
Enhancing Memory Level Parallelism via Recovery-Free
Value Prediction

Huiyang Zhou Thomas M. Conte
Department of Electrical and Computer Engineering

North Carolina State University
1-919-513-2014

{hzhou, conte}@eos.ncsu.edu

ABSTRACT
The ever-increasing computational power of contemporary
microprocessors reduces the execution time spent on arithmetic
computations (i.e., the computations not involving slow memory
operations such as cache misses) significantly. Therefore, for
memory intensive workloads, it becomes more important to
overlap multiple cache misses than to overlap slow memory
operations with other computations. In this paper, we propose a
novel technique to parallelize sequential cache misses, thereby
increasing memory-level parallelism (MLP). Our idea is based
on the value prediction, which was proposed originally as an
instruction-level-parallelism (ILP) optimization to break true
data dependencies. In this paper, we advocate value prediction in
its capability to enhance MLP instead of ILP. We propose to use
value prediction and value speculative execution only for
prefetching so that the complex prediction validation and
misprediction recovery mechanisms are avoided and only minor
changes in the microarchitecture are needed. The same hardware
modifications also enable aggressive memory disambiguation for
prefetching. The experimental results show that our technique
enhances MLP effectively and achieves significant speedups
even with a simple stride value predictor.

Categories and Subject Descriptors
C.1.1 [Processor Architecture]: Single Data Stream
Architectures.

General Terms
Performance, Design.

Keywords
Recovery-free value prediction, memory level parallelism,
prefetching, memory disambiguation.

1. INTRODUCTION
The trend in contemporary microprocessor design, including fast
clock speed, deep pipeline [23], large instruction window size

[13],[14], aggressive out-of-order execution, and wide fetch
bandwidth [20], results in tremendous capability in performing
arithmetic computations (i.e., the computation not involving slow
memory operations such as cache misses). Therefore, for memory
intensive workloads, it becomes more important to parallelize
multiple cache misses than to overlap cache misses with
arithmetic computations.

In this paper, we propose a novel technique to parallelize
sequential cache misses speculatively. The target workload is
memory intensive workloads with heavy pointer chasing. The
idea is developed upon value prediction [9],[16],[17], which was
originally proposed as an instruction level parallelism (ILP)
optimization to break true data dependencies in computations.
Since the data dependence between pointer chasing loads
enforces the sequential execution, value prediction has the
capability to parallelize these loads, thereby increasing the
memory level parallelism (MLP). We advocate that for memory
intensive applications the largest performance potential of value
prediction lies in its capability to enhance MLP instead of ILP.

Since we focus on using value prediction to increase MLP, the
hardware overhead to support value prediction and value
speculative execution can be significantly reduced. In this paper,
we propose to use value prediction only for prefetching so that
the complex value prediction validation and misprediction
recovery mechanisms are avoided and only minor changes in the
hardware are necessary. Unlike the traditional value prediction
schemes, where the speculative results are committed when the
correct prediction is made, the speculative results in our scheme
are only used for prefetching and will not be committed. In a
different point of view, one can think of the speculative
execution in our approach as a speculative pre-execution scheme,
which requires neither explicit pre-execution thread generation
nor multi-threading support. Another important aspect is that the
same hardware changes in our scheme also enable aggressive
memory disambiguation to break alias (i.e., the load-after-store)
dependencies. Such disambiguation is used for prefetching and is
also recovery free.

The experimental results, based on a set of SPEC2000
benchmarks [11] and Olden benchmarks [5] including both
computation-intensive and memory-intensive benchmarks, show
significant speedups resulting from breaking both true
dependencies and alias dependencies between memory
operations. Such speedups also scale well with the current trend
in microprocessor design.

The remainder of the paper is organized as follows. Section 2
addresses the related work. Section 3 illustrates the performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICS’03, June 23-26, 2003, San Francisco, California, USA.

Copyright 2003 ACM 1-58113-733-8/03/0006…$5.00.

potential of using value prediction to enhance MLP. Section 4
presents the details of our proposed approach. The experimental
methodology is contained in Section 5 and the results are in
Section 6. Section 7 discusses the limitations of our proposed
scheme. Section 8 concludes the paper and discusses the future
work.

2. RELATED WORK
Due to the speed gap between the processor core and the
memory, hiding memory latency has been an active research
topic. One well established solution is memory prefetching and
the majority of work is based on the address prediction [2],[12].
One recently proposed scheme [7], named stateless, content-
directed prefetch, improves upon prior techniques by examining
the prefetched data to check whether the data could potentially
be a pointer de-reference address. If so, the content will be used
as the address for the next prefetch. Compared to it, our proposed
technique uses the fetched data to compute pointer chasing load
addresses based on the code semantics, thereby having fewer
chances to fetch the wrong data to pollute the cache.

Another way to hide memory latency is based on the concept of
pre-execution/pre-computation. Both hardware-based and
software-based schemes [6], [18], [21], [25], [30] have been
proposed for this purpose. As will be discussed in Section 4, our
recovery-free value prediction scheme is similar to the pre-
execution paradigm although our approach requires neither
explicit thread generation nor multi-threaded support. Also, as
pointed out in [25], the pre-computation thread is more effective
when used to prefetch the critical pointer chasing loads in the
loop control than to prefetch loads in the loop body. A similar
observation can be made for our proposed scheme since
predicting pointer-chasing loads in loop control can overlap the
execution of multiple iterations and result in more latency
hiding. Runahead execution [8],[19] is another form of pre-
execution without multithreaded support. During the execution,
if the processor is stalled due to a cache miss, the current
execution state will be checkpointed and the processor enters the
runahead mode to pre-execute the independent instructions
following the blocking instruction. The purpose of the pre-
execution is to prefetch the (future) data into cache. When the
cache miss is repaired, the processor goes back to the normal
mode and re-executes these pre-executed instructions. In an out-
of-order processor, runahead execution can achieve similar
performance of a much larger instruction window. Our proposed
scheme and runahead execution can be mutually beneficial as our
scheme tries to pre-execute the dependent operations of a
blocking instruction. Also, as discussed in Section 3, the large
instruction window achieved by runahead execution provides
better chances for our scheme to improve MLP.

Value prediction was proposed originally as an ILP optimization
technique [9],[16],[17],[22]. Using value prediction to hide load
forward latencies is studied in [4]. By correctly predicting the
value of a load instruction, dependent instructions can avoid
stalling during the time that the load executes. Address
prediction for prefetching is proposed in [10]. Based on address
prediction, the data is prefetched and saved in a special buffer
(called Memory Prefetch Table) and used as the value prediction
of the load. Our proposed approach is different from these

previous works in that we use value prediction only for
prefetching, thereby avoiding complex validation and recovery
hardware and the associated recovery penalties. Also, our
approach leverages aggressive memory disambiguation for
prefetching. As pointed out in Section 3, it is very important to
break both true and alias dependencies in order to increase MLP.

3. USING VALUE PREDICTION TO
ENHANCE MLP
Values produced by individual instructions exhibit localities [22]
and different value prediction schemes are proposed to exploit
such localities to break true data dependencies [9],[16],[17]. In a
typical value prediction/speculation scheme proposed for a
superscalar processor, the prediction of an instruction enables its
dependent instructions to be executed speculatively. If the
prediction turns out to be correct, these instructions will commit
their speculative results so that the processor makes faster
forward progress by hiding the latency of value speculative
computation in the un-speculative computations. If the prediction
is wrong, however, a recovery scheme is necessary to squash the
speculative results and to re-execute these affected instructions
with correct data.

For memory intensive workloads with heavy pointer chasing,
sequential cache-misses resulting from pointer chasing code
structures dominate the overall execution time. These cache-
misses form a memory dependence chain since one missing
load’s address is dependent on the previous missing load’s value.
Taking a frequently executed code segment from the benchmark
mcf as an example, shown in Figure 1, the profile information
shows that the pointer chasing codes ‘node->child’, ‘node-
>basic_arc->cost’, and ‘node->pred->potential’ result in many
cache misses. The memory dependence chains formed by these
missing loads are shown in Figure 2.

Figure 1. A code segment in the benchmark mcf (in function
refresh_potential) resulting in many cache-misses.

In Figure 2(a), the dependence chain is based on a single
iteration of the while loop in Figure 1, where nodes 1 and 2
correspond to two dependent missing loads from ‘node-
>basic_arc->cost’. Nodes 3 and 4 correspond to ‘node->pred-
>potential’. Node 5 corresponds to ‘node->child’ and node 0 is
the same load ‘node->child’ from the previous iteration. Figure
2(b) shows the dependence chain when the loop is unrolled
multiple times. The solid arrow in Figure 2 represents the true
data dependence and the dashed arrow represents the alias
dependence between missing loads. Although the alias

 while(node)
 {
 if(node->orientation == UP)
 node->potential = node->basic_arc->cost + node->pred-
>potential; // (Nodes 1,2,3,4)
 else /* == DOWN */
 {
 node->potential = node->pred->potential - node->basic_arc-
>cost;
 checksum++;
 }
 tmp = node;
 node = node->child; // (Nodes 0, 5)
 }

dependence exists between a store and a following load
instruction, we use the same term to model the dependence
between two missing loads when one or more store instructions
exist between them and one of these stores is dependent on the
first missing load. Here, it needs to be pointed out that alias
dependencies span multiple iterations, e.g., there exists alias
dependence between the node 2 in the first iteration and all the
loads in later iterations, though not shown in Figure 2(b) for
conciseness. Also, note that in the memory dependence chain,
only missing loads are included as other instructions such as
stores, adds, branches, and loads that hit in cache are not long
latency operations.

Figure 2. The memory dependence chain based on the code in
Figure 1. (a) The dependence chain for a single iteration. (b)
The dependence chain for multiple iterations (alias
dependence among different iterations are not shown for
conciseness).

From this example, we can see that both true data dependencies
and alias dependencies enforce the sequential execution of the
missing loads, resulting in long execution time. In order to
process these cache misses in parallel (i.e., to increase MLP),
both dependencies need to be broken. While aggressive memory
disambiguation can minimize alias dependencies, value
prediction can be used to break true data dependencies. In this
example, memory disambiguation removes the dependence of
node 5 on nodes 2 and 4 in Figure 2(a), thus exposing the critical
path of executing the loop as chasing the pointer ‘node->child’
(i.e., node 5). If a correct prediction can be made for this load,
the execution of multiple iterations of the loop can be
overlapped, as shown in Figure 3, where predicting the value of
the pointer chasing load (node 5’ in Figure 3) in the second
iteration enables the third and the fourth iterations to be executed
speculatively so that their miss latencies are overlapped with the
first and the second iterations. As a result, the long miss
latencies in the third and the fourth iterations can be completely
hidden if the correct value prediction is made.

The example in Figure 3 illustrates that the effectiveness of
value prediction in breaking the true memory dependence chain
so that sequential cache misses can be processed in parallel and
MLP can be enhanced. Such effectiveness is affected by several
characteristics of the memory dependence chain. The first is the
length of the memory dependence chain. In the example in
Figure 3, the instruction window size determines how many
iterations of the loop can be unrolled dynamically. If the
instruction window can only hold two iterations of the loop, the
speculative execution of the third and the fourth iterations is

impossible when they are not fetched into the pipeline. The
second is which missing load along the dependence chain is
predicted. In the example in Figure 3, it can be seen that
predicting the value of Node 5’ can overlap more cache misses
than predicting Node 5 or Node 5’’. The third is the
predictability of these missing loads’ values since more accurate
prediction will result in more useful speculative executions. In
[29], these characteristics are examined using an analytical
model of value prediction in enhancing MLP. It is found that
value prediction can be more effective than traditional address
prediction based prefetching techniques for the same
predictability model. The main reason is that while prefetching
techniques only bring the data close to the processor (e.g., the L1
D-cache), value prediction takes one step further by using the
fetched data to drive other dependent load instructions to be
executed early. In the example in Figure 3, it can be seen that
predicting the value of Node 5’ is equivalent to predicting the
address of the dependent loads (e.g., Node 5’’) since the only
difference is a constant offset. So, using the address prediction
based prefetching, the miss latency of Node5’’ can be hidden if
the prefetch is triggered early enough. Value prediction, on the
other hand, not only fetches the data of Node 5’’ but also uses
the fetched data to execute other dependent instructions (i.e., the
missing loads in the fourth iteration) even if their
addresses/values are not predictable. As a result, value prediction
is capable of hiding much more miss latencies. The analytical
model also shows that the effectiveness of value prediction is
proportional to the memory dependence chain length, the value
prediction accuracy, and the cache miss latencies. Since the chain
length scales with the effective instruction window size and miss
penalties scales with fast processor clock speed, we argue that
value prediction is a very powerful technique to improve MLP
for future high performance microprocessors.

Figure 3. Predicting the value of Node 5’ enables overlapping
of cache misses in different iterations.

4. RECOVERY-FREE VALUE
PREDICTION
As discussed in Section 3, value prediction has great potentials to
enhance MLP by overlapping otherwise sequential cache misses.
To implement such a technique, however, complex hardware
support is necessary to validate the prediction and to perform
recovery from value mispredictions. As discussed in Section 1,
current microprocessors can execute computations very fast as
long as slow memory operations (e.g., cache misses) are not
involved. So, unlike previously proposed value prediction
schemes [9],[16],[17], we propose to use value prediction only
for prefetching so that there is no need to validate a prediction or
to perform recovery from mispredictions. Using the example in

0

1

2

3

4

5

(a)
(b)

Memory dependence
chain for one iteration

…

1st Iteration

2nd Iteration

nth Iteration

1st iteration

2nd iteration

3rd iteration

4th iteration

Node 5’

Node 0

Node 5’’ Node 5

Prediction of Node 5’

Figure 3, based on the prediction of node 5’, the third and the
fourth iterations of the loop are executed speculatively. Unlike
the traditional value prediction schemes, the speculative results
won’t be committed in our approach and the only purpose of such
speculative execution is to bring the data to L1 data cache. As a
result, even if the prediction is correct, the third and the fourth
iterations of the loop will be executed again (un-speculatively) in
our proposed scheme. We expect that such execution will be very
fast since the cache accesses in these iterations will hit in the L1
data cache (as the data have already been fetched during
speculative execution if the prediction is correct). So, compared
to traditional value prediction schemes, our technique trades a
small penalty of re-execution in the case of correct value
prediction for much smaller hardware overhead. In the case of a
value misprediction, both traditional schemes and our proposed
scheme will result in polluting the data cache while our scheme
associates no recovery penalties. Another interesting point is that
the same hardware changes required in our scheme also enable
aggressive, recovery-free memory disambiguation for prefetching
as a byproduct, therefore is capable of delivering higher
performance improvement.

To support recover-free value prediction, only minor hardware
changes are necessary. We present our proposed design based on
a MIPS R10000 style microarchitecture [27], which has a 7-stage
pipeline as shown in Figure 4. There are four key changes to the
hardware, presented as follows.

Figure 4. The execution pipeline.

First, a value predictor is included in the front-end of the
processor and is indexed with pc, as shown in Figure 4. The
design of a high accuracy value predictor is out of the scope of
this paper and we use a simple stride value predictor
[9],[16],[22] to show the effectiveness of our technique though a
more powerful predictor [24],[28] can lead to a higher
performance improvement.

Secondly, two flag bits are added to control value speculative
execution. One flag bit, called value prediction speculative (vp),
is added to every entry of issue window or RUU. The other flag
bit, called value prediction ready (vp_ready), is added for each
register in the physical register file. When a confident value
prediction is made at the dispatch stage, the vp_ready bit is set
for the destination register and the predicted value is written to
the physical register file. At the issue stage, if the source
registers of an instruction are ready, it will be issued un-
speculatively and the execution result will be used to update the
value predictor. If source registers are not ready but the vp_ready
bits for these source registers are set (i.e., the values of these
physical registers are either predicted or computed using
previous predictions), the instruction is issued speculatively

provided there are unused issue bandwidth and function units.
When an instruction is issued speculatively, the corresponding vp
flag in the issue queue is set to prevent the same instruction from
being issued speculatively more than once since we do not need
the same data to be prefetched more than once. Speculatively
issued instructions will remain in the issue queue until they are
issued un-speculatively later with (un-speculative) ready source
registers. When a speculatively issued instruction finishes, it
writes back the speculative results to the physical register file
and set the corresponding vp_ready bit to enable dependent
instructions to be executed speculatively. Writing the speculative
results to the physical register file won’t affect the correctness of
the program execution since the physical register will be
overwritten by the un-speculative execution of the same
instruction. In the case when the speculative result arrives later
than the un-speculative result, it is simply dropped.

Thirdly, the instruction selection logic is modified so that it
prioritizes the issue of un-speculative instructions and prohibits
the speculative execution of store and branch instructions. In
such a way, the speculative execution will not compete with
normal execution for resources and it only affects the normal
execution through the data cache.

Fourthly, to break the alias (i.e., load-after-store) dependencies,
the vp flag is set for the load instructions that are stalled due to
prior unresolved store addresses. Then, these load instructions
can be issued speculatively as if they were based on predicted
values. Therefore, no alias dependencies are enforced. This
aggressive memory disambiguation requires no recovery since
the same load instructions and their dependent instructions will
be executed again un-speculatively after the prior store addresses
are resolved and the speculative execution is used only for
prefetching. We call this as recovery-free speculative memory
disambiguation.

The proposed changes are relatively minor and are unlikely to
affect the critical path of the processor. Using the physical
register file to keep the value predictions and the speculative
execution results enables our approach to utilize the otherwise
unused machine resources and does not require additional ports
to the register file.

Here, one interesting observation is that our proposed recovery-
free speculative execution could be viewed as a simple, yet
efficient form of pre-execution. As each predicted value (or a
presumably disambiguated load instruction) enables a set of
dependent instructions to be executed speculatively, these
speculatively executed instructions can be viewed as a pre-
execution thread triggered by the prediction, though there is no
explicit multi-thread support. Such pre-execution threads are
constructed for each predicted value based on the data
dependence relationship dynamically from the fetched instruction
stream, thus taking advantage of dynamic branch prediction. The
pre-execution is terminated when the normal execution catches
up with the pre-execution thread at the same instruction. The
reason is that when the source registers of an instruction are
ready, normal execution is performed and the vp_ready flag is
not propagated anymore. The purpose of such pre-execution is to
prefetch the data and the pre-execution thread executes only if

Execution pipeline

Value
Prediction
Table

PC

prediction

update

Fetch Dispatch Issue Reg Read Execution Write Back Retire

To physical register file

there are unused resources, thus avoiding resource competition
with the main thread.

5. METHODOLOGY
We implemented the proposed technique in a detailed timing
simulator using the Simplescalar [3] toolset. The underlying
processor organization is based on the MIPS R10000 processor,
configured as indicated in Table 1. In our experiments, we vary
the D-cache configurations and the ROB size (or the instruction
window size) of the base configuration to evaluate our proposed
technique in a range of processor models. Both computation-
intensive and memory-intensive benchmarks are selected from
the SPEC2000 integer benchmark suite and Olden benchmark
suite. Benchmarks bzip2, gap, gcc, gzip, and perl are
computation-intensive and benchmarks mcf, parser, twolf,
health, and mst are used as memory-intensive as they exhibit
much higher data cache miss rates. The reference input data are
used for SPEC2000 benchmarks. We fast-forward 800M
instructions and simulate the next 200M instructions. For the
benchmark health, the input is ‘max_level = 5 and max_time =
500’ and it runs into completion. For the benchmark mst, 3407
nodes are used as input and the first 2B instructions are skipped
and the next 200M instructions are simulated. The baseline
performance results of these benchmarks using the base
processor model are shown in Table 2.

Table 1. Base processor configuration.
Instruction

Cache
Size = 64 kB; Associativity = 4-way; Replacement =
LRU; Line size = 16 instructions (64 bytes); Miss
penalty = 10 cycles.

Data Cache Size = 32 kB; Associativity = 2-way; Replacement =
LRU; Line size = 64 bytes; Miss penalty = 10
cycles; 32 MHSRs.

Unified L2
Cache

Size = 512 kB; Associativity = 8-way; Replacement
= LRU; Line size = 128 bytes; Miss penalty = 80
cycles; 64 MHSRs.

Branch
Predictor

64K entry G-share; 32K entry BTB

Superscalar
Core

Reorder buffer: 64 entries; Dispatch/issue/retire
bandwidth: 4-way superscalar; 4 fully-symmetric
function units; Data cache ports: 4

Execution
Latencies

Address generation: 1 cycle; Memory access: 2
cycles (hit in data cache); Integer ALU ops = 1
cycle; Complex ops = MIPS R10000 latencies

Memory
Disambiguation

Load stalls when there is a pending store with
unresolved address.

As described in Section 4, a simple stride value predictor (tag-
less 4K-entry) is used in our experiments to generate value
predictions. The prediction table is indexed with pc and each
entry in the table has three fields, as shown in Figure 5. The field
‘last value’ holds the most recent execution result and the field
‘stride’ keeps the difference between the last two execution

results. The 3-bit confidence counter is used to filter out the
potential incorrect predictions. For each successful prediction,
the confidence counter is increased by 2 and is decreased by 1 for
each misprediction [24]. The prediction with the confidence
counter larger than 4 is viewed as a confident prediction. The
speculative update similar to what proposed in [15] is also used
to improve the prediction accuracy.

Figure 5. The stride value prediction table.

6. EXPERIMENTAL RESULTS
In this section, we first evaluate the effectiveness of our proposed
technique in reducing data cache miss rates, increasing MLP, and
achieving performance gains. We then analyze where the
performance gains come from in Section 6.2. In Section 6.3, we
perform a sensitivity analysis by applying the proposed technique
to a range of processor models.

6.1 Performance Evaluation
As discussed in Section 4, our proposed technique breaks both
true data dependencies and alias dependencies between missing
loads so that the otherwise stalled loads can be executed
speculatively in parallel with the un-speculative missing loads.
These speculatively executed loads perform the functionality of
prefetching the data into the cache so that the un-speculative
execution will experience fewer cache misses. We first examine
the effect of this technique in reducing data cache miss rates, as
shown in Figures 6 and 7. Here, the cache misses during the
speculative execution are not counted since they are used as
prefetch. For each benchmark in Figure 6, the L1 D-cache miss-
rate results are reported for both the base processor (labeled
‘base’) and the processor with recovery-free value prediction
(labeled ‘vp_exe’). Also, the cache misses are further divided
into partially covered misses (i.e., a miss request for a cache line
that is already being repaired from the L2 cache or memory) and
non-covered misses. Partially cover cache misses have less
impact on overall performance compared to non-covered cache
misses. Figure 6 shows that for memory intensive benchmarks,
the proposed technique reduces the L1 D-cache miss rate
significantly ranging from 14% (from 47% to 33% in the
benchmark mcf) to 0.5% (from 16.5% to 16% for the benchmark
health) and increases the ratio of partially covered misses for
most benchmarks. For computational intensive benchmarks, a

Table 2. Baseline results of the benchmarks.

Computation-Intensive Memory-Intensive Benchmarks
bzip2 gap gcc gzip perl mcf parser twolf health mst

IPC 1.68 1.31 2.11 1.46 1.46 0.51 0.85 0.83 0.32 0.21
L1 D-cache miss rate
(misses per 1K insn.)

2.14%
(4.88)

0.45%
(0.95)

5.29%
(14.08)

6.88%
(16.24)

1.98%
(8.61)

46.6%
(166.3)

9.12%
(33.04)

14.1%
(45.23)

16.3%
(66.08)

55.3%
(175.1)

L2 Cache miss rate
(misses per 1K insn.)

28.5%
(1.39)

68.3%
(0.65)

46.0%
(6.48)

46.6%
(7.57)

40.2%
(3.46)

67.5%
(112.3)

48.0%
(15.84)

62.2%
(28.12)

85.0%
(56.20)

96.4%
(168.8)

Last value Stride Confidence Counter

Prediction table

PC

visible reduction in the L1 D-cache miss rate is shown for the
benchmarks bzip2, gap and gzip although the baseline miss-rates
are relatively small for these benchmarks.

Figure 7 shows the cache miss rate effect on the L2 caches. It can
be seen that the large reduction in the L1 D-cache miss rates
resulting from our proposed approach does not increase the L2
cache miss rate for most benchmarks, which shows that the
speculative execution does not only bring the data that are
already in the L2 cache into the L1 D-cache but also reduces
many L2 cache misses. For those benchmarks that exhibit
increased miss rate in the L2 cache, for example the benchmark
parser, when considering the L1 miss rate reduction, we can see
that the overall L2 misses are also reduced, 14.5 L2 misses per
1k instruction comparing to 15.8 L2 misses originally.

L1 D-Cache Miss Rates

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

ba
se

vp
_e

xe

ba
se

vp
_e

xe

ba
se

vp
_e

xe

ba
se

vp
_e

xe

ba
se

vp
_e

xe

ba
se

vp
_e

xe

ba
se

vp
_e

xe

ba
se

vp
_e

xe

ba
se

vp
_e

xe

ba
se

vp
_e

xe

bzip2 gap gcc gzip perl mcf parser twolf health mst

computation-intensive memory-intensive

non covered

partially covered

46.55% 32.84% 55.34% 45.22%

Figure 6. The L1 D-cache miss-rates.

L2 Cache Miss Rates

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ba
se

vp
_e

xe

ba
se

vp
_e

xe

ba
se

vp
_e

xe

ba
se

vp
_e

xe

ba
se

vp
_e

xe

ba
se

vp
_e

xe

ba
se

vp
_e

xe

ba
se

vp
_e

xe

ba
se

vp
_e

xe

ba
se

vp
_e

xe

bzip2 gap gcc gzip perl mcf parser twolf health mst

computation-intensive memory-intensive

non covered

partially covered

Figure 7. The L2 cache miss-rates.

Next, we use the benchmark mcf as an example to show the MLP
improvement (i.e., overlapping the cache misses) achieved by the
proposed technique for a typical heavy pointer chasing workload.
Figure 8 shows the distribution of how many L1 data cache
misses are overlapped in the base processor. The x-axis of Figure
8 is the number of the overlapping misses and the y-axis is the
time during execution that the overlapping happens. From Figure
8, we can see that the processor spends 12% of overall execution

time on computations that do not involve a cache miss. In 33% of
the time during the execution, a single missing load is accessing
the L1 D-cache (i.e., low MLP since no overlapping happens)
and in 35% of the time two missing loads are accessing the L1
D-cache. The maximum number of overlapping cache misses are
determined by the MSHRs used in the cache and our experiment
uses 32 MSHRs for the L1 D-cache. It can be inferred from this
distribution that the benchmark mcf has many sequential cache
misses, resulting in low MLP and MSHR utilization, and
therefore long execution time.

The distribution of overlapping cache misses (base
processor)

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
number of concurrent misses

Figure 8. The baseline MLP for the benchmark mcf (overall
execution time = 390M cycles).

With recover-free value prediction, the overall execution time is
significantly reduced and MLP is much improved as shown in
Figure 9. Compared to Figure 8, a significant amount of
sequential cache misses are now processed in parallel. Another
interesting observation is that the speculative execution does not
increase the pressure on MSHRs since it rarely converts
sequential cache misses into more than six concurrent cache-
misses.

The distribution of overlapping cache misses (with the
proposed technique)

0%

5%

10%

15%

20%

25%

30%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

the number of concurrent cache misses

Figure 9. The improved MLP for the benchmark mcf with
recovery-free value prediction (overall execution time =
327M cycles).

Figure 10 shows the speedups of the proposed recovery-free
value prediction and it shows that our proposed technique
achieves significant speedups for memory intensive benchmarks,
from 3.2% for the benchmark health to 24% for the benchmark
mst. For the well-known pointer-chasing benchmark mcf, the
speedup is 19.6%. Considering the low hardware overhead
required by this technique, the performance gains are impressive.

For computation intensive benchmarks, smaller speedups
(average of 0.5%) result, which is expected since the reduction in
the D-cache miss rate for these benchmarks is small. The only
benchmark that shows a negative speedup (-0.7%) is gcc, which
will be discussed further in Section 6.3.

Speedups

-1%

4%

9%

14%

19%

24%

bz
ip

2

ga
p

gc
c

gz
ip

pe
rl

H
_m

ea
n

m
cf

pa
rs

er

tw
ol

f

he
al

th

m
st

H
_m

ea
n

computation-intensive memory-intensive

Figure 10. The speedups of using recovery-free value
prediction.

6.2 Performance Analysis
To analyze why the proposed technique achieves such impressive
speedups, we first examine the stride value predictor to see how
well it predicts a value and how often a missing load is correctly
predicted.

It is observed in previous studies [9],[16],[22] that many
instructions exhibit stride locality and a more recent work [26]
also showed that stride locality exists in the address stream for
many load instructions in irregular programs. As pointed out in
Section 3, the address predictability of load addresses is
equivalent to load value predictability for pointer chasing codes.
Our results, shown in Figure 11, confirm these observations. For
each benchmark, both the value prediction coverage (i.e., the
ratio of confident predictions over all predictions) and the value
prediction accuracy (i.e., the ratio of the correct predictions over
confident predictions) are shown in Figure 11 for all value
producing instructions using a 4k-entry stride value predictor. It
can be seen that most benchmarks, especially the benchmarks
mcf, parser, and mst, exhibit significant stride type of value
locality and this small value predictor achieves decent prediction
coverage and accuracy.

Value predictability of all value producing
instructions using a 4k entry stride predictor

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bz
ip2

ga
p

gc
c

gz
ip

pe
rl

mcf

pa
rse

r
tw

olf

he
alth mst

coverage
accuracy

Figure 11. The value predictability for all value producing
instructions using a 4k-entry stride predictor.

Since value predictions are used to break memory dependence
chain, the predictability of the missing loads is of special
interests and is examined in Figure 12. From Figure 12, it can be
seen that the value of missing loads exhibit different degrees of
stride locality for different benchmarks. For the heavy pointer
chasing benchmarks mcf and mst, the value predictor achieves
large prediction coverage and high accuracy. Given their high
cache miss rate and pointer chasing characteristics, this explains
why these benchmarks enjoy significant speedups. For another
pointer-chasing benchmark health, the missing loads show very
limited stride type of locality. As we will see next, the speedup
for this benchmark is mainly from speculative memory
disambiguation instead of breaking true memory dependencies.
Again, if a more powerful predictor (e.g., context-based) is used
to explore the locality in its address stream, higher speedup can
be expected for this particular benchmark as well.

Value predictability of missing loads using a 4k
entry stride predictor

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bzip2 gap gcc gzip perl mcf parser twolf health mst

coverage

accuracy

Figure 12. The value predictability for missing loads using a
4k-entry stride predictor.

As discussed in Section 3, both true data dependence and the
alias dependence between missing loads prevent these loads from
being executed in parallel. The recover-free value prediction
scheme breaks both dependencies during the speculative
execution. Next, we examine the impact of breaking either of
these two dependencies in enhancing MLP. In the next
experiment, we isolate the performance impact by breaking only
one type of dependency at a time. Figure 13 shows the speedup
results for breaking true data dependency only (labeled
‘prediction_only’), breaking alias dependence only (labeled
‘disambiguation_only’), and breaking both dependencies (i.e.,
the same results as in Figure 10, labeled ‘both’). We also include
the speedup results using the traditional value prediction (labeled
‘trad_value_pred’) in Figure 13. In the traditional value
prediction scheme, the same stride value predictor is used and an
idealistic validation and selective recovery (1 cycle penalty)
mechanism is incorporated into the execution pipeline. From
Figure 13, it can be seen that for computation-intensive
benchmarks, the aggressive memory disambiguation has slightly
better speedups than performing value prediction only. For
memory-intensive benchmarks, breaking true dependencies
results much higher speedups for mcf and mst but less speedups
for other benchmarks compared to breaking alias dependencies.
The reason is that for these benchmarks many critical memory
dependencies are due to alias dependencies. For these
benchmarks, increasing the instruction window size and
performing speculative memory disambiguation can improve

MLP effectively. Also, our value predictor only exploits the
stride locality, limiting the opportunity to break true memory
dependence more aggressively. The benchmarks mcf and mst, on
the other hand, feature heavy pointer chasing and exhibit strong
stride locality in their value streams. So, breaking true
dependencies becomes more profitable. Fortunately, when both
true dependencies and alias dependencies are broken at the same
time using our proposed approach, higher speedups are achieved.
This mutually beneficial effect confirms our observation in
Section 3 that both memory dependencies need be broken to
improve MLP and similar results are also reported in a study [4]
of the interaction between value prediction and memory
dependence speculation.

Speedups

-1%

4%

9%

14%

19%

24%

bz
ip

2

ga
p

gc
c

gz
ip

pe
rl

H
_m

ea
n

m
cf

pa
rs

er

tw
ol

f

he
al

th

m
st

H
_m

ea
n

computation-intensive memory-intensive

prediction_only disambiguation_only
both trad_value_pred

Figure 13. The speedups resulting from breaking different
dependencies and traditional value speculation.

Comparing our proposed recovery-free scheme to the traditional
value prediction, we can see that the traditional value prediction
achieves higher speedups for computation intensive benchmarks.
For memory-intensive benchmarks, our recovery-free prediction
scheme has much higher speedups since it avoids the
misprediction penalties and benefits from speculative memory
disambiguation. For example, the recovery penalties (even with
only 1 cycle penalty per misprediction) account for 2.6% of the
overall execution time for the benchmark mcf while our recovery-
free scheme totally removes such penalties. Moreover, in
recovery-free value prediction, the value predictor is updated
with un-speculative execution results (i.e., the computation
results not involving direct/indirect predicted values), thereby
being able to achieve higher prediction accuracies than the
traditional value speculation scheme.

The results in Figure 13 also suggest another interesting
optimization: we can apply recovery-free value prediction
selectively by monitoring the dynamic behavior of a workload.
Only if the workload is memory intensive (e.g., the L1 D-cache
miss rate is larger than 10%), the recovery-free value prediction
is turned on. Otherwise, recovery-free value prediction is turned
off or only the aggressive memory disambiguation is used for
prefetching. Further exploration of this optimization is out of the
scope of this paper and left as future work.

6.3 Sensitivity Analysis
In this experiment, we evaluate the proposed technique in
different memory hierarchies, 16kB direct-mapped L1 D-cache

and 256kB 4-way L2 unified cache (labeled as ‘configuration
1’), 32kB 2-way L1 D-cache and 512kB 8-way L2 cache (same
as base processor, labeled as ‘configuration 2’), and 64kB 4-way
L1 D-cache and 2048kB 8-way L2 cache (labeled as
‘configuration 3’). The speedups of the proposed technique in
these configurations are show in Figure 14.

Interesting observations can be made from Figure 14. First, for
the small D-cache of 16kB, the memory problem becomes more
evident. As a result, more speedups are achieved by hiding the
miss latency using recovery-free value prediction, as we can see
from the benchmarks, mst and parser. On the other hand,
however, a small cache can tolerate less cache pollution resulting
from value mispredictions. So, the miss rate can actually increase
if the value misprediction rate is high and the speedups are
reduced, as in the benchmarks gcc and twolf. Large caches such
as 64kB are more tolerant on cache pollution problem while the
criticality of memory operations is reduced if they hit in the
cache.

The speedups for different memory hierarchies

-5%

0%

5%

10%

15%

20%

25%

30%

bz
ip

2

ga
p

gc
c

gz
ip

pe
rl

H
_m

ea
n

m
cf

pa
rs

er

tw
ol

f

he
al

th

m
st

H
_m

ea
n

computation-intensive memory-intensive

configuration_1

configuration_2

configuration_3

Figure 14. The speedups for different memory hierarchies.

In the next experiment, we increase the instruction window size
to 128 to allow it to be more tolerant to L1 D-cache misses. The
same 32kB 2-way L1 D-cache and 512kB 8-way L2 cache are
used as in the 4/64 issue model. The results are shown in Figure
15. From this experiment, we can see that much higher speedups
are reported for the 128-entry instruction window in all memory-
intensive benchmarks using our proposed recovery-free value
prediction. There are two major reasons accounting for this trend.
First, a large instruction window size of 128 holds a longer
memory dependence chain. As discussed in Section 3, breaking a
longer chain can overlap more cache misses, resulting in higher
performance improvement. Secondly, a larger instruction window
enables more instructions to be fetched into the window under a
long-latency cache miss, thereby enabling those instructions to be
predicted sooner than in a small instruction window. As a result,
speculative loads (or prefetches) can be issued earlier to hide
more memory access latencies.

7. LIMITATIONS
Two limitations exist with our proposed scheme. First, as we
pointed out in Section 3, value prediction can hide memory
access latencies by breaking the memory dependencies,
especially for long memory dependence chains. As a result, it is
effective for memory-intensive workloads with heavy pointer-
chasing. If a workload does not exhibit such memory

dependencies, for example, the cache misses due to accessing a
large array, our proposed scheme will have very limited
capability to hide these cache miss penalties.

Secondly, in our proposed recovery-free value prediction scheme,
a prediction is made only after the instruction is fetched and the
prediction is consumed only when the dependent instructions are
in the instruction window. This implies that the earliest time for
a speculative load to be executed is after the load instruction is
dispatched into the instruction window. It limits the capability to
explore the far-flung MLP even the correct prediction can be
made. Experiments in Section 6.3 show the performance impacts
of using a large instruction window to bring in instructions early
into the instruction window. Another interesting way to explore
the distant MLP is to combine with the run-ahead execution [8],
[19] to pre-execute/prefetch both independent and dependent
memory accesses.

The speedups for 64- and 128-entry instruction
windows

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

bz
ip

2

ga
p

gc
c

gz
ip

pe
rl

H
_m

ea
n

m
cf

pa
rs

er

tw
ol

f

he
al

th

m
st

H
_m

ea
n

computation-intensive memory-intensive

4/64 issue

4/128 issue

Figure 15. The speedups for different instruction window
sizes.

8. CONCLUSION
In this paper, we advocate using value prediction to enhance
MLP for memory intensive benchmarks with heavy pointer
chasing. As current microprocessors can execute instructions
very fast as long as long memory latency operations, such as
cache misses, are not involved, we propose to use value
prediction only for data prefetching so that complex prediction
validation and misprediction recovery mechanisms are avoided
and only minor hardware changes are necessary. Also, the same
hardware changes enable aggressive memory disambiguation for
prefetching.

We present our design of recovery-free value prediction based on
a MIPS R10000 processor model and the simulation results show
that our technique enhances MLP effectively for a range of
benchmarks and achieves significant speedups.

As pointed out in [1], only a few static load instructions are
responsible for the majority of dynamic cache misses. So, it
would be very interesting to tune the value predictor to predict
only the values leading to the address computation of these load
instructions. This would further reduce the hardware overhead
and the power consumption overhead due to the useless
speculation (i.e., the speculation not leading to useful prefetch).

9. ACKNOWLEDGMENTS
This work was supported by NSF awards CCR-0208596 and
CCR-0072926 and a hardware donation from Hewlett-Packard.

10. REFERENCES
[1] S. G. Abraham, R. A. Sugumar, D. Windheiser, B. R. Rau,

and R. Gupta, “Predictability of load/store latencies”,
Proceeding of the 26th International Symposium on
Microarchitecture (MICRO-26), 1993.

[2] M. Bekerman, S. Jourdan, R. Ronen, G Kirshenboim, L.
Pappoport, A. Yoaz, and U. Weiser, “Correlated Load-
Address Predictors”, Proceeding of the 26th International
Symposium on Computer Architecture (ISCA-26), 1999.

[3] D. Burger and T. Austin, “The SimpleScalar tool set, v2.0”,
Computer Architecture News (ACM SIGARCH newsletter),
vol. 25, June 1997.

[4] B. Calder and G. Reinman, “A comparative survey of load
speculation architecures”, Journal of Instruction-Level
Parallelism, 2000.

[5] M. Carlisle, “Olden: parallelizing programs with dynamic
data structures on distributed-memory machines”, Ph.D.
thesis, Princeton University Computer Science Department,
1996

[6] J. D. Collins, H. Wang, D. Tullsen, C. Hughes, Y.-F. Lee,
D. Lavery, and J. P. Shen, “Speculative precomputation:
long-range prefetching of delinquent loads”, Proceeding of
the 28th International Symposium on Computer
Architecture (ISCA-28), 2001

[7] R. Cooksey, S. Jourdan, and D. Grunwald, “A stateless,
content-directed data prefetching mechanism”, Proceeding
of the 10th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS-X), 2002.

[8] J. Dundas, and T. Mudge, “Improving data cache
performance by pre-executing instructions under a cache
miss”, Proceeding of the 1997 International Conference on
Supercomputing, 1997.

[9] F. Gabbay and A. Mendelson, “Speculative execution based
on value prediction,” EE Department Tech Report 1080,
Tachnion - Israel Institute of Technology, Nov. 1996.

[10] J. Gonzalez and A. Gonzalez, “Speculative execution via
address prediction and data prefetching”, Proceeding of the
1997 International Conference on Supercomputing, 1997.

[11] J. Henning, “SPEC2000: measuring CPU performance in
the new millennium”, IEEE Computer, July 2000.

[12] D. Joseph and D. Grunwald, “Prefetching using Markov
Predictors”, IEEE Transactions on Computers. Vol. 48,
Feb 1999.

[13] T. Karkhanis and J. Smith, “A Day in the Life of a Cache
Miss”, Proceeding of the 2nd Annual Workshop on Memory
Performance Issues (WMPI 2002), 2002.

[14] A. R. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and E.
Rotenberg, “A large, fast instruction window for tolerating
cache misses”, Proceeding of the 29th International
Symposium on Computer Architecture (ISCA-29), 2002.

[15] S. Lee and P. Yew, “On some implementation issues for
value prediction on wide ILP processors”, Proceeding of

the International Conference on Parallel Architectures and
Compilation Techniques (PACT’00), 2000.

[16] M. H. Lipasti and J. P. Shen, “Exceeding the dataflow limit
via value prediction,” Proceeding of the 29th International
Symposium on Microarchitecture (MICRO-29), 1996.

[17] M.H. Lipasti, C. B. Wikerson and J. P. Shen, “Value
locality and load value prediction,” Proceeding of the 7th
International Conference on Architectural Support for
Programming Language and Operation Systems (ASPLOS-
7), Oct, 1996.

[18] C. K. Luk, “Tolerating memory latency through soft-ware-
controlled pre-execution in simultaneous multithreading
processors”, Proceeding of the 28th International
Symposium on Computer Architecture (ISCA-28), 2001.

[19] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt, “Runahead
execution: an alternative to very large instruction windows
for out-of-order processors”, Proceeding of the 9th
International Symposium on High Performance Computer
Architecture (HPCA-9), 2003..

[20] E. Rotenberg, S. Bennett, and J. E. Smith. "Trace Cache: A
Low Latency Approach to High Bandwidth Instruction
Fetching", Proceeding of the 29th International Symposium
on Microarchitecture (MICRO-29), 1996.

[21] A. Roth and G. Sohi, “Speculative data driven
multithreading”, Proceeding of the 7th International
Symposium on High Performance Computer Architecture
(HPCA-7), 2001.

[22] Y. Sazeides and J. E. Smith, “The predictability of data
values,” Proceeding of the 30th International Symposium on
Microarchitecture (MICRO-30), Nov. 1997.

[23] E. Sprangle and D. Carmean, “Increasing processor
performance by implementing deeper pipelines”,
Proceedings of the 29th International Symposium on
Computer Architecture (ISCA-29), 2002.

[24] K. Wang and M. Franklin, “Highly accurate data value
prediction using hybrid predictors,” Proceeding of the 30th
International Symposium on Microarchitecture (MICRO-
30), Nov. 1997.

[25] P. H. Wang, H. Wang, J. D. Collins, E. Grochowski, R. M.
Kling, and J. P. Shen, “Memory latency-tolerance
approaches for Itanium processors: out-of-order execution
vs. speculative precomputation”, Proceeding of the 8th
International Symposium on High Performance Computer
Architecture (HPCA-8), 2002.

[26] Y. Wu, “Efficient discovery of regular stride patterns in
irregular programs and its use in compiler prefetching”,
Proceeding of the ACM 2002 Conference on Programming
Language Design and Implementation (PLDI-2002), 2002.

[27] K. C. Yeager, “The MIPS R10000 superscalar
microprocessor”, IEEE Micro, 1996.

[28] H. Zhou, J. Bodine, and T. Conte, “Detecting global stride
localities in value streams”, Proceeding of the 30th Int’l
Symp. on Computer Architecture (ISCA-30), 2003.

[29] H. Zhou and T. Conte, “Performance modeling of memory
latency hiding techniques”, Technical Report, ECE
Department, N. C. State University, Dec. 2002

[30] C. Zilles and G. Sohi, “Execution-based prediction using
speculative slices”, Proceeding of the 28th International
Symposium on Computer Architecture (ISCA-28), 2001.

