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ABSTRACT 
The ever-increasing computational power of contemporary 
microprocessors reduces the execution time spent on arithmetic 
computations (i.e., the computations not involving slow memory 
operations such as cache misses) significantly. Therefore, for 
memory intensive workloads, it becomes more important to 
overlap multiple cache misses than to overlap slow memory 
operations with other computations. In this paper, we propose a 
novel technique to parallelize sequential cache misses, thereby 
increasing memory-level parallelism (MLP). Our idea is based 
on the value prediction, which was proposed originally as an 
instruction-level-parallelism (ILP) optimization to break true 
data dependencies. In this paper, we advocate value prediction in 
its capability to enhance MLP instead of ILP. We propose to use 
value prediction and value speculative execution only for 
prefetching so that the complex prediction validation and 
misprediction recovery mechanisms are avoided and only minor 
changes in the microarchitecture are needed. The same hardware 
modifications also enable aggressive memory disambiguation for 
prefetching. The experimental results show that our technique 
enhances MLP effectively and achieves significant speedups 
even with a simple stride value predictor.   

Categories and Subject Descriptors 
C.1.1 [Processor Architecture]: Single Data Stream 
Architectures. 

General Terms 
Performance, Design. 

Keywords 
Recovery-free value prediction, memory level parallelism, 
prefetching, memory disambiguation. 

1. INTRODUCTION 
The trend in contemporary microprocessor design, including fast 
clock speed, deep pipeline [23], large instruction window size 

[13],[14], aggressive out-of-order execution, and wide fetch 
bandwidth [20], results in tremendous capability in performing 
arithmetic computations (i.e., the computation not involving slow 
memory operations such as cache misses). Therefore, for memory 
intensive workloads, it becomes more important to parallelize 
multiple cache misses than to overlap cache misses with 
arithmetic computations. 

In this paper, we propose a novel technique to parallelize 
sequential cache misses speculatively. The target workload is 
memory intensive workloads with heavy pointer chasing. The 
idea is developed upon value prediction [9],[16],[17], which was 
originally proposed as an instruction level parallelism (ILP) 
optimization to break true data dependencies in computations. 
Since the data dependence between pointer chasing loads 
enforces the sequential execution, value prediction has the 
capability to parallelize these loads, thereby increasing the 
memory level parallelism (MLP). We advocate that for memory 
intensive applications the largest performance potential of value 
prediction lies in its capability to enhance MLP instead of ILP. 

Since we focus on using value prediction to increase MLP, the 
hardware overhead to support value prediction and value 
speculative execution can be significantly reduced. In this paper, 
we propose to use value prediction only for prefetching so that 
the complex value prediction validation and misprediction 
recovery mechanisms are avoided and only minor changes in the 
hardware are necessary. Unlike the traditional value prediction 
schemes, where the speculative results are committed when the 
correct prediction is made, the speculative results in our scheme 
are only used for prefetching and will not be committed. In a 
different point of view, one can think of the speculative 
execution in our approach as a speculative pre-execution scheme, 
which requires neither explicit pre-execution thread generation 
nor multi-threading support. Another important aspect is that the 
same hardware changes in our scheme also enable aggressive 
memory disambiguation to break alias (i.e., the load-after-store) 
dependencies. Such disambiguation is used for prefetching and is 
also recovery free. 

The experimental results, based on a set of SPEC2000 
benchmarks [11] and Olden benchmarks [5] including both 
computation-intensive and memory-intensive benchmarks, show 
significant speedups resulting from breaking both true 
dependencies and alias dependencies between memory 
operations. Such speedups also scale well with the current trend 
in microprocessor design. 

The remainder of the paper is organized as follows. Section 2 
addresses the related work. Section 3 illustrates the performance 
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potential of using value prediction to enhance MLP. Section 4 
presents the details of our proposed approach. The experimental 
methodology is contained in Section 5 and the results are in 
Section 6. Section 7 discusses the limitations of our proposed 
scheme. Section 8 concludes the paper and discusses the future 
work. 

2. RELATED WORK 
Due to the speed gap between the processor core and the 
memory, hiding memory latency has been an active research 
topic. One well established solution is memory prefetching and 
the majority of work is based on the address prediction [2],[12]. 
One recently proposed scheme [7], named stateless, content-
directed prefetch, improves upon prior techniques by examining 
the prefetched data to check whether the data could potentially 
be a pointer de-reference address. If so, the content will be used 
as the address for the next prefetch. Compared to it, our proposed 
technique uses the fetched data to compute pointer chasing load 
addresses based on the code semantics, thereby having fewer 
chances to fetch the wrong data to pollute the cache. 

Another way to hide memory latency is based on the concept of 
pre-execution/pre-computation. Both hardware-based and 
software-based schemes [6], [18], [21], [25], [30] have been 
proposed for this purpose. As will be discussed in Section 4, our 
recovery-free value prediction scheme is similar to the pre-
execution paradigm although our approach requires neither 
explicit thread generation nor multi-threaded support. Also, as 
pointed out in [25], the pre-computation thread is more effective 
when used to prefetch the critical pointer chasing loads in the 
loop control than to prefetch loads in the loop body. A similar 
observation can be made for our proposed scheme since 
predicting pointer-chasing loads in loop control can overlap the 
execution of multiple iterations and result in more latency 
hiding. Runahead execution [8],[19] is another form of pre-
execution without multithreaded support. During the execution, 
if the processor is stalled due to a cache miss, the current 
execution state will be checkpointed and the processor enters the 
runahead mode to pre-execute the independent instructions 
following the blocking instruction. The purpose of the pre-
execution is to prefetch the (future) data into cache. When the 
cache miss is repaired, the processor goes back to the normal 
mode and re-executes these pre-executed instructions. In an out-
of-order processor, runahead execution can achieve similar 
performance of a much larger instruction window. Our proposed 
scheme and runahead execution can be mutually beneficial as our 
scheme tries to pre-execute the dependent operations of a 
blocking instruction. Also, as discussed in Section 3, the large 
instruction window achieved by runahead execution provides 
better chances for our scheme to improve MLP. 

Value prediction was proposed originally as an ILP optimization 
technique [9],[16],[17],[22]. Using value prediction to hide load 
forward latencies is studied in [4]. By correctly predicting the 
value of a load instruction, dependent instructions can avoid 
stalling during the time that the load executes. Address 
prediction for prefetching is proposed in [10]. Based on address 
prediction, the data is prefetched and saved in a special buffer 
(called Memory Prefetch Table) and used as the value prediction 
of the load. Our proposed approach is different from these 

previous works in that we use value prediction only for 
prefetching, thereby avoiding complex validation and recovery 
hardware and the associated recovery penalties. Also, our 
approach leverages aggressive memory disambiguation for 
prefetching. As pointed out in Section 3, it is very important to 
break both true and alias dependencies in order to increase MLP. 

3. USING VALUE PREDICTION TO 
ENHANCE MLP 
Values produced by individual instructions exhibit localities [22] 
and different value prediction schemes are proposed to exploit 
such localities to break true data dependencies [9],[16],[17]. In a 
typical value prediction/speculation scheme proposed for a 
superscalar processor, the prediction of an instruction enables its 
dependent instructions to be executed speculatively. If the 
prediction turns out to be correct, these instructions will commit 
their speculative results so that the processor makes faster 
forward progress by hiding the latency of value speculative 
computation in the un-speculative computations. If the prediction 
is wrong, however, a recovery scheme is necessary to squash the 
speculative results and to re-execute these affected instructions 
with correct data. 

For memory intensive workloads with heavy pointer chasing, 
sequential cache-misses resulting from pointer chasing code 
structures dominate the overall execution time. These cache-
misses form a memory dependence chain since one missing 
load’s address is dependent on the previous missing load’s value. 
Taking a frequently executed code segment from the benchmark 
mcf as an example, shown in Figure 1, the profile information 
shows that the pointer chasing codes ‘node->child’, ‘node-
>basic_arc->cost’, and ‘node->pred->potential’ result in many 
cache misses. The memory dependence chains formed by these 
missing loads are shown in Figure 2. 

 

 

 

 

 

 

 

 

Figure 1. A code segment in the benchmark mcf (in function 
refresh_potential) resulting in many cache-misses. 

In Figure 2(a), the dependence chain is based on a single 
iteration of the while loop in Figure 1, where nodes 1 and 2 
correspond to two dependent missing loads from ‘node-
>basic_arc->cost’. Nodes 3 and 4 correspond to ‘node->pred-
>potential’. Node 5 corresponds to ‘node->child’ and node 0 is 
the same load ‘node->child’ from the previous iteration. Figure 
2(b) shows the dependence chain when the loop is unrolled 
multiple times. The solid arrow in Figure 2 represents the true 
data dependence and the dashed arrow represents the alias 
dependence between missing loads. Although the alias 

        while( node ) 
        { 
            if( node->orientation == UP ) 
                node->potential = node->basic_arc->cost + node->pred-
>potential;        // (Nodes 1,2,3,4) 
            else /* == DOWN */ 
            { 
                node->potential = node->pred->potential - node->basic_arc-
>cost; 
                checksum++; 
            } 
            tmp = node; 
            node = node->child; //  (Nodes 0, 5) 
        } 



dependence exists between a store and a following load 
instruction, we use the same term to model the dependence 
between two missing loads when one or more store instructions 
exist between them and one of these stores is dependent on the 
first missing load. Here, it needs to be pointed out that alias 
dependencies span multiple iterations, e.g., there exists alias 
dependence between the node 2 in the first iteration and all the 
loads in later iterations, though not shown in Figure 2(b) for 
conciseness. Also, note that in the memory dependence chain, 
only missing loads are included as other instructions such as 
stores, adds, branches, and loads that hit in cache are not long 
latency operations. 

 

 

 

 

 

 

 

 

Figure 2. The memory dependence chain based on the code in 
Figure 1. (a) The dependence chain for a single iteration. (b) 
The dependence chain for multiple iterations (alias 
dependence among different iterations are not shown for 
conciseness). 

From this example, we can see that both true data dependencies 
and alias dependencies enforce the sequential execution of the 
missing loads, resulting in long execution time. In order to 
process these cache misses in parallel (i.e., to increase MLP), 
both dependencies need to be broken. While aggressive memory 
disambiguation can minimize alias dependencies, value 
prediction can be used to break true data dependencies. In this 
example, memory disambiguation removes the dependence of 
node 5 on nodes 2 and 4 in Figure 2(a), thus exposing the critical 
path of executing the loop as chasing the pointer ‘node->child’ 
(i.e., node 5). If a correct prediction can be made for this load, 
the execution of multiple iterations of the loop can be 
overlapped, as shown in Figure 3, where predicting the value of 
the pointer chasing load (node 5’ in Figure 3) in the second 
iteration enables the third and the fourth iterations to be executed 
speculatively so that their miss latencies are overlapped with the 
first and the second iterations. As a result, the long miss 
latencies in the third and the fourth iterations can be completely 
hidden if the correct value prediction is made. 

The example in Figure 3 illustrates that the effectiveness of 
value prediction in breaking the true memory dependence chain 
so that sequential cache misses can be processed in parallel and 
MLP can be enhanced. Such effectiveness is affected by several 
characteristics of the memory dependence chain. The first is the 
length of the memory dependence chain. In the example in 
Figure 3, the instruction window size determines how many 
iterations of the loop can be unrolled dynamically. If the 
instruction window can only hold two iterations of the loop, the 
speculative execution of the third and the fourth iterations is 

impossible when they are not fetched into the pipeline. The 
second is which missing load along the dependence chain is 
predicted. In the example in Figure 3, it can be seen that 
predicting the value of Node 5’ can overlap more cache misses 
than predicting Node 5 or Node 5’’. The third is the 
predictability of these missing loads’ values since more accurate 
prediction will result in more useful speculative executions. In 
[29], these characteristics are examined using an analytical 
model of value prediction in enhancing MLP. It is found that 
value prediction can be more effective than traditional address 
prediction based prefetching techniques for the same 
predictability model. The main reason is that while prefetching 
techniques only bring the data close to the processor (e.g., the L1 
D-cache), value prediction takes one step further by using the 
fetched data to drive other dependent load instructions to be 
executed early. In the example in Figure 3, it can be seen that 
predicting the value of Node 5’ is equivalent to predicting the 
address of the dependent loads (e.g., Node 5’’) since the only 
difference is a constant offset. So, using the address prediction 
based prefetching, the miss latency of Node5’’ can be hidden if 
the prefetch is triggered early enough. Value prediction, on the 
other hand, not only fetches the data of Node 5’’ but also uses 
the fetched data to execute other dependent instructions (i.e., the 
missing loads in the fourth iteration) even if their 
addresses/values are not predictable. As a result, value prediction 
is capable of hiding much more miss latencies. The analytical 
model also shows that the effectiveness of value prediction is 
proportional to the memory dependence chain length, the value 
prediction accuracy, and the cache miss latencies. Since the chain 
length scales with the effective instruction window size and miss 
penalties scales with fast processor clock speed, we argue that 
value prediction is a very powerful technique to improve MLP 
for future high performance microprocessors. 

 

 

 

 

 

 

Figure 3. Predicting the value of Node 5’ enables overlapping 
of cache misses in different iterations. 

4. RECOVERY-FREE VALUE 
PREDICTION 
As discussed in Section 3, value prediction has great potentials to 
enhance MLP by overlapping otherwise sequential cache misses. 
To implement such a technique, however, complex hardware 
support is necessary to validate the prediction and to perform 
recovery from value mispredictions. As discussed in Section 1, 
current microprocessors can execute computations very fast as 
long as slow memory operations (e.g., cache misses) are not 
involved. So, unlike previously proposed value prediction 
schemes [9],[16],[17], we propose to use value prediction only 
for prefetching so that there is no need to validate a prediction or 
to perform recovery from mispredictions. Using the example in 

0 

1 

2 

3 

4 

5 

(a) 
(b) 

Memory dependence 
chain for one iteration 

… 

1st Iteration 

2nd Iteration 

nth Iteration 

1st iteration 

2nd iteration 

3rd iteration 

4th iteration 

Node 5’ 

Node 0 

Node 5’’ Node 5 

Prediction of Node 5’ 



Figure 3, based on the prediction of node 5’, the third and the 
fourth iterations of the loop are executed speculatively. Unlike 
the traditional value prediction schemes, the speculative results 
won’t be committed in our approach and the only purpose of such 
speculative execution is to bring the data to L1 data cache. As a 
result, even if the prediction is correct, the third and the fourth 
iterations of the loop will be executed again (un-speculatively) in 
our proposed scheme. We expect that such execution will be very 
fast since the cache accesses in these iterations will hit in the L1 
data cache (as the data have already been fetched during 
speculative execution if the prediction is correct). So, compared 
to traditional value prediction schemes, our technique trades a 
small penalty of re-execution in the case of correct value 
prediction for much smaller hardware overhead. In the case of a 
value misprediction, both traditional schemes and our proposed 
scheme will result in polluting the data cache while our scheme 
associates no recovery penalties. Another interesting point is that 
the same hardware changes required in our scheme also enable 
aggressive, recovery-free memory disambiguation for prefetching 
as a byproduct, therefore is capable of delivering higher 
performance improvement. 

To support recover-free value prediction, only minor hardware 
changes are necessary. We present our proposed design based on 
a MIPS R10000 style microarchitecture [27], which has a 7-stage 
pipeline as shown in Figure 4. There are four key changes to the 
hardware, presented as follows. 

 

 

 

 

 

 

Figure 4. The execution pipeline. 

First, a value predictor is included in the front-end of the 
processor and is indexed with pc, as shown in Figure 4. The 
design of a high accuracy value predictor is out of the scope of 
this paper and we use a simple stride value predictor 
[9],[16],[22] to show the effectiveness of our technique though a 
more powerful predictor [24],[28] can lead to a higher 
performance improvement. 

Secondly, two flag bits are added to control value speculative 
execution. One flag bit, called value prediction speculative (vp), 
is added to every entry of issue window or RUU. The other flag 
bit, called value prediction ready (vp_ready), is added for each 
register in the physical register file. When a confident value 
prediction is made at the dispatch stage, the vp_ready bit is set 
for the destination register and the predicted value is written to 
the physical register file. At the issue stage, if the source 
registers of an instruction are ready, it will be issued un-
speculatively and the execution result will be used to update the 
value predictor. If source registers are not ready but the vp_ready 
bits for these source registers are set (i.e., the values of these 
physical registers are either predicted or computed using 
previous predictions), the instruction is issued speculatively 

provided there are unused issue bandwidth and function units. 
When an instruction is issued speculatively, the corresponding vp 
flag in the issue queue is set to prevent the same instruction from 
being issued speculatively more than once since we do not need 
the same data to be prefetched more than once. Speculatively 
issued instructions will remain in the issue queue until they are 
issued un-speculatively later with (un-speculative) ready source 
registers. When a speculatively issued instruction finishes, it 
writes back the speculative results to the physical register file 
and set the corresponding vp_ready bit to enable dependent 
instructions to be executed speculatively. Writing the speculative 
results to the physical register file won’t affect the correctness of 
the program execution since the physical register will be 
overwritten by the un-speculative execution of the same 
instruction. In the case when the speculative result arrives later 
than the un-speculative result, it is simply dropped. 

Thirdly, the instruction selection logic is modified so that it 
prioritizes the issue of un-speculative instructions and prohibits 
the speculative execution of store and branch instructions. In 
such a way, the speculative execution will not compete with 
normal execution for resources and it only affects the normal 
execution through the data cache. 

Fourthly, to break the alias (i.e., load-after-store) dependencies, 
the vp flag is set for the load instructions that are stalled due to 
prior unresolved store addresses. Then, these load instructions 
can be issued speculatively as if they were based on predicted 
values. Therefore, no alias dependencies are enforced. This 
aggressive memory disambiguation requires no recovery since 
the same load instructions and their dependent instructions will 
be executed again un-speculatively after the prior store addresses 
are resolved and the speculative execution is used only for 
prefetching. We call this as recovery-free speculative memory 
disambiguation. 

The proposed changes are relatively minor and are unlikely to 
affect the critical path of the processor. Using the physical 
register file to keep the value predictions and the speculative 
execution results enables our approach to utilize the otherwise 
unused machine resources and does not require additional ports 
to the register file. 

Here, one interesting observation is that our proposed recovery-
free speculative execution could be viewed as a simple, yet 
efficient form of pre-execution. As each predicted value (or a 
presumably disambiguated load instruction) enables a set of 
dependent instructions to be executed speculatively, these 
speculatively executed instructions can be viewed as a pre-
execution thread triggered by the prediction, though there is no 
explicit multi-thread support. Such pre-execution threads are 
constructed for each predicted value based on the data 
dependence relationship dynamically from the fetched instruction 
stream, thus taking advantage of dynamic branch prediction. The 
pre-execution is terminated when the normal execution catches 
up with the pre-execution thread at the same instruction. The 
reason is that when the source registers of an instruction are 
ready, normal execution is performed and the vp_ready flag is 
not propagated anymore. The purpose of such pre-execution is to 
prefetch the data and the pre-execution thread executes only if 
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there are unused resources, thus avoiding resource competition 
with the main thread. 

5. METHODOLOGY 
We implemented the proposed technique in a detailed timing 
simulator using the Simplescalar [3] toolset. The underlying 
processor organization is based on the MIPS R10000 processor, 
configured as indicated in Table 1. In our experiments, we vary 
the D-cache configurations and the ROB size (or the instruction 
window size) of the base configuration to evaluate our proposed 
technique in a range of processor models. Both computation-
intensive and memory-intensive benchmarks are selected from 
the SPEC2000 integer benchmark suite and Olden benchmark 
suite. Benchmarks bzip2, gap, gcc, gzip, and perl are 
computation-intensive and benchmarks mcf, parser, twolf, 
health, and mst are used as memory-intensive as they exhibit 
much higher data cache miss rates. The reference input data are 
used for SPEC2000 benchmarks. We fast-forward 800M 
instructions and simulate the next 200M instructions. For the 
benchmark health, the input is ‘max_level = 5 and max_time = 
500’ and it runs into completion. For the benchmark mst, 3407 
nodes are used as input and the first 2B instructions are skipped 
and the next 200M instructions are simulated. The baseline 
performance results of these benchmarks using the base 
processor model are shown in Table 2. 

Table 1. Base processor configuration. 
Instruction 

Cache 
Size = 64 kB; Associativity = 4-way; Replacement = 
LRU; Line size = 16 instructions (64 bytes); Miss 
penalty = 10 cycles. 

Data Cache Size = 32 kB; Associativity = 2-way; Replacement = 
LRU; Line size = 64 bytes; Miss penalty = 10 
cycles; 32 MHSRs. 

Unified L2 
Cache 

Size = 512 kB; Associativity = 8-way; Replacement 
= LRU; Line size = 128 bytes; Miss penalty = 80 
cycles; 64 MHSRs. 

Branch 
Predictor 

64K entry G-share; 32K entry BTB 

Superscalar 
Core 

Reorder buffer: 64 entries; Dispatch/issue/retire 
bandwidth: 4-way superscalar; 4 fully-symmetric 
function units; Data cache ports: 4 

Execution 
Latencies 

Address generation: 1 cycle; Memory access: 2 
cycles (hit in data cache); Integer ALU ops = 1 
cycle; Complex ops = MIPS R10000 latencies 

Memory 
Disambiguation 

Load stalls when there is a pending store with 
unresolved address. 

As described in Section 4, a simple stride value predictor (tag-
less 4K-entry) is used in our experiments to generate value 
predictions. The prediction table is indexed with pc and each 
entry in the table has three fields, as shown in Figure 5. The field 
‘last value’ holds the most recent execution result and the field 
‘stride’ keeps the difference between the last two execution 

results. The 3-bit confidence counter is used to filter out the 
potential incorrect predictions. For each successful prediction, 
the confidence counter is increased by 2 and is decreased by 1 for 
each misprediction [24]. The prediction with the confidence 
counter larger than 4 is viewed as a confident prediction. The 
speculative update similar to what proposed in [15] is also used 
to improve the prediction accuracy. 

 
 
 
 
 
 
 

Figure 5. The stride value prediction table. 

6. EXPERIMENTAL RESULTS 
In this section, we first evaluate the effectiveness of our proposed 
technique in reducing data cache miss rates, increasing MLP, and 
achieving performance gains. We then analyze where the 
performance gains come from in Section 6.2. In Section 6.3, we 
perform a sensitivity analysis by applying the proposed technique 
to a range of processor models. 

6.1 Performance Evaluation 
As discussed in Section 4, our proposed technique breaks both 
true data dependencies and alias dependencies between missing 
loads so that the otherwise stalled loads can be executed 
speculatively in parallel with the un-speculative missing loads. 
These speculatively executed loads perform the functionality of 
prefetching the data into the cache so that the un-speculative 
execution will experience fewer cache misses. We first examine 
the effect of this technique in reducing data cache miss rates, as 
shown in Figures 6 and 7. Here, the cache misses during the 
speculative execution are not counted since they are used as 
prefetch. For each benchmark in Figure 6, the L1 D-cache miss-
rate results are reported for both the base processor (labeled 
‘base’) and the processor with recovery-free value prediction 
(labeled ‘vp_exe’). Also, the cache misses are further divided 
into partially covered misses (i.e., a miss request for a cache line 
that is already being repaired from the L2 cache or memory) and 
non-covered misses. Partially cover cache misses have less 
impact on overall performance compared to non-covered cache 
misses. Figure 6 shows that for memory intensive benchmarks, 
the proposed technique reduces the L1 D-cache miss rate 
significantly ranging from 14% (from 47% to 33% in the 
benchmark mcf) to 0.5% (from 16.5% to 16% for the benchmark 
health) and increases the ratio of partially covered misses for 
most benchmarks. For computational intensive benchmarks, a 

Table 2. Baseline results of the benchmarks. 

Computation-Intensive Memory-Intensive Benchmarks 
bzip2 gap gcc gzip perl mcf parser twolf health mst 

IPC 1.68 1.31 2.11 1.46 1.46 0.51 0.85 0.83 0.32 0.21 
L1 D-cache miss rate 
(misses per 1K insn.) 

2.14% 
(4.88) 

0.45% 
(0.95) 

5.29% 
(14.08) 

6.88% 
(16.24) 

1.98% 
(8.61) 

46.6% 
(166.3) 

9.12% 
(33.04) 

14.1% 
(45.23) 

16.3% 
(66.08) 

55.3% 
(175.1) 

L2 Cache miss rate 
(misses per 1K insn.) 

28.5% 
(1.39) 

68.3% 
(0.65) 

46.0% 
(6.48) 

46.6% 
(7.57) 

40.2% 
(3.46) 

67.5% 
(112.3) 

48.0% 
(15.84) 

62.2% 
(28.12) 

85.0% 
(56.20) 

96.4% 
(168.8) 

Last value     Stride     Confidence Counter 

Prediction table  

PC 



visible reduction in the L1 D-cache miss rate is shown for the 
benchmarks bzip2, gap and gzip although the baseline miss-rates 
are relatively small for these benchmarks.  

Figure 7 shows the cache miss rate effect on the L2 caches. It can 
be seen that the large reduction in the L1 D-cache miss rates 
resulting from our proposed approach does not increase the L2 
cache miss rate for most benchmarks, which shows that the 
speculative execution does not only bring the data that are 
already in the L2 cache into the L1 D-cache but also reduces 
many L2 cache misses. For those benchmarks that exhibit 
increased miss rate in the L2 cache, for example the benchmark 
parser, when considering the L1 miss rate reduction, we can see 
that the overall L2 misses are also reduced, 14.5 L2 misses per 
1k instruction comparing to 15.8 L2 misses originally. 
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Figure 6. The L1 D-cache miss-rates. 
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Figure 7. The L2 cache miss-rates. 

Next, we use the benchmark mcf as an example to show the MLP 
improvement (i.e., overlapping the cache misses) achieved by the 
proposed technique for a typical heavy pointer chasing workload. 
Figure 8 shows the distribution of how many L1 data cache 
misses are overlapped in the base processor. The x-axis of Figure 
8 is the number of the overlapping misses and the y-axis is the 
time during execution that the overlapping happens. From Figure 
8, we can see that the processor spends 12% of overall execution 

time on computations that do not involve a cache miss. In 33% of 
the time during the execution, a single missing load is accessing 
the L1 D-cache (i.e., low MLP since no overlapping happens) 
and in 35% of the time two missing loads are accessing the L1 
D-cache. The maximum number of overlapping cache misses are 
determined by the MSHRs used in the cache and our experiment 
uses 32 MSHRs for the L1 D-cache. It can be inferred from this 
distribution that the benchmark mcf has many sequential cache 
misses, resulting in low MLP and MSHR utilization, and 
therefore long execution time. 

The distribution of overlapping cache misses (base 
processor)
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Figure 8. The baseline MLP for the benchmark mcf (overall 
execution time = 390M cycles). 

With recover-free value prediction, the overall execution time is 
significantly reduced and MLP is much improved as shown in 
Figure 9. Compared to Figure 8, a significant amount of 
sequential cache misses are now processed in parallel. Another 
interesting observation is that the speculative execution does not 
increase the pressure on MSHRs since it rarely converts 
sequential cache misses into more than six concurrent cache-
misses. 

The distribution of overlapping cache misses (with the 
proposed technique)
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Figure 9. The improved MLP for the benchmark mcf with 
recovery-free value prediction (overall execution time = 
327M cycles). 

Figure 10 shows the speedups of the proposed recovery-free 
value prediction and it shows that our proposed technique 
achieves significant speedups for memory intensive benchmarks, 
from 3.2% for the benchmark health to 24% for the benchmark 
mst. For the well-known pointer-chasing benchmark mcf, the 
speedup is 19.6%. Considering the low hardware overhead 
required by this technique, the performance gains are impressive. 



For computation intensive benchmarks, smaller speedups 
(average of 0.5%) result, which is expected since the reduction in 
the D-cache miss rate for these benchmarks is small. The only 
benchmark that shows a negative speedup (-0.7%) is gcc, which 
will be discussed further in Section 6.3. 
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Figure 10. The speedups of using recovery-free value 
prediction. 

6.2 Performance Analysis 
To analyze why the proposed technique achieves such impressive 
speedups, we first examine the stride value predictor to see how 
well it predicts a value and how often a missing load is correctly 
predicted. 

It is observed in previous studies [9],[16],[22] that many 
instructions exhibit stride locality and a more recent work [26] 
also showed that stride locality exists in the address stream for 
many load instructions in irregular programs. As pointed out in 
Section 3, the address predictability of load addresses is 
equivalent to load value predictability for pointer chasing codes. 
Our results, shown in Figure 11, confirm these observations. For 
each benchmark, both the value prediction coverage (i.e., the 
ratio of confident predictions over all predictions) and the value 
prediction accuracy (i.e., the ratio of the correct predictions over 
confident predictions) are shown in Figure 11 for all value 
producing instructions using a 4k-entry stride value predictor. It 
can be seen that most benchmarks, especially the benchmarks 
mcf, parser, and mst, exhibit significant stride type of value 
locality and this small value predictor achieves decent prediction 
coverage and accuracy. 

Value predictability of all value producing 
instructions using a 4k entry stride predictor

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bz
ip2

ga
p

gc
c

gz
ip

pe
rl

mcf

pa
rse

r
tw

olf

he
alth mst

coverage
accuracy

Figure 11. The value predictability for all value producing 
instructions using a 4k-entry stride predictor. 

Since value predictions are used to break memory dependence 
chain, the predictability of the missing loads is of special 
interests and is examined in Figure 12. From Figure 12, it can be 
seen that the value of missing loads exhibit different degrees of 
stride locality for different benchmarks. For the heavy pointer 
chasing benchmarks mcf and mst, the value predictor achieves 
large prediction coverage and high accuracy. Given their high 
cache miss rate and pointer chasing characteristics, this explains 
why these benchmarks enjoy significant speedups. For another 
pointer-chasing benchmark health, the missing loads show very 
limited stride type of locality. As we will see next, the speedup 
for this benchmark is mainly from speculative memory 
disambiguation instead of breaking true memory dependencies. 
Again, if a more powerful predictor (e.g., context-based) is used 
to explore the locality in its address stream, higher speedup can 
be expected for this particular benchmark as well. 

Value predictability of missing loads using a 4k 
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Figure 12. The value predictability for missing loads using a 
4k-entry stride predictor. 

As discussed in Section 3, both true data dependence and the 
alias dependence between missing loads prevent these loads from 
being executed in parallel. The recover-free value prediction 
scheme breaks both dependencies during the speculative 
execution. Next, we examine the impact of breaking either of 
these two dependencies in enhancing MLP. In the next 
experiment, we isolate the performance impact by breaking only 
one type of dependency at a time. Figure 13 shows the speedup 
results for breaking true data dependency only (labeled 
‘prediction_only’), breaking alias dependence only (labeled 
‘disambiguation_only’), and breaking both dependencies (i.e., 
the same results as in Figure 10, labeled ‘both’). We also include 
the speedup results using the traditional value prediction (labeled 
‘trad_value_pred’) in Figure 13. In the traditional value 
prediction scheme, the same stride value predictor is used and an 
idealistic validation and selective recovery (1 cycle penalty) 
mechanism is incorporated into the execution pipeline. From 
Figure 13, it can be seen that for computation-intensive 
benchmarks, the aggressive memory disambiguation has slightly 
better speedups than performing value prediction only. For 
memory-intensive benchmarks, breaking true dependencies 
results much higher speedups for mcf and mst but less speedups 
for other benchmarks compared to breaking alias dependencies. 
The reason is that for these benchmarks many critical memory 
dependencies are due to alias dependencies. For these 
benchmarks, increasing the instruction window size and 
performing speculative memory disambiguation can improve 



MLP effectively. Also, our value predictor only exploits the 
stride locality, limiting the opportunity to break true memory 
dependence more aggressively. The benchmarks mcf and mst, on 
the other hand, feature heavy pointer chasing and exhibit strong 
stride locality in their value streams. So, breaking true 
dependencies becomes more profitable. Fortunately, when both 
true dependencies and alias dependencies are broken at the same 
time using our proposed approach, higher speedups are achieved. 
This mutually beneficial effect confirms our observation in 
Section 3 that both memory dependencies need be broken to 
improve MLP and similar results are also reported in a study [4] 
of the interaction between value prediction and memory 
dependence speculation. 
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Figure 13. The speedups resulting from breaking different 
dependencies and traditional value speculation. 

Comparing our proposed recovery-free scheme to the traditional 
value prediction, we can see that the traditional value prediction 
achieves higher speedups for computation intensive benchmarks. 
For memory-intensive benchmarks, our recovery-free prediction 
scheme has much higher speedups since it avoids the 
misprediction penalties and benefits from speculative memory 
disambiguation. For example, the recovery penalties (even with 
only 1 cycle penalty per misprediction) account for 2.6% of the 
overall execution time for the benchmark mcf while our recovery-
free scheme totally removes such penalties. Moreover, in 
recovery-free value prediction, the value predictor is updated 
with un-speculative execution results (i.e., the computation 
results not involving direct/indirect predicted values), thereby 
being able to achieve higher prediction accuracies than the 
traditional value speculation scheme. 

The results in Figure 13 also suggest another interesting 
optimization: we can apply recovery-free value prediction 
selectively by monitoring the dynamic behavior of a workload. 
Only if the workload is memory intensive (e.g., the L1 D-cache 
miss rate is larger than 10%), the recovery-free value prediction 
is turned on. Otherwise, recovery-free value prediction is turned 
off or only the aggressive memory disambiguation is used for 
prefetching. Further exploration of this optimization is out of the 
scope of this paper and left as future work. 

6.3 Sensitivity Analysis 
In this experiment, we evaluate the proposed technique in 
different memory hierarchies, 16kB direct-mapped L1 D-cache 

and 256kB 4-way L2 unified cache (labeled as ‘configuration 
1’), 32kB 2-way L1 D-cache and 512kB 8-way L2 cache (same 
as base processor, labeled as ‘configuration 2’), and 64kB 4-way 
L1 D-cache and 2048kB 8-way L2 cache (labeled as 
‘configuration 3’). The speedups of the proposed technique in 
these configurations are show in Figure 14. 

Interesting observations can be made from Figure 14. First, for 
the small D-cache of 16kB, the memory problem becomes more 
evident. As a result, more speedups are achieved by hiding the 
miss latency using recovery-free value prediction, as we can see 
from the benchmarks, mst and parser. On the other hand, 
however, a small cache can tolerate less cache pollution resulting 
from value mispredictions. So, the miss rate can actually increase 
if the value misprediction rate is high and the speedups are 
reduced, as in the benchmarks gcc and twolf. Large caches such 
as 64kB are more tolerant on cache pollution problem while the 
criticality of memory operations is reduced if they hit in the 
cache. 

The speedups for different memory hierarchies
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Figure 14. The speedups for different memory hierarchies. 

In the next experiment, we increase the instruction window size 
to 128 to allow it to be more tolerant to L1 D-cache misses. The 
same 32kB 2-way L1 D-cache and 512kB 8-way L2 cache are 
used as in the 4/64 issue model. The results are shown in Figure 
15. From this experiment, we can see that much higher speedups 
are reported for the 128-entry instruction window in all memory-
intensive benchmarks using our proposed recovery-free value 
prediction. There are two major reasons accounting for this trend. 
First, a large instruction window size of 128 holds a longer 
memory dependence chain. As discussed in Section 3, breaking a 
longer chain can overlap more cache misses, resulting in higher 
performance improvement. Secondly, a larger instruction window 
enables more instructions to be fetched into the window under a 
long-latency cache miss, thereby enabling those instructions to be 
predicted sooner than in a small instruction window. As a result, 
speculative loads (or prefetches) can be issued earlier to hide 
more memory access latencies.  

7. LIMITATIONS 
Two limitations exist with our proposed scheme. First, as we 
pointed out in Section 3, value prediction can hide memory 
access latencies by breaking the memory dependencies, 
especially for long memory dependence chains. As a result, it is 
effective for memory-intensive workloads with heavy pointer-
chasing. If a workload does not exhibit such memory 



dependencies, for example, the cache misses due to accessing a 
large array, our proposed scheme will have very limited 
capability to hide these cache miss penalties. 

Secondly, in our proposed recovery-free value prediction scheme, 
a prediction is made only after the instruction is fetched and the 
prediction is consumed only when the dependent instructions are 
in the instruction window. This implies that the earliest time for 
a speculative load to be executed is after the load instruction is 
dispatched into the instruction window. It limits the capability to 
explore the far-flung MLP even the correct prediction can be 
made. Experiments in Section 6.3 show the performance impacts 
of using a large instruction window to bring in instructions early 
into the instruction window. Another interesting way to explore 
the distant MLP is to combine with the run-ahead execution [8], 
[19] to pre-execute/prefetch both independent and dependent 
memory accesses. 

The speedups for 64- and 128-entry instruction 
windows
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Figure 15. The speedups for different instruction window 
sizes. 

8. CONCLUSION 
In this paper, we advocate using value prediction to enhance 
MLP for memory intensive benchmarks with heavy pointer 
chasing. As current microprocessors can execute instructions 
very fast as long as long memory latency operations, such as 
cache misses, are not involved, we propose to use value 
prediction only for data prefetching so that complex prediction 
validation and misprediction recovery mechanisms are avoided 
and only minor hardware changes are necessary. Also, the same 
hardware changes enable aggressive memory disambiguation for 
prefetching. 

We present our design of recovery-free value prediction based on 
a MIPS R10000 processor model and the simulation results show 
that our technique enhances MLP effectively for a range of 
benchmarks and achieves significant speedups.  

As pointed out in [1], only a few static load instructions are 
responsible for the majority of dynamic cache misses. So, it 
would be very interesting to tune the value predictor to predict 
only the values leading to the address computation of these load 
instructions. This would further reduce the hardware overhead 
and the power consumption overhead due to the useless 
speculation (i.e., the speculation not leading to useful prefetch). 
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