.

The electronics housing is held beneath the coil flange by three spacers made of

graphite, each with a small cardboard washer. These insulate the electronics thermally from the

coil flange, allowing them to be controlled at different temperatures. The electronics

temperature is controlled by the Lakeshore controller using a calibrated Cernox thermometer

and small heater. Because heat is also generated within the oscillator circuit, the electronics is

often significantly warmer than the coil flange. If the temperature of the coil flange rises too

high, excess heat will be conducted to the mixing chamber through the Vespel support, raising



30

the mixing chamber temperature. To provide cooling for the electronics, a heavy copper wire

conducts heat from the electronics to the top plate of the vacuum can, which is at the helium

bath temperature of 4.2 K.
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Figure 2.2

Schematic of tunnel diode oscillator system. MC is the mixing chamber of the dilution refrigerator. The 1K pot

and vacuum can top plate are also shown. For clarity, the vacuum can itself is not shown.
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(b)

(a)

(c)

Figure 2.3

Photographs of tunnel diode oscillator system. (a) electronics and coil attached to Vespel tube (b) electronics and

coil alone (c) cold finger
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2.2.1 Thermal Conductivity

There are two aspects of the design of our system where the thermal conductivity of

materials is important. In one case we want the conductivity as high as possible, and in the

other as low as possible. The thermometer resides on the copper portion of the cold finger

where it can be relied upon to accurately reflect the temperature of the mixing chamber. But the

sample is located at the tip of the sapphire rod. Thus we rely on the thermal conductivity of the

sapphire rod to maintain equilibrium between the thermometer and sample. At temperatures

below about 100 mK, the thermal conductivity of most electrically insulating materials become

very small and it may require a long time to establish thermal equilibrium. A single crystal of

high purity sapphire of the type used for our cold finger has very high thermal conductivity

compared to most insulators.

Using data from the low temperature book by Pobell3, we calculate the thermal

conductivity of our sapphire rod at 100 mK to be approximately 4 nW/K. The heat delivered to

the sample by thermal radiation is somewhat difficult to estimate. To determine whether the

thermal conductivity of the sapphire would be adequate to cool samples to temperatures near

the mixing chamber temperature, we affixed a second RuO2 resistor chip thermometer to the

end of the sapphire rod and performed sweeps of the mixing chamber temperature. To the

extent that the thermometer on the end of the sapphire rod agreed with that on the copper part

of the cold finger, it can be assumed that the sample will be in thermal equilibrium. The

thermometers agree very well above 100 mK. Below this temperature it required many minutes

(at least) for the sample to come to equilibrium.

Sapphire has several advantageous characteristics as a cold finger material. It has no

magnetic susceptibility (at least in this temperature range) and is electrically insulating. The
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latter is useful because at the high frequencies, at which our coil oscillates, eddy current heating

can be quite significant. However, in order to improve the thermal conductivity, we judged it

better to replace the sapphire rod with high purity (99.999%) silver. Silver has low-temperature

conductivity several orders of magnitude greater than sapphire at these temperatures. To

minimize the effect of eddy current heating, the 1.25 mm diameter sapphire rod was replaced

with nine pieces of 0.25 mm silver wire. Conducting silver epoxy was used to attach the silver

wires to the copper cold finger. Each wire was individually coated with an insulating layer of

Stycast 1266 to eliminate conducting paths of large area. The bundle of wires is encapsulated in

Stycast 1266 to form a rigid rod 1.25 mm in diameter with the ends of the wires exposed,

allowing the sample to make thermal contact.

 

Figure 2.1

The cold finger. A detail of the silver wire bundle is shown.

2.3 Calibration

As discussed in section 1.1.1, we need to determine the factor G that converts from

frequency to penetration depth. We have (at least) two different ways of calibrating our system.
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The first is to measure the frequency shift when a sphere is inserted into the coil. The second is

to make a sample of known response in the same shape as the real sample.

For consistency, we performed the first technique at 4.2 K, with exchange gas in the

vacuum space to maintain thermal equilibrium with the main helium bath. The oscillator

system is assembled as usual, but without a sample, and cooled in the usual way to 4.2 K.

Oscillation is established and the resonant frequency is noted. The system is then warmed to

room temperature and the process repeated, but this time with a 1/32 in. (0.79 mm) diameter

aluminum sphere installed as a sample. At 4.2 K the aluminum is well above its

superconducting transition temperature, but the ordinary electromagnetic skin depth serves to

screen the high frequency magnetic field from the interior. The increase in resonant frequency,

relative to the empty coil, is recorded. Let us call this frequency difference ∆fsphere. We now use

Eq. 1.12 to determine Vc. As discussed in Ch. 1 this technique will be accurate only for

ellipsoidal samples. A typical value is G = 17, obtained for a typical sample (C82A1-2a). By

comparing ∆λ(T) with values of λ(0) from the literature, it appeared that this calibration

technique severely overestimates the change in penetration depth for our samples. We turned

then to the second technique.
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C82A1-2a Al#1
Figure 2.1

Comparison of the shapes of SRO sample C82A1-2a and high purity aluminum sample Al#1.

A small piece of high purity Al wire (99.9995%) was ground on silicon carbide

sandpaper and emery paper to form a rectangular plate with the same thickness as one of the

samples (sample C82A1-2a). Then, by measuring the dimensions under a microscope, the plate

was cut into the approximate shape and size of the sample with a razor blade. We called the

aluminum sample Al #1.

The penetration depth of a nonlocal superconductor, such as aluminum, has a temperature

dependence as follows:4
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Figure 2.2 shows the agreement between the theory and the data for aluminum for the

superfluid fraction, 22 )(/)0()0(/)( TnTn LLss λλ= . The geometry factor G = 2.5 is the value for

which the data best agrees with the theoretical curve. To give an idea of the sensitivity of the fit

to the scale factor, curves are shown with G adjusted ±10%.
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Figure 2.2

Superfluid fraction of

Al#1, using G = 2.5,

normalized to λ(0) =

500 Å. The line is the

theoretical curve.

2.4 Performance

In order to be able to accurately determine the temperature dependence of the

penetration depth using this technique, we must be assured that the systematic errors in the

measurement are reduced sufficiently. This places stringent requirements on the design.

The most important criterion is the stability of the frequency measurement. For a

number of reasons, the total change in frequency is very small. First is the size of the samples.

To fit on the end of the sapphire cold finger samples must be less than 1 mm square. The

typical thickness of our samples is several hundred microns at most, depending on the material.

Since the shift in inductance of the coil is proportional to the change in its effective volume,
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these tiny samples provide a smaller signal than would larger samples. The second reason is

that for the cuprate materials our measurements are taking place well below Tc. Since the

penetration depth has its largest change around Tc, this means the signal is inherently small in

our temperature range. Even assuming the linear behavior in BSCCO, as reported by Lee et al.5

continues to hold below 1 K, the total change in λ from 1 K down to 30 mK would be ~10 Å.

For our samples, this would correspond to a frequency shift of ~100 mHz. In order to get a

sensitive measurement of λ(T) we would therefore need frequency stability on the order of 10

mHz.

The overall frequency stability is a function of several variables. Most important, and at

the same time easiest to achieve is the stability of the local oscillator. The HP 53131A

frequency counter has a high stability 10 MHz time base, with stability of 1 ppb. This time base

is also used to drive the synthesizer, giving it the same stability. The frequency will also vary

with bias voltage because the capacitance of the tunnel diode is voltage dependent. We estimate

the necessary stability at 2 ppm. The bias voltage is approximately 2 V, so we require stability

of ~4 µV. By carefully constructing the room temperature electronics, we are able to achieve

this stability. Finally, the frequency will drift with changes in the temperature of the oscillator

circuit and the primary coil. The circuit is sensitive to temperature fluctuations at ~100 Hz/K.

For 10 mHz resolution we require temperature stability of ~0.1 mK. The stability requirements

for the coil temperature are less stringent. Frequency varies at a rate of ~5 Hz/K for fluctuations

of the coil, so it needs to be stable to within ~2 mK. Both of these temperature stability

requirements are accomplished by controlling with temperature sensors and heaters using a

very good temperature controller (Lakeshore 340).
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3 Penetration Depth in Unconventional Superconductors

In this chapter I will discuss the behavior of the penetration depth in unconventional

superconductors. I will begin by discussing the BCS treatment of conventional superconductors

following closely the treatment by Tinkham1. I will then contrast the behavior of

unconventional materials.

3.1 Conventional Superconductors

To determine magnetic penetration depth of a superconductor, we must understand how

the electrons respond to electromagnetic field, i.e. a magnetic vector potential A, where the

field AB ×∇= . The current density is simply proportional to the velocity v of the electrons,

and their density n: vJ ne= . The velocity is determined by to the canonical momentum

Avp
c
em −= . The resulting current becomes

21 JJ
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(3.1)

The second of the two terms in the current,

AJ
mc
ne2

2 −= , (3.2)

represents the diamagnetic response of the superconducting electrons, which oppose the field.

This term represents a perfect diamagnetic response. Since n is the total density of electrons,

this term is independent of temperature in the superconducting state. Evidently the remaining

term must cancel this diamagnetic response in order to give the correct temperature dependence

of the response. For this reason J1 is often referred to as the paramagnetic response, because it
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opposes the diamagnetic current. This term is also sometimes called the quasiparticle back flow

term because it represents the flow of quasiparticles in opposition to this diamagnetic flow.

However, it is important to realize that the supercurrent is actually the sum of both responses,

and not just J2.

Let us examine the form taken by the Fourier transform of the current response. We can

write the current as )()()4/()( qaqqJ Kc π−= , where a(q) is the Fourier transform of the field

A(r). In terms of J1 and J2 we would write

[ ] )()()(
4

)( 1212 qaqqJJqJ KKc +−=+=
π

. (3.3)

Now, putting in the expression for J2 from above and making explicit the temperature

dependence of J, we find
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where we can recognize the form of the first term as the London penetration depth at zero

temperature, 222 /4)0( mcneL πλ =− . So the K(q,T) becomes

[ ]),()0(1)0(),( 1
22 TKTK LL qq λλ += − . (3.5)

We identify the q →0 limit of K as the penetration depth )(),0( 2 TTK L
−= λ . As mentioned

earlier, we expect the (negative) K1 term to partially cancel the temperature-independent first

term, resulting in the temperature dependence of the penetration depth.

To calculate the temperature dependence of the penetration depth in the BCS model we

will need to find the expression for the paramagnetic response J1(T), which will give us K1(T).

Recalling Eq. 3.1, we see that J1 = nep/m. To calculate this quantity in the BCS model we can
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express the response in terms of the electron creation and annihilation operators. It can be

shown that the expression is given by

∑ −=
k

kqkkqJ cc
m
e *

1 )( � (3.6)

where J1(q) is the Fourier component of J1 with wave vector q. For the purposes of the

experiments described here, we will be interested in the low frequency limit, q→0. In this limit

the expression for J1 in terms of quasiparticle operators, γ , simplifies to
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Here fki are the Fermi distribution functions describing the average occupation of the

quasiparticle states. For small a(0) the occupation of the two quasiparticles states are nearly

equal: 10 kk ff ≈ . The difference can be expanded to lowest order and inserted into Eq. 3.7.

Using the fact that J is parallel to a(0) by symmetry, averaging k over the Fermi sphere to get

kF/3, and substituting N(0) = 3n/4EF and once again for λL(0), we can show that

∑ 





∂
∂−











−=

k kE
f

N
TK

L )0(
1

)0(
1),0( 21 λ

. (3.8)

Here 222
kkk ∆+= ξE  is the quasiparticle excitation spectrum, where kξ  is the energy relative to

the Fermi energy. So to convert the sum over k to an integral over quasiparticle energies we

must put in the density of states (DOS) of the quasiparticles, which for an ordinary s-wave

superconductor is given by
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Finally, we arrive at the expression for K(0, T), giving the temperature dependence of λL
-2 as
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For a superconductor in the local limit, at low temperature, this expression can be shown2 to

depend on temperature as
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We see that at the lowest temperatures the penetration depth goes as an exponential

)/)0(exp( TkB∆− . In the nonlocal limit the temperature dependence is
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which is also exponential at low T. Qualitatively, this exponential behavior is simply the

thermal excitation of quasiparticles over the energy gap. In many of the unconventional

superconductors, it is believed that the energy gap goes to zero at points or lines on the Fermi

surface. It is immediately obvious that the low temperature behavior in such a case must be

different. As we shall see in the next section, the nodes in the energy gap give rise to power law

behavior at low temperature rather than exponential as a result of the increase in the density of

available quasiparticle states at low (zero) energy.

Before moving on to discuss unconventional superconductors, it is worth pointing out

that the low temperature exponential behavior discussed here for the penetration depth makes

itself felt more generally in any quantity which depends on the quasiparticle DOS, for example

in the specific heat, ultrasound attenuation, and nuclear spin depolarization rate. Likewise,

these quantities will all display power law behavior in the event that the energy gap has nodes.
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3.2 Unconventional Superconductors

In this section we would like to understand how to calculate the temperature

dependence of the penetration depth in unconventional superconductors. First let us take a

moment to define just what is usually meant by the term unconventional superconductor. The

order parameter (OP) is a quantity which is zero in the normal state and non-zero in the

superconducting state. In addition, the magnitude of the OP tells us the strength of the

superconducting order. A superconductor is considered unconventional if its OP has a lower

symmetry than the crystal lattice of the material. The energy gap of an ordinary superconductor

fits the criteria to be used as an OP. It is believed that the reduced symmetry which applies to

the OP in an unconventional superconductor applies also to the energy gap. And so the energy

gap can be taken as virtually synonymous with the OP.

Why is unconventional symmetry important? Consider a conventional superconductor,

where the mechanism giving rise to superconductivity is well understood. In this case an

attractive interaction between electrons with opposite momentum and spin is mediated by the

crystal lattice in the form of phonons, giving rise to the familiar Cooper pairing. One property

of this interaction is that it is isotropic, except for slight distortions due to the shape of the

crystal lattice and Fermi surface. This symmetry is called s-wave because it represents a state

with zero angular momentum, and for a cubic crystal has the familiar spherical shape of an

atomic s orbital. Unconventional superconductors exhibit a variety of behaviors which are

generally thought to be incompatible with conventional superconductivity. The assumption is

that these differences can be explained if alternative mechanisms, other than phonons, give rise

to superconductivity. In almost all unconventional superconductors these mechanisms are

unknown. (The only exception which comes to mind is superfluid 3He.3)



45

One critical property of these alternative mechanisms is that they may exhibit a

symmetry other than s-wave. In simple terms we can understand this to mean that the

interaction between the electrons is anisotropic in a non-trivial way. The symmetry of this

anisotropic interaction is necessarily reflected in the symmetry of the superconducting state. It

turns out that a number of experiments (including the ones described in this thesis) are capable

of probing the symmetry of the superconducting state. If the symmetry can be determined, it

strongly constrains the possible mechanisms of superconductivity.

The microscopic theories of different sorts of unconventional interactions, applicable to

different unconventional materials, are under study by many theorists. At the current time it is

fair to say that there is no real consensus as to which of the leading candidates (if any) may be

correct for a given material. Fortunately, in order to explore the symmetry of the

superconducting state we do not need to make direct reference to any particular microscopic

model of superconductivity. Instead we are guided by the phenomenological Ginzburg-Landau

theory, and by the very powerful results of group theory.

Group theory breaks down the full symmetry of the crystal lattice into a certain number

of irreducible representations, Γ , with basis functions fΓ(kF). The order parameter can be

expanded in terms of all the possible basis functions as follows:

∑
Γ

Γ
Γ=∆ )()( F

)(
F kk fη , (3.13)

where η(Γ ) are expansion coefficients.4  The actual realization of superconductivity is

determined by the order parameter which minimizes the free energy. An important assumption

is that the Ginzburg-Landau free energy functional can be expanded in powers of the order

parameter, i.e. in powers of η(Γ ).  This expansion is written down and, by making suitable

assumptions and by comparing with experiments, the expression for the free energy can be
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minimized. The result is a determination of one irreducible representation which has a Tc higher

than all the others. It is the symmetry of this representation which determines the symmetry of

the order parameter. Of course, this procedure works equally well for conventional

superconductors. By definition the result for conventional superconductors is always that the

symmetry which minimizes the free energy is the usual s-wave symmetry.

There are two crucial properties which are determined solely by the symmetry of the

OP: the parity and the presence of nodes. There are a finite number of distinct crystal lattice

formations which can exist in the solid state of matter, all of which have inversion symmetry.

As a result, all of the irreducible representations of the symmetry group of a crystal lattice will

have definite parity, i.e. they have either even or odd symmetry under inversion. The reason

this is so important is that the superconducting state is composed of pairs of electrons, which

are Fermions, and must obey Fermi-Dirac statistics. In particular, the total state (including both

orbital and spin components) must be antisymmetric under exchange of the two electrons. The

critical point is this: The symmetry of the OP is the symmetry of the orbital part of the

underlying superconducting state. Now, if the OP has even symmetry, as in the s-wave case,

then the spin component of the superconducting state must be a singlet, because the

antisymmetric symmetry of the singlet preserves the overall antisymmetry of the state.

Likewise, if the OP has odd symmetry, then the spin state must have even symmetry. The spin

symmetry is triplet in this case. However, we should be careful not to assume that there are

three degenerate spin states. It is not necessarily the case that all three triplet spin states are

degenerate in energy with respect to the interaction potential. If the triplet degeneracy is split

then it is possible for only one or two of the states to be present. In any case, it is clear from this
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brief discussion that a superconductor with triplet spin symmetry can show a wider variety of

possible states than the simple s-wave case.

The second property of great importance which is determined by the symmetry of the

OP is the presence of nodes. To illustrate the point, consider the atomic pz orbital. This state has

lobes pointing in the ẑ±  directions, and is zero everywhere in the xy plane. We will refer to

this as a line node in the xy plane, as will become clear later. The location of the node plane is

determined by the symmetry of the pz state. If it didn’t have a node in the xy plane, it simply

wouldn’t be a pz state. The same is true of the symmetry of the OP. The nature of the nodes

depends only on the symmetry of the OP. Because the energy gap of the superconductor is the

OP, this has a profound effect on the behavior of the superconductor.

3.3 Nodes in the Energy Gap

The feature of unconventional superconductivity which plays the greatest role in

determining the temperature dependence of the penetration depth in any given material is the

presence of nodes in the energy gap. As a concrete example let us examine the so called E1g

state proposed for the heavy Fermion superconductor UPt3 4 which has the k-space dependence

)(~)( yxz ikkk +∆ k . The momentum vector is constrained to lie on the Fermi surface.

Approximating the Fermi surface as spherical with unit radius, we can see that ∆ will go to zero

at two point nodes at the poles, kx = ky = 0, kz = ±1. This gap function also has a line of nodes in

the plane kz = 0, at all values of kx and ky. The node structure can be seen in Fig. 3.1, which

shows the energy gap and Fermi sphere on a polar plot in k-space.



48

Figure 3.1

Energy gap in the E1g state. The white surface is the

Fermi sphere. The shaded surface is the boundary of the

energy gap in k-space.

Annett, Goldenfeld and Renn5 point out that the existence of nodes will depend on two

factors: The symmetry of the energy gap, and the shape of the Fermi surface. For a node to

exist, the gap function must vanish at a point in k-space where the Fermi surface exists. This is

especially relevant to the case of a layered material where, rather than spherical, the Fermi

surface has a cylindrical shape extending infinitely in the direction of the axis. Since the ends

of the cylinder are open, this portion of k-space is inaccessible. Any nodes which, by symmetry

consideration, would occupy this region (e.g. the point nodes in the E1g state) would not, in

fact, exist in this case.

Let us examine the behavior of the quasiparticle DOS when there is a node in the gap.

N(E) dE is the number of states between energy E and E + dE, which is proportional to the

available volume of k-space between these energies, as illustrated in Fig. 3.2 for a point node,

and Fig. 3.3 for a line node. According to Sigrist,6 at low temperatures the form of the DOS

will depend solely on the topology of the nodes. If they are line nodes, then the EEN ∝)( , and

if they are point nodes, then 2)( EEN ∝ .

The expression for the paramagnetic response has the form
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To determine the temperature dependence of this expression at low temperatures, we can make

the substitution TkEu B/= :
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Putting this result into Eq. 3.10 we find the low temperature limit for a point node is
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For the case of a line node we get the result
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Figure 3.2

A point node in the energy gap. (a) Cutaway view of the point node of the E1g state. (b) Schematic of the DOS.
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So first, the observation of power law behavior in the ∆λ(T) is strong evidence of

unconventional superconductivity, with nodes in the energy gap. And the specific power law

can distinguish the dimensionality of the node structure.

(a) 

E

EF

θ

dE

L

k
 (b)

Figure 3.3

A line node in the energy gap. (a) Cutaway view of the line node of the E1g state. (b) Schematic of the DOS.

The cuprate high temperature superconductors provide us with a prototype with which

to compare the results of this section. In recent years, with the availability of very high quality

samples of a number of these materials, λ(T) has been found to agree very well with a model

consisting of an energy gap with line nodes. However, for many years there was considerable

confusion.

It is now believed that the energy gap in the cuprates has d-wave symmetry. These

materials have a highly layered structure, with a strongly two dimensional band structure. The

Fermi surface is roughly cylindrical, rather than spherical, and extends infinitely in the

direction perpendicular to the planes. The energy gap is thought to have the form

22)( yx kk −=∆ k . Within the planes there are nodes in the gap wherever 22
yx kk = , i.e. at ±45° and
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±135°, as shown in Fig. 3.4. These zeros actually constitute line nodes, since the Fermi surface

extends infinitely in the kz direction.

The early results of measurements of the λ(T) showed clear power law behavior at low

temperatures. However, rather than linear temperature dependence, as expected for line nodes,

early measurements7 showed quadratic temperature dependence. Since there was a great deal of

evidence in support of the d-wave symmetry model, it became important to explain why this

measurement appeared to be in contradiction. The idea most often cited is the presence of so-

called resonant impurity scattering in the materials. I will discuss this idea in more detail in the

next section. With this in mind, experiments were repeated with cleaner and cleaner samples as

they became available. Eventually, careful measurements of very clean single crystal samples

began to show that the intrinsic low temperature behavior is indeed linear in temperature, as

expected for line nodes8-12.

(a) (b)

Figure 3.4

The d-wave energy gap for the cuprate superconductors. Two dimensional picture is shown in (a) and the 3D

representation in (b). Note the cylindrical Fermi surface.



52

3.4 Perturbing Effects

As mentioned above, the early data on λ(T) for the curates showed quadratic temperature

dependence, in contrast to the prediction of linear dependence for d-wave symmetry. The

explanation which gained the most acceptance was the idea that resonant impurity scattering

was present in the material. Another interesting idea is the proposal that, despite the fact that

the coherence length is usually thought to be much shorter than the penetration depth, the

presence of nodes in the gap necessitates a nonlocal treatment of the calculation.

3.4.1 Resonant Impurity scattering

The hypothesis of resonant impurity scattering (RIS), also called unitary scattering, was

proposed by Hirschfeld and Goldenfeld13 to explain a number of behaviors observed in

measurements of the cuprate YBCO. Most important is the discrepancy already mentioned: that

some measurements showed quadratic temperature dependence, while other, equally credible

measurements showed linear behavior. The critical temperatures in all these cases were at or

near the optimal values attained for these materials. This argues against the possibility of weak

Born scattering, which would tend to strongly suppress Tc. In addition, measurements of

thermal conductivity and specific heat had been reported which seemed to be consistent with

resonant impurity scattering.

Hirschfeld and Goldenfeld made several predictions based on the RIS hypothesis. They

predicted the existence of a cross-over temperature T*. Above T* the intrinsic behavior is seen:

TT ~)(λ∆ . But at lower temperature RIS causes the behavior to become 2~)( TTλ∆ . An

important point is that in the strong scattering limit small concentrations of impurities can cause

a large residual DOS at low temperature, without significantly suppressing Tc. For example, if

the resonant defect concentration is 1%, they calculate T* about 10% of Tc. Meanwhile, Tc
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would be suppressed by only 1%. At more realistic concentrations of only 0.1%, T* would be as

low as 2-3% of Tc. No explanation is given, however, for the source of RIS.

The predictions quoted here are very interesting. They suggest that if we can make

measurements down to sufficiently low temperature, it should be possible to observe the

crossover of a linear sample to quadratic behavior, verifying the RIS model.

3.4.2 Nonlocal Effects

A different idea has been proposed by Kosztin and Leggett14 to explain the quadratic

dependence. They point out that calculations have been made in the cuprates assuming the local

limit. This seems reasonable at first glance since average coherence lengths are on the order of

several Ångstroms, which is small compared to the penetration depths of several thousand

Ångstroms. However, the coherence length, can be expressed as 00 / ∆= πξ Fv . Considering

that ∆0 = ∆0(k) is anisotropic, it might be more appropriate to adopt an anisotropic coherence

length, )(/)( kk ∆= πξ Fv . Under this assumption, the coherence length can be seen to diverge

at points on the Fermi surface where the gap vanishes. In these directions nonlocal effects could

be important. Nonlocal electrodynamics would be expected to be important on only a small

fraction of the Fermi surface, of order 000 / λξα ≡ . The absolute value, λ(0), would not be

significantly affected because the whole Fermi surface contributes to its value. However, the

low temperature power law could be strongly affected because the effect is concentrated around

the nodes of the gap, which, as we have seen, dominate the temperature dependence.

 This paper predicts a crossover temperature (in units where kB = 1),

00000
* / λξα ∆=∆=T , below which these effects will be important. For YBCO, with typical

values ∆0 ≈  250 K, ξ 0 ≈  14 Å, and λ0 ≈  1400 Å, we find T* ≈  2.5 K. An important result of this
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calculation for YBCO is that the nonlocal effects will not be seen for magnetic fields parallel to

the  ab planes. This occurs because the wavevectors for the quasi-two dimensional YBCO are

constrained to lie in the ab plane, and will not have a component parallel to direction of field

penetration (the c direction) in this orientation. Finally, the conclusion is the same as the

previous section: at low temperature, but above T*, linear behavior will be observed, while

below T* the behavior will cross over to quadratic.

It is interesting to consider this scenario for the material Sr2RuO4, under study in this

thesis. Putting in typical measured values of penetration depth, coherence length and energy

gap, we find a value cTT ≈* . This will be discussed further in the chapter on Sr2RuO4.
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4 Strontium Ruthenate

Strontium ruthenate (SRO) is the first reported perovskite superconductor without

copper. With a chemical formula Sr2RuO4, it has the same crystal structure as the high

temperature superconductor La2CuO4. While SRO has been known for some time,1 it was not

until more recently that SRO was shown to be a superconductor.2 Critical temperatures of the

earliest samples were around 1 K, with more recent samples displaying Tc as high as 1.5 K.

As superconductivity in SRO was investigated in detail, it quickly became apparent that

SRO is an unconventional superconductor. The experimental evidence, when taken together

with theoretical models, seems to support the conclusion that SRO has p-wave symmetry.

I will discuss the experimental measurements that have been made on SRO, and review

the important features of the theories which have been proposed to explain the unconventional

nature of superconductivity in this material.

4.1 Crystal Growth and Characterization

The first report of superconductivity in SRO came from Maeno et al.2.  High quality

crystals are grown using a floating zone method in air or in a controlled atmosphere of 10%

oxygen and 90% argon using excess Ru as a flux. It was found that a mixture of SRO and pure

Ru metal forms a eutectic. This results in a characteristic spontaneous separation of the two

components of the eutectic. The result is that Sr2RuO4 crystallizes in its exact stoichiometry

from a mixture containing excess Ru, with pockets of pure Ru metal forming a lamellar

structure embedded in a single crystal Sr2RuO4 matrix.3 Maeno et al. found that a radial

concentration gradient of Ru forms in the cross section of the growth rod. The outer surface has

a lower concentration of Ru, and in a sheath approximately 0.5 mm thick, pure Sr2RuO4
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crystallizes. It is from this region that samples of pure SRO are taken. The eutectic matrix of

SRO and Ru forms in the remaining core of the rod. Material from this region has shown some

unusual behavior, including an apparent enhancement of Tc to about 3 K. This is above that of

pure SRO (1.5 K) and far above that of pure Ru (0.5 K).

The powder x-ray diffraction spectra of pure SRO shows a body-centered tetragonal

lattice with the perovskite structure of K2NiF4, and is isostructural to the high temperature

superconductor La2CuO4. Lattice parameters were found to be as follows: a = b = 0.387 nm and

c = 1.274 nm at room temperature.2

Figure 4.1

Crystal structure of Sr2RuO4

and La2-xBaxCuO4 from

Maeno.2

The band structure of SRO has been subject to some controversy thanks to the

possibility of measuring the Fermi surface by two different techniques. Measurements of angle

resolved photo-emission spectroscopy (ARPES) were the first to probe the Fermi surface,

which was followed a short time later by measurements based on the de Haas-van Alphen

(dHvA) and Shubnikhov-de Haas (SdH) effects. The dHvA and SdH results disagree with the
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ARPES in a rather important way. The best evidence now suggests that the dHvA and SdH data

are most likely correct.

ARPES measurements were made by Yokoya et al.4 They found three Fermi surface

sheets: one electron-like sheet (labeled α) centered at the Γ  point of the Brillouin zone and two

hole-like sheets (β and γ ) centered at the X point. This disagrees with band structure

calculations3, 5 which predict two electron-like sheets centered at the Γ  point and one hole-like

sheet centered at the X point. In addition, Yokoya et al. reported the possibility of an extended

van Hove singularity. The ARPES electron count agrees with the band structure calculations.

But later measurements by Puchkov et al.6 cast doubt on the van Hove singularity.

Mackenzie et al.7, 8 measured the Fermi surface by observing quantum oscillations of

magnetization (dHvA effect) and resistivity (SdH effect). Their results agree with the

calculated band structure: α sheet hole-like, β and γ  sheets electron-like. The γ  sheet closes

around the Γ  point instead of the X point.

(c)

Figure 4.2

Fermi surface of SRO. (a) Schematic dHvA effect result and  (b) ARPES result (both from Mackenzie8) (c) Result

expected from band structure calculations (from Maeno9, after Mackenzie7)
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The controversy has largely been resolved in favor of the dHvA results. ARPES

measures only the surface of the sample, whereas dHvA effect measures the bulk material. It is

likely that the ARPES data is not representative of the bulk due to a rearrangement of the bonds

at the surface of freshly cleaved samples, which distorts the Fermi surface locally.

It is interesting to note that dHvA measurements have not been made on the high

temperature superconductors. This experiment is only possible at very low temperatures, in

very pure samples, and requires a magnetic field which exceeds Hc2, so that the field penetrates

the material uniformly. The HTSC materials can be divided into two categories: those which

require doping to be superconducting, and those which are superconducting at stoichiometric

concentrations. Some which require substitutional doping, such as La2-xSrxCuO4, have values of

Hc2 which can be reached in the laboratory, but the random nature of doping makes dHvA

effect unobservable. The stoichiometric materials, such as YBa2Cu3O7, have high values of Hc2

currently unattainable in the laboratory (at least for non-pulsed magnets required for dHvA

measurements). Akima et al.10 measured Hc2 for SRO for fields applied parallel to the ab plane

and parallel to the c-axis, finding µ0Hc2,ab(0) = 1.5 T and µ0Hc2,c(0) = 0.075 T. The relatively

low values of Hc2 provides a unique opportunity to measure the Fermi surface of a perovskite

superconductor with both ARPES and dHvA effects.

Below 25 K the resistivity shows SRO to be a two dimensional Fermi liquid, with

( ) 2)0( ATT += ρρ  behavior indicating the importance of electron-electron scattering at low

temperatures. The resistivity is anisotropic, with residual low T values of )0(abρ = 0.9 µΩcm

and )0(cρ = 500 µΩcm.9



60

Figure 4.3

Resistivity of SRO from Maeno.9

4.2 Superconducting Properties

A large number of different measurements have been made of the superconducting

properties of SRO. On the whole they paint a consistent picture of SRO as an unconventional

superconductor. Important results have been reported from measurements of muon spin

relaxation (µSR), from nuclear magnetic resonance (NMR) and nuclear quadrupole resonance

(NQR) measurements of nuclear spin relaxation time and electronic spin susceptibility, from

specific heat and thermal conductivity, and from studies of the effect of impurities and disorder

on the superconducting properties. I will review these results and discuss their relevance to

issues of unconventional superconductivity in SRO.

The most pivotal evidence for unconventional superconductivity is the 17O nuclear

quadrupole resonance (NQR) measurement of the temperature dependence of the Knight shift.

The measurement shows that there is no change in the spin susceptibility of the electrons, for
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magnetic fields parallel to the crystal planes, as the sample enters the superconducting state.11

In contrast, in a conventional superconductor, the pairing of electrons with opposite spin in the

superconducting state causes an abrupt drop in the spin susceptibility. The absence of this

effect in SRO suggests strongly that this material has spin-triplet pairing. In the so-called

“equal-spin pairing” triplet state electrons form pairs where both have the same spin. That is to

say, the electrons are paired as (k↑ , -k↑ ) and (k↓, -k↓).  In this case the electrons retain the same

polarizability as in the normal state, and hence there is no change in the spin susceptibility in

the superconducting state.12

The total wavefunction for a fermion system must have odd parity. If SRO has triplet

spin parity (even) this implies that its orbital part (and the order parameter) must have odd

parity, and thus cannot be s-wave. If one believes the Knight shift data to be correct, this is

convincing evidence that SRO is not only an unconventional superconductor, but that it must

have odd parity. It is irresistible to draw a correspondence between the superconductor SRO

and the superfluid 3He, which was also shown to have spin-triplet pairing.12

A second experiment with important implications on the pairing state is muon spin-

relaxation (µSR) measurements. Spin-polarized muons are fired into the material where they

come to rest for a short time before decaying. Positrons are emitted preferentially along the

direction of the spin, allowing the detection of the average polarization at the time of decay. In

the presence of a magnetic field the spin of each muon will precess. So the relaxation of the

polarization measures the local magnetic field inside the material. In the absence of magnetic

order, the interaction of the muons with the randomly oriented nuclear spins relaxes the

polarization at a characteristic rate. The appearance of a magnetic field or internal magnetic

ordering can then be detected as an additional relaxation rate on top of this background.
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Measurements of µSR by Luke et al.13 on SRO show an increase in the relaxation rate

below Tc. This seems to indicate that below Tc a magnetic field is spontaneously generated in

the bulk material of SRO in the superconducting state. This field is apparently spatially non-

uniform, and static on the microsecond time scale. The presence of spontaneous magnetic

fields, or equivalently spontaneous current, is a signature of time-reversal symmetry-breaking.

Luke et al. suggest that the broad distribution of field sources evident within SRO might be

associated with variations of the order parameter around dilute impurity sites or domain walls.

We are again reminded of 3He where it is thought the superfluid A phase breaks time-reversal

symmetry.12 Another unconventional superconductor showing similar behavior is the heavy-

fermion superconductor UPt3, which is believed to have unconventional symmetry, and which

also shows the appearance of spontaneous magnetization below Tc.14

Two very important results have come from NMR and NQR measurements on SRO.

The first is the measurement of the Knight shift, which I have already mentioned. The second,

measurements of nuclear spin lattice relaxation rate, 1/T1, showed the absence of the usual

Hebel-Slichter enhancement just below Tc, and power law behavior at low temperatures.15

Recent results have shown 3
1/1 TT ∝ , consistent with an OP with line nodes.16
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Figure 4.4

Nuclear spin relaxation rate of

SRO from Ishida15

The Tc of SRO was shown to be extremely sensitive to non-magnetic impurities.17

Whereas ordinary s-wave superconductors are sensitive to magnetic impurities, their critical

temperatures are relatively insensitive to non-magnetic impurities. In contrast, unconventional

superconductivity can be strongly suppressed by non-magnetic impurities. For example, this

effect has been seen in UPt3.18

Figure 4.5

Suppression of critical temperature

of SRO by impurities from

Mackenzie.17 Residual resistivity is

inversely proportional to the zero

temperature mean free path.
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The thermal conductivity at low temperatures is one property which depends upon the

quasiparticle excitation spectrum of the superconductor. Ordinary superconductors show a

strongly reduced thermal conductivity when the temperature drops below the level where

thermal energy can excite quasiparticles over the superconducting energy gap. At low

temperatures ( )TkB/exp~ ∆−κ . In early measurements on SRO, κ was found to follow a

power law behavior 2~ bTaT +κ  suggesting that SRO could be an unconventional

superconductor.19 In addition the thermal conductivity remained unusually high as T

approached zero, indicating the presence of a residual density of states (DOS). The authors

used samples with Tc less than 1 K, and acknowledge that the relatively high content of non-

magnetic impurities is at least partly responsible for the residual DOS. As I mentioned in regard

to the suppression of Tc, in an unconventional superconductor non-magnetic impurities can

break superconducting pairs, which would give rise to an excess DOS as observed here. So this

can be taken as evidence for unconventional superconductivity.

Another measurement which also shows a residual DOS at low temperatures is the

specific heat. Nishizaki et al.20 measured samples with Tc ranging from 0.7 to 1.2 K. They

found that as Tc increases, the value of NS γγ /  appeared to approach 1/2, where γ N and γ S are

the coefficients of the linear term in the specific heat in the normal state and in the

superconducting state, respectively, as T approaches zero. In an ordinary superconductor γ S

would be expected to approach zero in the low temperature limit with an exponential

temperature dependence. The rather high value is again suggestive that a residual DOS exists at

low temperature. Once again impurity scattering can be important in analyzing this result. The

authors argue that their data are most consistent with an anisotropic energy gap containing line

nodes.
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Figure 4.6

Specific heat of SRO from Maeno9

Some theorists have incorporated the residual DOS seen in thermal conductivity and

specific heat as an important feature to be explained by their models. I will discuss the details

of these models in the next section. However, I would like briefly to mention that this point of

the theories may be in error. In both of these cases the samples have at least a moderate level of

impurities which, as I explained, can give an increased DOS. Data on the specific heat have

recently become available on higher quality samples, down to lower a temperature of 0.1 K.21

Their results show that C/T continues to drop at the same rate as previously measured, with no

crossover or transition evident. This data reduces the upper limit of NS γγ /  from ~1/2 to ~0.35.

This data also displays a clear linear temperature dependence of C/T, consistent with line nodes

in the energy gap.
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Figure 4.7

New specific heat data from

Maeno21

Akima et al.10 used their measurements of Hc2, mentioned in the previous section, to

calculate the anisotropic coherence lengths, ξ ab and ξ c, in terms of the upper critical fields and

the magnetic flux quantum, Φ0, using the Ginzburg-Landau formulas for an anisotropic

superconductor, )2/( 2
0||2 abccH πξΦ= , and )2/(0||2 cababcH ξπξΦ= . They find the zero

temperature values )0(abξ = 660 Å and )0(cξ = 33 Å. We can compare these values with the

small angle neutron scattering estimate of the zero temperature penetration depth by Riseman et

al.,22 who find λab(100 mK) = 1940 ± 160 Å. The cuprates are firmly placed in the local limit

since their penetration depth is several orders of magnitude larger than their coherence length.

However, in SRO at low temperatures we see that the coherence length and penetration depth

are different by only a factor of three. SRO is clearly not in the extreme local limit and, even

based on these values alone, should probably be considered marginally nonlocal. In the next

chapter I will argue that, on the basis of our results indicating the possible presence of nodes in

the energy gap, SRO should be considered a nonlocal unconventional superconductor.
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Finally, there is some recent evidence for unusual behavior of vortices at low

temperatures. Mota et al.23 have reported on measurements of magnetic flux flow. They cool

the sample in a magnetic field and observe the rate at which magnetic flux escapes under the

influence of the mutual repulsion of the vortices and the pinning in the material. They find that

at ~50 mK there is an abrupt drop in the flux creep. They attribute this result in SRO to a

second superconducting transition from a state which does not break time reversal symmetry

into one that does. They base this conclusion on their observation of a nearly identical effect in

UPt3 at the lower of its two superconducting transitions, where it is believed to break time

reversal symmetry.24 Mota et al. suggest that in the time reversal symmetry breaking state,

vortices become strongly pinned at the boundaries between domains of alternating (broken)

time reversal symmetry. It is not clear how this result should be reconciled with the µSR

measurement which shows that time reversal symmetry is broken not at 50 mK, but right at Tc.

It might be possible to detect this sudden breaking of time reversal symmetry using our tunnel

diode oscillator system if the sample were cooled in an applied magnetic field, rather than zero-

field cooled as it is for the results reported in this thesis.

Measurements of the temperature dependence of the penetration depth can play an

important role in resolving some of the questions about SRO which remain unanswered. As

discussed in chapter 3 the penetration depth at low temperatures is sensitive to the DOS.

Observation of power law behavior in penetration at low T is indicative of nodes in the energy

gap.
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4.3 Prominent Theoretical Concepts

Any theory to explain superconductivity in SRO must account for the results described

in the previous section. The most important being the following: triplet spin-symmetry,

spontaneous time-reversal symmetry breaking, and residual DOS at low temperature.

There are two different models which have been proposed, which have attracted

significant attention. They each explain the residual DOS in a fundamentally different way. The

first is based on a non-unitary order parameter (OP) which can be shown to give rise to an

excitation spectrum which is gapped for half of the electronic system, and gapless for the other

half. The second is based on so called orbital dependent superconductivity (ODS), which posits

that only one of the three Fermi surface sheets is superconducting, the remaining two sheets

then providing the excess DOS.

4.3.1 Non-Unitary Model

The non-unitary model has been proposed by Machida et al.25 and independently, in a

similar formulation, by Sigrist and Zhiromirsky.26 In a triplet superconductor, a compact

notation is used to represent the spin and orbital parts of the OP, ∆(k), in terms of a vector d as

follows:

∑=

⋅=∆

µ
µµ σσ

σ

y

y

di

i

)(

)(

k

dk σσσσ
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where µσ  are the Pauli spin matrices. Writing out the components of the matrices explicitly we

find
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where each of the components of d depends on k. If d is unitary it can be shown that the

quasiparticle excitation spectrum behaves as

( ) 22 kdkk += ξE (4.3)

where Fεεξ −= kk  is the energy relative to the Fermi energy. In this case 2d  represents the

magnitude of the energy gap in the excitation spectrum. One must provide this minimum

energy in order to create a quasiparticle.

If d is allowed to be non-unitary, the excitation spectrum generalizes to

)()()( *22
, kdkdkdkk ×±+=± ξE . (4.4)

If d is non-unitary then d* points in a different direction than d and the cross product is non-

zero. The excitation spectrum splits into two branches for the plus and minus cases. Notice that

the cross product term can be taken as a measure of the non-unitarity of the OP. When d is

maximally non-unitary 2* ddd =× and the gap of the minus branch of the excitation spectrum

vanishes. This is the scenario which has been proposed to explain the excess DOS in SRO in

the non-unitary models.

Sigrist and Zhitomirsky propose that the OP has the form ( ) ( )( )yx ikki ±±= yxkd ˆˆ . This

OP is maximally non-unitary so exactly half the excitation spectrum is gapless. It has triplet

spin symmetry, p-wave orbital symmetry, and breaks time-reversal symmetry. The branch of

the excitation spectrum which shows a gap is isotropic in k-space. Exactly half of the

quasiparticles would be subject to this energy gap. The penetration depth λ(T) can be expected

to show exponential dependence at low temperatures, as in an s-wave superconductor, because

the same freezing out of excitations occurs as the thermal energy drops below the gap energy.

The gapless quasiparticles would not contribute significantly to the temperature dependence of
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the penetration depth. Additionally, it is not clear how a state of this symmetry can be stabilized

from the standpoint of free energy, as discussed in Ch. 3.

4.3.2 Orbital-Dependent Superconductivity

The orbital-dependent superconductivity (ODS) model has been proposed by Agterberg,

Rice and Sigrist.27 This model accounts for the excess DOS differently than the previous

model. The argument goes as follows: The band structure in SRO is derived from three Ru d

orbitals: dxy, dxz, and dyz. They claim that the two dimensional nature of the electronic

dispersion implies that the bands break into two classes: xy and {xz, yz}. The pair scattering

amplitude between these two classes of bands will be significantly smaller than the scattering

within each class for an unconventional OP. It is expected that the two sets of bands will

essentially behave independently with regard to superconductivity. Thus it is predicted that at

Tc a larger gap will form on the γ  Fermi surface sheet and a smaller (if any) gap on the α and β

sheets. This will create essentially gapless excitations for temperatures in excess of this smaller

gap, which accounts for the excess DOS.

Sigrist et al. 28 propose that the OP which best accounts for the experimental data is the

two-dimensional analogue of the A phase of superfluid 3He: ( ) ( )yx ikk ±= zkd ˆ . This state has p-

wave (triplet) symmetry and breaks time-reversal symmetry, as in the previous model, but it is

unitary. The magnitude of this energy gap is isotropic in k-space. In the simplest case, a gap

forms on the γ  Fermi surface sheet, and no gap at all forms on the others. We would expect to

see exponential behavior of λ(T) once again, by the same argument as we used for the non-

unitary model. However, there are several other possible scenarios.

Multi-band superconductivity has been observed only in very rare cases. One example

is the study by Binnig et al.,29 who observed two-band superconductivity in SrTiO3 doped with
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Nb, with critical temperatures less than 0.6 K. As a function of doping, free carriers fill a

second conducting band. Above a critical doping level two energy gaps are observed in

tunneling measurements, each with a qualitatively different temperature dependence. In this

case both energy gaps become nonzero at the same temperature.

Under the ODS model there are some similar effects which might be observable. The

first is the crossover in temperature dependence of properties like penetration depth, which

depend on the DOS. As the temperature is reduced below the level of each energy gap activated

(exponential) behavior would be observed for each gap in turn. Another possibility is that the

superconductivity on the α and β sheets might actually have their own critical temperature,

lower than the γ  sheet. One might conceivably observe a second superconducting transition at

some lower temperature. Both of these effects, if present, would be observable in our

measurements of the penetration depth. However, I would like to point out that, while the

possibility of observing these types of effects was an important motivation in our study of SRO,

we observed no such effects in our measurements.

4.3.3 Ferromagnetic Spin Fluctuation Model

Miyake and Narikiyo30 point out that neither the ODS model nor the non-unitary model

can easily explain the absence of the Hebel-Slichter peak observed in the NMR nuclear spin

relaxation rate. In their theory, they propose that short range ferromagnetic spin fluctuations

give rise to triplet pairing. They write down a pairing interaction based upon interaction of

electrons located at nearest neighbor sites on a square lattice. Assuming the state will break

time reversal symmetry, in order to agree with the µSR measurements, Miyake and Narikiyo

propose an order parameter of the form )sin(sinˆ)( yx kik ±= zkd . The amplitude of this state
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will vanish at any points on the Fermi surface which pass through the points k = ),0( π± ,

)0,( π±  and ),( ππ ±± . If the Fermi surface only pass close to these points, the OP will not

vanish, but will be highly anisotropic. To parameterize the shape of the Fermi surface we can

write )sin,cos(F kk RR θπθπ=k , where R parameterizes the radius of the Fermi circle. The

amplitude of the OP as a function of kθ , the angle in k-space, is shown in Fig 4.8 for the value

R = 0.9, which Miyake and Narikiyo suggest is realistic for SRO. The amplitude is quite

anisotropic, and might be consistent with the same power law behavior which would be

expected for an exact node line in the OP.

Figure 4.8

Reciprocal space polar plot in the ab plane

of the OP for the ferromagnetic fluctuation

model of Miyake and Narikiyo with Fermi

surface scale factor R = 0.9.
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5 Penetration Depth of Strontium Ruthenate

The results of our measurements of λ(T) for Sr2RuO4 (SRO) can be summarized very

succinctly. We find that SRO has power law behavior in λ(T) at low temperatures, specifically

2)( TT ∝λ  for clean samples. We have observed no sign of a second superconducting phase

transition at temperatures down to 40 mK, nor have we seen evidence for a crossover in

behavior which might indicate the presence of two independent energy gaps. For a dirty

sample, we find that the behavior is similar, but with 3)( TT ∝λ .

5.1 Samples

Samples for this experiment were provided by the research group of Y. Maeno from

Dept. of Physics, Kyoto University, Kyoto, Japan. Crystal growth is described in Ch. 4. Several

different samples were provided and these are summarized in Table 1. The critical temperatures

of the samples were determined in Japan from measurements of the ac susceptibility. The Tc is

taken at the peak of the quadrature component, ''χ . The Tc of sample #3 was measured before

it was annealed, and not after. From our measurements, it seems that its Tc did not change

significantly as a result of annealing.

Table 5.1

Summary of samples

Sample Crystal Annealing Shaped Tc (K)

#1 C114A2#5 Not annealed razor blade 1.39

#2 C114A2#3 Not annealed sandpaper 1.39

#3 C82A1-2a 1500 °C in air for 60 hrs. razor blade 1.44

#4 C66C2a-1 1050 °C in oxygen for 3 weeks razor blade 0.82
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All samples were cut from larger pieces to a size small enough to fit on the end of our

cold finger, approximately 1 mm in diameter. Samples #1, 3 and 4 were shaped by cutting with

a razor blade under a microscope. Their perimeter is somewhat irregular as a result of this

process, but they are all shaped like flat plates. Sample #2 was cut from the same large crystal

as sample #1, but instead of a razor blade, I used fine sandpaper to form the shape. I glued the

sample to a glass slide with super glue, leaving a small portion projecting over the edge. By

holding the slide vertically I carefully ground the projecting portion of the crystal on 400 grit

silicon carbide sandpaper until it was flush with the edge of the slide. The glue was easily

dissolved with acetone and the process repeated to form the remaining edges of the sample. In

this way I prepared the sample in a fairly regular octagonal shape.

5.2 Calibration

We tried both of the calibration techniques discussed in Ch. 1. We found that the aluminum

sphere technique overestimates the change in penetration depth. For the second calibration

procedure I fashioned a dummy sample of high purity aluminum (sample Al#1) in the same

shape and size as sample #3. This technique worked more successfully. In Fig. 5.1 the data for

the Al#1 sample are compared with the theoretical curve of λ(0)2/λ(T)2. I have taken the values

for pure aluminum as λ(0) = 500 Å and ∆(0) =  0.18 meV. As discussed in Ch. 2, I used the

weak coupling interpolation formula for ∆(T) and the expression for λ(T) appropriate for a non-

local superconductor. The value of Tc which best fits the data is 1.16 K, which compares

favorably with the value of 1.18 K from tables. I found that by adjusting the geometrical

scaling factor to a value of G = 2.5 Å/Hz for the Al#1 sample, the data could be made to lie

directly over the theoretical curve. Since G depends only on the geometry of the sample and

coil, this same value can be used to scale the data for sample #3. We discovered only relatively
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late in the course of this study that the first calibration procedure was not adequate. Rather than

make a dummy sample for every SRO sample, I have used the results of the sample #3

calibration. By comparing the data from other samples with the calibrated data from sample #3

we can estimate the geometry factor for the other samples.
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Figure 5.1

Comparison of λ(T) with theory for sample Al#1, 99.9995% aluminum. (a) Inset shows the full temperature range.

Main graph shows low temperature detail. (b) Plot of the superfluid fraction. The scaling factor which best fits the

theory is G = 2.5 Å/Hz.
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5.3 Results

Results for the high purity aluminum sample, Al#1, are shown in Fig. 5.1. Graph (a)

shows λ(T) plotted as a function of T/Tc. Graph (b) shows λ(0)2/λ(T)2 as a function of T/Tc,

which is proportional to the superfluid density. The agreement with the theoretical curve is

excellent, when the scale factor G = 2.5 Å/Hz. To give an idea of the sensitivity of the shape of

the curve to the value of G, the dashed lines show the dependence of the data when G is varied

±10%. Because sample Al#1 was prepared with nominally the same shape as SRO sample #3,

we use this value of G, adjusted slightly to account for the very small difference in shape, to

scale the data for sample #3. Likewise, the various shapes of each of the other samples were

used to determine values of G relative to sample #3. Figure 5.2 summarizes the penetration

depth for samples #1-4 with the magnetic field oriented perpendicular to the ab-planes of the

crystals. On this scale, the general behavior of all four samples is quite similar, but there are

clear differences in the location and sharpness of the transitions. Sample #3 has the highest Tc =

1.44 K, and also shows the sharpest transition. It is interesting to note the difference between

samples #1 and 2, which are cut from the same crystal. Sample #2 shows a much more rounded

transition as a result of the damage that occurred on the surface as a result of grinding it on

sandpaper. Sample #3 has a significantly lower Tc = 0.82 K.

Figure 5.3 shows the temperature region from T/Tc = 0 to 0.8, plotted against (T/Tc)2 for

samples #1-3. It is evident from these graphs that at temperatures below approximately 0.4 Tc,

all three samples have 2)( TT ∝∆λ . In addition, a graph of sample #3 is shown with the field

oriented parallel to the ab-planes. The temperature dependence is virtually identical to the

perpendicular orientation, showing quadratic temperature dependence below 0.4 Tc. Figure 5.4

shows a detail of  the low temperature region, below 0.7 K, for sample #2 as a function of 2T .
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The clear linear behavior displayed indicates once again that 2)( TT ∝∆λ  at low temperature

and is typical of samples #1-3.
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Figure 5.2

Penetration depth of SRO samples #1-4 with magnetic field oriented perpendicular to the ab-planes of the crystals.
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Figure 5.3

Temperature dependence of penetration depth for samples #1-3. All samples are measured with magnetic field

oriented perpendicular to the ab-planes of the crystals. Sample #3 is also shown with magnetic field parallel to the

ab-planes. Note that the scales are identical on all four graphs.
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Penetration depth of sample #2 (Tc = 1.39 K) at low

temperatures, plotted as a function of (T/Tc)2. It is

clear from this behavior that λ(T) ∝ 2T  at low

temperatures.
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Summary of temperature dependence of )0(/)()(/)0( 22
ss nTnT ∝λλ , the superfluid fraction, for samples

#1-4. The value of λ(0) = 1900 Å is used for samples #1-3, and λ(0) = 2230 Å is used for sample #4.
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Comparison of superfluid fraction of

sample #1 with local and nonlocal s-

wave models.
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5.4  Interpretation

Our observation of power law behavior implies that the energy gap has nodes. The non-

unitary and orbital dependent superconductivity (ODS) models of superconductivity are

inconsistent with this result. As discussed in the previous chapter, there are several possible

scenarios under the ODS model. The simplest is an energy gap on one Fermi surface sheet, and

none on the other. This would give exponential dependence of λ(T), contrary to our observation

of power law dependence. We see evidence neither for a second superconducting  transition nor

for the crossover of  temperature dependence which might result from two different energy

gaps. Likewise, the non-unitary model predicts an exponential dependence with does not

appear in SRO.

Our observation of temperature dependence of 2)( TT ∝∆λ  can be taken as strong

evidence that the energy gap has nodes, as discussed in Ch. 3. The naïve conclusion might be

that the 2T  dependence implies that there are point nodes. However, it has been found

experimentally that low temperature NMR spin relaxation rate 3
1/1 TT ∝ ,1 and electronic

specific heat 2TCe ∝ .2 Both of these (in my opinion, highly credible) results are consistent

with line nodes in the gap. Therefore, we need to consider carefully whether our results are

consistent with these and other measurements made up to now on SRO. In the local limit, in the

absence of impurities, the penetration depth will show linear temperature dependence in the

presence of line nodes. We are faced with the same dilemma which confronted those studying

the cuprates, when early measurements of λ(T) showed quadratic behavior. Thanks to the work

on the cuprates there are a number of well documented possibilities to explore. We believe that

our data are consistent with line nodes in the energy gap when we take into account one or

more of these effects.
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5.4.1 Resonant Impurity Scattering

As discussed in Ch. 3, Hirschfeld and Goldenfeld3 noted that the effect of resonant

impurity scattering (RIS) on the cuprate superconductors is to change the intrinsic TT ∝)(λ  to

quadratic, and this would be the most obvious explanation for quadratic dependence in SRO. It

is possible that just such an effect is at play in our measurements of SRO. Hirschfeld and

Goldenfeld introduce a crossover temperature T*, below which the intrinsic linear behavior due

to line nodes would be modified by RIS to quadratic. For the strong scattering limit, the Tc

suppression (Tc0 - Tc)/Tc0 is estimated to be on the order of Γ /∆0, where Tc0 is the critical

temperature in the absence of impurities, Γ  is the scattering rate, and ∆0 is the maximum energy

gap. For very small impurity levels the crossover temperature will be approximately

2/1
0

* )(~ Γ∆T . So we can estimate that 
2/1

0

0
0

* ~ 




 −
∆

c

cc

T
TT

T . Taking ∆0 = 1.76 Tc, and Tc0 =

1.5 K, we find T* ~ 0.7 K. This value is close to the range over which the 2T  dependence was

found to fit the data for samples #1-3. However, we do not observe a linear dependence in any

temperature range in any of the samples we have measured. It could be that the value of T* is so

high that linear behavior, which would only show up in the low temperature limit, is hidden by

the nonlinearity that normally appears at higher temperatures. For example in the best

measurements of the cuprates, linear temperature dependence is observed at temperatures

below around 15-25% of Tc. In our measurements, since T* and the range of quadratic behavior

is about half of Tc, it is possible that the linear range is simply not observable. Were they

available to us, it is conceivable that measurements on even cleaner samples might exhibit a

clear crossover between quadratic and linear behavior.
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While cleaner samples were not immediately available, dirty samples are plentiful. To

attempt to clarify the role of impurity scattering, we measured ∆λ(T) for sample #4 with Tc =

0.82 K, significantly lower than the optimal value of 1.5 K. The suppression of Tc is presumed

to be due to the presence of disorder, either in the form of lattice defects, non-magnetic

impurities, or both. Our results are shown in Fig. 5.7. In contrast to the clean samples, where

quadratic dependence is observed, we find that the dirty sample shows 3)( TT ∝∆λ  at low

temperatures.
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Penetration depth of sample #4 as a function of (T/Tc)3. The greater level of impurities and /or defects in this

sample cause the cubic dependence, rather than the quadratic dependence observed in clean samples.
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5.4.2 Nonlocal Effects

We might be able to understand this result by considering the scenario of nonlocal

effects proposed by Kosztin and Leggett,4 also discussed in Ch. 3. They calculate, for an

unconventional superconductor with nodes in the energy gap, that nonlocal effects may be

important in regions of k-space close to the nodes. If the magnetic field is oriented parallel to

the c-axis of a cuprate crystal, with the field penetrating into the a or b direction, this will give

quadratic behavior below a crossover temperature 000
* / λξ ∆=T , where ξ 0 and λ0 are the

superconducting coherence length and penetration depth at zero temperature, respectively. Let

us examine this possibility for SRO. From the literature we find ξ 0 ~ 660 Å and λ0 ~ 1800-1900

Å.2, 5, 6 Estimating the energy gap by the weak coupling value 1.76 Tc ~ 2.6 K, gives us an

estimate of T* ~ 0.95 K. This value is nearly as large as Tc. According to this criterion,

assuming that SRO has nodes, we could expect that instead of a crossover to nonlocal behavior,

as suggested for the cuprates, SRO could behave nonlocally over almost its entire temperature

range! Some estimates of the energy gap from point contact spectra7 show an anomalously high

value, ∆0  ~ 13 K, which would raise our estimate of T* well above Tc.

Kosztin and Leggett propose a simple test for this nonlocal behavior. For the cuprates, if

the orientation of the magnetic field relative to the sample is modified such that the field is

parallel to the ab planes, with field penetrating in the c direction, then no nonlocal effects

should be observed. This result assumes the material is quasi-two-dimensional, dominated by k

vectors within the planes. In this orientation, k-space directions where the Fermi surface and

OP are nonvanishing (in the ab planes) are parallel to the surface. SRO is considered to be

quasi-two-dimensional. The ratio of the coherence lengths parallel and perpendicular to the
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planes2 is ξ ab/ξ c = 20, which is quite large (although the cuprates have values closer to 100). I

believe that if we assume the presence of nodes then the model should apply equally to SRO.

We measured λ(T) for sample #3 with the field oriented parallel to the planes. This was

accomplished by attaching a small plastic cube to the end of the cold finger, and gluing the

crystal against the side of the cube, with its edge contacting the end of the cold finger.

However, our measurements give the same result for this field orientation: 2)( TT ∝λ , in

seeming conflict with the nonlocal theory.  However, because the cube was fashioned by hand,

I estimate that the orientation is only parallel to within ~5-10°. It is possible that the small

misorientation is sufficient to allow a component of the screening currents flowing in the

direction where the nonlocal effect appears. To rule this out one could attempt a more careful

orientation of the sample and field. But the effect might be so sensitive to orientation that it

would be necessary to construct a system which would allow in-situ adjustment of the angle.

An additional effect could come from the c-axis penetration depth which participates in the

effect when the field is oriented in this direction. It is possible that the temperature dependence

of λc could dominate, obscuring the intrinsic dependence of the in-plane penetration depth in

this orientation.

Another explanation for the cubic behavior in the dirty sample is more interesting.

Kosztin and Leggett find, more generally, that if the intrinsic behavior in the local limit is

∆λ(T) then taking into account nonlocal effects, we would expect )()( TTTnonlocal λλ ∆⋅∝∆ . Let

us assume that the clean samples have intrinsic linear behavior in the absence of the nonlocal

effect. Then we would expect quadratic behavior when we take into account the nonlocal

effect. Similarly, let us assume that the dirty sample, due to impurity scattering, would have
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quadratic behavior in the absence of nonlocal effects. Then we might expect to observe cubic

dependence in this sample when the nonlocal effect is included.

In general, the effect of impurities on a nonlocal superconductor is to drive it towards

more local behavior with increasing impurity content, because the coherence length is reduced

and the penetration depth is increased. We need to estimate to what extent the dirty sample can

still be considered nonlocal. Mackenzie et al.8 studied systematically the dependence of Tc on

non-magnetic impurities in SRO. Using their estimates for mean free path, interpolated from

their graph of resistivity ρ(T), I estimate that sample #4 has a mean free path � ~ 1750 Å. This

value, while significantly suppressed from the clean sample value of ~7000 Å, is still larger

than the clean sample coherence length of ξ 0 = 660 Å. Impurities can be expected to reduce the

coherence length to a value9

�

111

0

+=
ξξ

. (5.1)

Putting in the values I find ξ  ~ 480 Å. We can also estimate the effect of impurities on the

effective zero-temperature penetration depth, which should be greater in a dirty sample because

scattering from impurities reduces the superfluid density, thereby reducing the screening of the

magnetic field. The effective penetration depth can be expressed as

2/1
0)(),( 





=

ξ
ξλλ TTeff � . (5.2)

I estimate λeff (T=0) = 2230 Å. Using ξ  and λeff (0), and assuming that the gap, ∆0, is not

strongly affected by impurities, I estimate T* = ∆0ξ /λ = 0.6 K. This value is identical to the

range over which we can fit cubic dependence in sample #4. The precise agreement is

somewhat coincidental, considering the crude approximations used in this estimate. However, it



89

is suggestive that this model combining nonlocality and impurity scattering might apply in the

case of SRO and, if correct, would support the conclusion that the clean samples have line

nodes in the gap. One might further test this conclusion by measuring a sample with critical

temperature in the intermediate range between the samples measured here, say 1.2 K.

5.4.3 High Frequency Effects

Historically, in the heavy fermion superconductors, there was an inconsistency in

measurements of λ(T) at low temperatures. These unconventional superconductors are believed

to have line nodes in the energy gap as well. These materials are exquisitely sensitive to

impurities and defects, and resonant impurity scattering was considered important, as in the

cuprates. However, an additional effect was noted by Signore et al.,10, 11 who found that the

response of very clean samples of UPt3 (Tc ~ 0.5 K) was dependent upon the frequency of

measurement. Signore et al. showed that for low frequencies (from DC to at least 5 kHz) the

temperature dependence TT ∝)(λ , while at frequencies above 3 MHz, 2)( TT ∝λ . The effect

of frequency can generally be ignored for ordinary superconductors until the frequency exceeds

the energy gap (in the GHz range) where Cooper pairs can be broken by the absorption of

photons. However, in an unconventional superconductor with nodes in the energy gap, it is

possible for significantly lower frequencies to break Cooper pairs in the region of the nodes.

This effect could be manifested in SRO in our experiments because our measurement

frequency is tens of MHz. The only way to rule out this effect would be to construct an entirely

new apparatus, such as a SQUID or mutual inductance system, to measure the penetration

depth at lower frequency.
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6 Conclusions and Future Directions

I have shown that the temperature dependence of the penetration depth is a valuable

measurement technique for probing the behavior of the order parameter in unconventional

superconductors. We have constructed a high resolution tunnel-diode oscillator-based

measurement system suitable for measuring the temperature dependence of the magnetic

penetration depth of superconductors, λ(T), at very low temperatures. I have reported on

measurements of λ(T) in high quality single crystals of the unconventional perovskite

superconductor Sr2RuO4 (SRO) down to 0.04 K. We observe quadratic temperature

dependence at low temperatures. I have argued that power law behavior is consistent with an

energy gap with nodes. We believe that SRO has line nodes, and propose several possible

mechanisms to explain the observed quadratic dependence. We propose that non-local effects

may be more important in determining the temperature dependence than impurity scattering,

and is sufficient to explain the deviation from the linear behavior expected for local

superconductors with line nodes.

Our results appear to be inconsistent with the leading theories of superconductivity in

SRO. Both the orbital dependent superconductivity (ODS) model and the non-unitary model

predict exponential temperature dependence at low temperatures, because the magnitude of the

energy gap is isotropic. In addition, there is no sign of the crossover or second phase transition

predicted by the orbital dependent superconductivity model.

In a December 1998 article in Nature,1 Maurice Rice described the ODS model as “a

complete description of the unconventional superconductivity of Sr2RuO4,” and declared that

the consensus understanding of SRO as a two-dimensional analog of the A-phase of superfluid

3He was, at that time, well established. Our measurements have shown that what once seemed
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clear is again muddy. SRO displays some of the features of the ODS model (triplet spin

symmetry, time reversal symmetry breaking) but the low temperature penetration depth fails to

agree with the theory. It is time to reevaluate the picture of SRO, especially in relation to other

unconventional superconductors.

SRO combines the properties of a number of unconventional superconductors. Our

measurements show that, in addition to the perovskite crystal structure, SRO shares with the

cuprates a gap structure with line nodes of some sort. In common with the heavy fermion

superconductors and superfluid 3He-A, SRO displays triplet pairing and time reversal

symmetry breaking. If we add to this picture the likely scenario that SRO is, in fact, a nonlocal

superconductor, we must then begin to understand a material that is in some ways familiar and

in other ways rather unfamiliar.

6.1 Future Directions

There are several experiments which could be performed in the future which might help

clarify our understanding of SRO. While our measurements were made on samples of the

highest quality available today, measurements of the penetration depth in the future on crystals

of even higher quality may prove valuable in elucidating the role of impurities and defects. As

in the measurements of the cuprates, we may find that a more consistent picture emerges when

further control is gained over impurity and defect levels in these samples. In addition, it might

prove fruitful in understanding the role of defects and impurities to extend the measurements

reported here on a crystal of intentionally lower quality, by measuring samples with a range of

different critical temperatures. In Ch. 1 I discussed a number of different techniques for

measuring the penetration depth. While the self-inductive tunnel-diode oscillator technique

which we employed is one of the best ways of making precision measurements of temperature
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dependence, it would be gratifying to see some of the other techniques employed for

comparison. In particular, those techniques which operate at lower frequency, such as mutual

inductance and SQUID measurements, would be useful in eliminating the possibility of pair-

breaking effects at high frequency. The addition of a small Helmholtz coil to our oscillator

system would allow us to apply a magnetic field to the sample and possibly observe the time

reversal symmetry breaking effects reported by Mota et al.2

One of the best ways of unambiguously determining the symmetry of the order parameter

is to employ a method sensitive to the phase rather than the amplitude. Such an experiment was

performed on the cuprate YBCO by Wollman et al.3 in our research group using Josephson

tunneling from a conventional s-wave superconductor into YBCO in a SQUID geometry which

creates interference between different directions in k-space. A member of our group is

attempting to make similar measurements on SRO using indium contacts on SRO crystals.

6.1.1 Other Materials

As discussed in previous chapters, the penetration depth in the cuprates has a linear

temperature dependence at temperatures down to approximately 1 K. There are a number of

interesting determinations that remain to be made below 1 K in these materials. For example,

both the resonant impurity scattering and nonlocal models predict that the penetration will cross

over from linear to quadratic temperature dependence at very low temperatures. The crossover

from linear to quadratic dependence was explored systematically by Bonn et al.4 as part of a

study of the effect of the introduction of Zn and Ni impurities into YBCO. In this case the

crossover temperature, T*, from linear to quadratic dependence is increased by addition of

impurities. But it would be interesting to attempt to observe T* in a pure sample by going to

very low temperatures. Another potentially important result concerns an observation, made by
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Movshovich et al., of an anomaly in the thermal conductivity of BSCCO doped with Ni as a

magnetic impurity. They report a dramatic drop in thermal conductivity at  ~0.2 K which they

interpret as the opening of a full energy gap in the region of the nodes as a result of a second

phase transition. One of our first goals when this project began was to attempt measurements of

these effects, and we focused on these in the early stages. However, we found that several

factors precluded good measurements. The signal to noise ratio depends on the intrinsic change

in the penetration depth which occurs, and also on the filling factor of the sample within the

measurement coil. Both of these factors were working against us in the cuprate measurement,

as the intrinsic change in penetration depth is very small at these temperatures, and the samples

to which we had access were also very small. However, armed with this knowledge, it should

be possible to obtain larger samples of doped cuprates and may be possible to construct a

system which would be able to detect this very small effect in the penetration depth.

The opportunity exists to measure a number of other materials using our system. For

example, recently a family of borocarbide superconductors was discovered with the formula

RNi2B2C, where R stands for one of the rare earth elements Y (Yttrium), Lu (lutetium), Tm

(thulium), Er (erbium), Ho (holmium), or Dy (dysprosium). (See Canfield et al.5 for a recent

review.) One of the remarkable properties of these materials is the coexistence of

antiferromagnetic and superconducting order. Because the rare earth elements have closely

similar chemical properties, and because the magnetic moments of their nuclei vary in a

consistent way across the periodic table, the interaction between magnetic and superconducting

properties can be studied systematically. We have begun to make some measurements of the

temperature dependence of the penetration depth in these materials. Shown in Fig 6.8 are

preliminary results for the nonmagnetic member of the family, LuNi2B2C.
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Figure 6.8

Preliminary, uncalibrated

results for λ(T) for LuNi2B2C.

The inset shows the full

temperature range.

From this and subsequent measurements, it appears that LuNi2B2C may be a conventional s-

wave superconductor. Some of the early measurements on one of the magnetic members of the

family, HoNi2B2C, shows a richly detailed structure, with reproducible jumps in the

susceptibility at a number of different temperatures. University of Illinois graduate student

Elbert Chia will be continuing these studies as part of his thesis research.
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Appendix A Samples

This appendix contains a series of photographs and lists of pertinent data on each of the

samples discussed in this thesis.

A.1 Crystal Batches

The SRO crystals were grown by Y. Maeno, Dept. of Physics, Kyoto University, Kyoto,

Japan. A graph of the ac magnetic susceptibility was provided for a representative sample from

the same batch as each of the samples we were given. This serves as an accurate measure of the

critical temperature, and the sharpness of the transition is indicative of the quality of the

samples. The graphs are reproduced here. The top graph in each figure is the real part of the

complex susceptibility, 'χ , and the lower graph is imaginary part, ''χ . The critical temperature

is determined by the peak in ''χ .
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Figure A.1

AC susceptibility of

representative crystal

from batch C114A

(Samples #1 and 2)
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Figure A.2

AC susceptibility of

representative crystal

from batch C82A1-2a

(Sample #3)
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Figure A.3

AC susceptibility of

representative crystal

from batch C66C2a

(Sample#4)
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A.2 SRO Sample Geometry

A.2.1 SRO Sample #1

Figure A.4

Sample #1dimensions

Batch C114A

Critical Temp. Tc 1.39 K

Thickness t 130 µm

Total area A 0.630 mm2

Perimeter P 3131 µm

Frequency f 11.8 MHz

Sphere Shift ∆fsphere 11 kHz

770 µm

327 µm

790 µm

880 µm

364 µm
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A.2.2 SRO Sample #2

Figure A.5

Sample #2 dimensions

Batch C114A

Critical Temp. Tc 1.39 K

Thickness t 100 µm

Total area A 0.801 mm2

Perimeter P 3322 µm

Frequency f 17.38 MHz

Sphere Shift ∆fsphere 16 kHz

534 µm

1060 µm

940 µm

1070 µm

252 µm

602 µm

354 µm

473 µm

308 µm

272 µm

527 µm
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A.2.3 SRO Sample #3

Figure A.6

Sample #3 dimensions

Batch C82A1

Critical Temp. Tc 1.44 K

Thickness t 126 µm

Total area A 0.988 mm2

Perimeter P 3650 µm

Frequency f 28.2 MHz

Sphere Shift ∆fsphere 89 kHz

1000 µm
600 µm

850 µm
800 µm

400 µm
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A.2.4 SRO Sample #4

Figure A.7

Sample #4 dimensions

Batch C66C2a

Critical Temp. Tc 0.82 K

Thickness t 250 µm

Total area A 0.465 mm2

Perimeter P 2850 µm

Frequency f 28.2 MHz

Sphere Shift ∆fsphere 89 kHz

750 µm

500 µm

800 µm

800 µm
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