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WhiteheadGraphs onHandlebodies

John R. Stallings*

Abstract. A subset A of a free group F is called \separable" when there is a non-trivial
free factorization F = F1 � F2 such that each element of A is conjugate to an element
of F1 or of F2. A single element � is separable if and only if it belongs to a proper free
factor. An algorithm is given to detect if a given �nite set A is separable or not; this
depends on cut vertices in the Whitehead graph of A relevant to a given free basis X
of F . Disjoint simple closed curves A on the boundary of a handlebody H are said to be
\geometrically separable" when there is a disk D properly and non-trivially embedded
in H whose boundary does not intersect any element of A. It is shown that separable in
the algebraic sense implies geometrically separable.

1991 Mathematics Subject Classi�cation: 20E05, 20F32, 57N10.

0. Introduction

In [23], J. H. C. Whitehead invented a method to show whether certain subsets of a
free group form part of a basis; this involved �nding cut vertices in a certain graph
and simplifying the situation by a certain kind of automorphism. In the current
paper, a similar thing is done in Section 2, but with a di�erent outcome in mind;
we are particularly interested in discerning whether or not an element of a free
group belongs to a proper free factor. Berge [1] has noted a result like this, and
it can be said to be \obvious" to those who understood Whitehead's thoughts;
in fact, much of this can be distilled from I.4 of Lyndon and Schupp [12]. The
Whitehead graph and Whitehead automorphisms (in particular, the existence of
cut vertices under certain situations) have been used by several people to say
detailed results about the automorphism group of a free group; among these are
Whitehead [24], Rapaport [17], Higgins and Lyndon [9], Hoare [10], Gersten [6],
McCool [14], Goldstein and Turner [7]. Whitehead attributes some of his ideas
to Singer [18]; cf. also Haken [8]. In the current paper, the theory is managed by
using some constructions in 3-manifolds similar to those which Whitehead used.
The basic result (Theorem 2.4) says this: If A is a �nite subset of a free group F (X)
with given basis X, and if there is a non-trivial free factorization F = F1 � F2 in
which the elements ofA, suitably conjugated, lie in the factors, then the Whitehead
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graph of A has a cut vertex; using this, an automorphism of F changing the basis
can be found which reduces the total cyclic length of A.

A technique due to Volodin, Kuznetsov, and Fomenko [22], which is related
to methods of Singer [18], uses a \wave" to change a Heegaard diagram. This
idea applies to the picture of curves on the boundary of a handlebody. The result
is (Theorem 3.2) that if A is a �nite set of disjoint simple closed curves on the
boundary @H of a handlebody, and if, on the group level, A can be separated into
proper free factors of F = �1(H), then this separation can be detected geometri-
cally by a disk D not intersecting A. An algorithm can be found to produce wave
transformations of the description of H simplifying the Whitehead graph. Lyon
[13] and Starr [20, 21] have their own versions of this. Here we use the Whitehead
graph and cut vertices in order to produce algorithms to simplify the picture by
Whitehead automorphisms or waves; much of the other work in the subject, such
as [12], is concentrated on the idea of using all possible Whitehead automorphisms
to �nd one which decreases the complexity. Starr [21] has geometric method using
\pairs of pants" to �nd a wave in the handlebody situation.

The key idea for the handlebody picture here is that the Whitehead graph is
embedded in a sphere and that a cut vertex produces an innermost complementary
component around which a wave can be drawn. This yields information about
\strongly irreducible" Heegaard diagrams; in particular, there is an algorithmusing
the Whitehead graph to see if certain situations involve incompressible surfaces in
three-manifolds; see Przytycki[16], Domergue and Short [5], Jaco [11], Casson and
Gordon [3], and Canary [2].

1. Basic de�nitions

Words, reduced, cyclically reduced. Let X be a set; let X�1 denote a set in
one-to-one correspondence with X and disjoint from X, the element x�1 2 X�1

corresponding to the element x 2 X; let (x�1)�1 = x. A word is an ordered n-
tuple w = u1 � � �un, where ui 2 X [X�1; the number n is the length of w. A word
w is reduced when, for all i = 1; : : : ; n� 1, it is the case that u�1

i 6= ui+1. A word
w is cyclically reduced , when it is reduced, and also u�1

n 6= u1. A cyclic word is to
mean a word and all of its cyclic permutations.

Free group. The free group F = F (X) with basis X can be de�ned in various
ways. One characterization is that it consists of the reduced words in X, as de�ned
above, with the group operation being the result of concatenation of words followed
by a sequence of reductions resulting in a reduced word. Thus every element of
F is represented by a unique reduced word, and every conjugacy class of F is
represented by a unique cyclically reduced cyclic word.
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Topological picture of a free group. One topological way to describe a free
groups is that F is �1(�), the fundamental group of a graph � which is the wedge of
circles. A disadvantage of this is that elements of the group F cannot be represented
by embedded simple closed curves.

The 3-manifold picture, sphere structure. A technique used by Whitehead
involves certain 3-manifolds; in a 3-manifold any closed curve is approximable
by an embedding. The free group F (X) (with X = fx1; : : : ; xkg �nite) is the
fundamental group �1(M) of the 3-manifold obtained as the connected sum of
k copies of S1 � S2; in this topological picture everything is to be smooth and
as transverse as possible; in such an M there is a collection of disjoint 2-spheres
f�1; : : : ;�kg related to a basis of the fundamental group: Each �i has two sides,
denoted by �+1

i and ��1
i . The element xi 2 �1(M) is represented by a closed path

starting from the basepoint of M which belongs to none of the �j , going to ��1
i ,

piercing �i, and returning to the basepoint from �+1
i . Any directed closed path in

M hitting the �i transversely represents a word in X by the way it pierces each
�i and the order in which it does so, provided one chooses a starting point as the
basepoint; without a basepoint chosen, such a closed path represents a conjugacy
class, a cyclic word. The result of cutting M along all the �i is denoted bM ; it is a
1-connected compact 3-manifold with boundary. The boundary @( bM ) consists of
2-spheres, 2k in number, which can be identi�ed with the ��1

i . It is the case that
F = �1(M) is free of rank k; a collection of k such 2-spheres in M , f�1; : : : ;�kg,
whose complement in M is connected, determines a basis X of F ; call any such
system of 2-spheres a sphere structure in M .

Separable set in a free group. A set A � F is said to be separable, if there
exists a nontrivial free decomposition F = F1 �F2, such that for each � 2 A, there
exists w 2 F such that w�w�1 2 F1[F2. In other words, the conjugacy classes of
A can be separated into two sets, the �rst conjugate in F to elements of F1 and
the second to elements of F2. In particular, a singleton subset f�g is separable if
and only if � belongs to a proper free factor of F .

The Whitehead graph. Given a set X and a set of words A representing ele-
ments of the free group F (X), de�ne the Whitehead graph (or \coinitial" or \star"
graph) � = �(A;X) as follows: Let V consist of the set X [X�1 as in the de�ni-
tion of word in a free group; the vertices of � form the set V . Write each element
� 2 A as a word in terms of X [X�1. If � has length n, then it creates n edges in
�; when, cyclically, � contains the word of length 2 of the form v1v2, then there is
an edge in � from v1 to v

�1
2 . Thus, if

� = v1v2 � � �vn; vi 2 V;

there are edges joining v1 to v�1
2 and v2 to v�1

3 , : : : , vn�1 to v�1
n , and vn to v�1

1 .
The valence (number of adjacent edges) of each vertex v is equal to the valence
of the corresponding vertex v�1. The shortest case, where � = v is of length 1,
produces one edge which joins v to v�1. If the letter x 2 X does not occur in any
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of the � 2 A, then the two vertices x; x�1 of � are isolated, not adjacent to any
edge. An instance within � of xix

�1
i , yields a loop, an edge of � which starts and

terminates at the vertex xi; similarly, if � has initial letter and �nal letter which
are inverses of each other, there is a loop.

The cyclically reduced situation. In case the set A consists of cyclically re-
duced words, the Whitehead graph �(A;X) depends only on the conjugacy classes
of A; but it depends greatly on the basis X. In � there are no loops, but there
may be several edges starting and ending at the same pair of vertices.

The topological picture of the Whitehead graph. Look at the 3-manifold
picture as described above. A number of disjoint simple closed curves in M will
represent the �nite set A of words, so that the orders in which they pierce the �i

determine the words up to cyclic permutation. Cut M along the �i to create bM .
Look at the pieces of the A curves inside of bM . Interpret the Whitehead graph
�(A;X) thus: The vertices correspond to the boundary spheres ��1

i of bM , and the
edges correspond to the arcs of the A curves in bM .

Whitehead automorphism. Divide the set V = X [ X�1 into two disjoint
subsets; that is, V = Y [Z with Y \Z = ;; suppose that there is a vertex v which
belongs to Y such that its inverse v�1 belongs to Z. De�ne the corresponding
Whitehead automorphism �(Y;Z;v) : F (X) ! F (X) thus on the basis X: For
x 2 X:

If both x and x�1 belong to Y , then �(Y;Z;v)(x) = x.
If both x and x�1 belong to Z, then �(Y;Z;v)(x) = vxv�1.
If x = v or x = v�1, then �(Y;Z;v)(x) = x.
If x is neither v nor v�1, then

if x 2 Y and x�1 2 Z, then �(Y;Z;v)(x) = vx.
if x 2 Z and x�1 2 Y , then �(Y;Z;v)(x) = xv�1.

The interpretation in the topological picture of F as �1(M) as above is this:
Find a 2-sphere S in bM which separates the boundary components of bM into the
two parts Y and Z. Take the basepoint to be in the Y part of the picture. Identify
the two boundary components of bM corresponding to v and v�1, and cut along
S. In other words, in the sphere structure on M replace one of the 2-spheres cut
along (the v sphere) by a di�erent one (the one labeled S). Describe the change
of basis of the free group F that corresponds to this change; the result will be the
automorphism �(Y;Z;v).
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2. Basic facts about theWhitehead graph

The hypotheses in this section. There is a �nite set X. This determines the
free group F = F (X). There is a �nite set A of cyclically reduced words. Thus, A
is a way of representing a �nite set of conjugacy classes in F . De�ne the complexity
of this situation to be the sum of the lengths of the elements of A. Let � = �(A;X)
be the Whitehead graph.

Proposition 2.1. If � contains an isolated vertex, then A is separable.

Suppose, for instance, that this isolated vertex is labeled x1. Then A has no
instance of x1 in any element. Thus, A belongs to the proper free factor with basis
fx2; : : : ; xkg. ut

Proposition 2.2. Assume that � is not connected. Let � contain the non-empty
connected component P ; let Q denote the complement of P in �; hence, Q 6= ;.
Consider the sets Y and Z of vertices of P and Q, respectively.

(a) If Y and Z are closed under inverse (i.e., v 2 Y implies v�1 2 Y ), then
A is separable.
(b) If the other possibility occurs, so that there is v 2 Y and v�1 2 Z, then the
Whitehead automorphism �(Y;Z;v) shows that A is separable. The result is that
�(Y;Z;v)(A) does not involve the letter v, and thus comes under the situation of
Proposition 2.1.

(Note that Proposition 2.1 is a special case of this Proposition.)
Case (a) is easy because the free group F splits into two factors corresponding

to the splitting of the basis by Y and Z; the elements of A have no subwords
joining an element of Y to an element of Z; thus each element of A involves only
the generators in Y or only the generators in Z.

The second case involves a computation which an example may illustrate (so
that the reader can generalize it to a proof). In F (a; b; c; d) consider the element
� = acd�1b�1dca�1b. In � there are edges connecting the following pairs: (a; c�1),
(c; d), (d�1; b), (b�1; d�1), (d; c�1), (c; a), (a�1; b�1), (b; a�1). The �rst, second,
�fth, and sixth of these form a square graph, which is disjoint from the square
graph formed by the third, fourth, seventh, and eighth. The �rst part is P which
has vertices Y = fa; c�1; d; cg and the second part is Q which has vertices Z =
fb; d�1; b�1; a�1g. Now, compute �(Y;Z;a), as follows:

�(Y;Z;a)(a) = a.
�(Y;Z;a)(b) = aba�1.
�(Y;Z;a)(c) = c.
�(Y;Z;a)(d) = ad.
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Then apply this to the element �:

�(Y;Z;a)(a � c � d
�1 � b�1 � d � c � a�1 � b)

= a � c � d�1a�1 � ab�1a�1 � ad � c � a�1 � aba�1

= acd�1b�1dcba�1:

This is conjugate to a cyclically reduced word in which a does not occur.
In the 3-manifold picture, what has happened is that the new sphere structure

onM related to the change of basis given by the Whitehead automorphism�(Y;Z;a)

includes one sphere which does not intersect a set of curves representing A (one
might have to untangle the A curves somewhat, but the resulting new set still have
the same intersections with the 2-spheres). ut

Cut vertex. Let � be a connected graph. A cut vertex v of � is a vertex such that
the graph decomposes into two non-trivial graphs �1 and �2 which intersect only
in the vertex v. Thus, the edges incident to v in � decompose into two disjoint
non-empty sets whose other vertices constitute sets of vertices such that any path
in � connecting them must go through v.

Proposition 2.3. Suppose that � is connected and that v is a cut vertex decompos-
ing � into two non-trivial subgraphs �1 and �2, which intersect only in v. Suppose
that �2 contains the vertex v�1. Let Y be the set of vertices of �1, and Z the set
of vertices of �2 with the vertex v removed. Then the complexity of �(Y;Z;v)(A) is
strictly less than the complexity of A.

In fact what happens is that the complexity decreases by at least the number
of edges of �1 which are incident to v.

In the 3-manifold picture the sphere structure is changed by replacing the v
sphere by a sphere which encloses the spheres labeled by Z; the valences of the v
and v�1 vertices, which are each equal to the number of intersections of the v sphere
with the A curves, have been replaced in the computation of the complexity by the
number of intersections with the new sphere S in the picture, which corresponds
to the part of �2 which is incident with v. The resulting picture may involve non
cyclically reduced words, but the process of reducing them further decreases the
complexity.

An example to work out and thus generalize: The set X = fa; b; c; dg and the
set A consists of one element � = abad�1cac�1aab�1d�1. The graph � has two
cut vertices, a and a�1; with respect to the vertex a, the sets Y and Z are: Y =
fa; b�1; dg and Z = fa�1; b; c; c�1; d�1g. The Whitehead automorphism �(Y;Z;a)

takes a to a, b to ba�1, c to aca�1, and d to ad. This takes the element � to
abd�1cac�1aab�1d�1a�1, and this conjugates to an element of length two less.
The complexity has been reduced from 11 to 9; the di�erence is the number of
edges of �1 incident to a. ut

Theorem 2.4. If � is connected and if A is separable in F , then there is a cut
vertex in �.
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Proof. First, an outline of the proof, then more rigorous details.
Outline of proof: In the 3-manifold picture, represent F = �1(M), where M

contains 2-spheres f�1; : : : ;�kg corresponding to the basis X; represent A by a
�nite collection of disjoint simple closed curves in M . The assumption that A is
separable in F implies that there exists a surface S in M which does not intersect
A. The surface S corresponds to a non-trivial free factorization of F in such a way
that a cover of S in the universal cover eM is not null-homologous. Consider such
a surface S which is minimal; it will be connected and will intersect the spheres
�i in a minimal total number of components. By lifting S to the universal cover
eM , and projecting to a tree, the existence of at least one component T of S \ bM ,
with boundary @T contained in only one � = ��1

i can be proved. If it happened
that @T did not divide up that sphere � into two open sets both of which contain
points of intersection with the A curves, then a contradiction would occur: Either
T is homologically trivial in ( bM ; @ bM), in which case an improvement of S could
be done reducing the complexity of it; or else, T is not homologically trivial, in
which case � is not connected. Thus T in fact divides the graph � into two parts
intersecting only in v = �, and v is then a cut vertex of �

More details:
(A) The 3-manifold picture. Look at the 3-manifold picture as described in

Section 1. This involves M with �1(M ) = F , the sphere structure f�1; : : : ;�kgg
related to the basis X, and a set of A curves f�1; : : : ; �ng which intersect the
sphere structure according to the expressions of the elements of A as cyclic words
in X. The Whitehead graph � is evident in bM with the 2k vertices ��1

j and the
edges which are arcs in the A curves.

(B) The universal cover . Let eM denote the universal covering space ofM . There
is an in�nite tree in which every vertex has valence 2k; each edge is directed and
labeled with one of the k symbols �j , so that each vertex is incident to one edge
labeled �j that leaves that vertex and to one such that enters the vertex. Each
edge in this tree corresponds to a lift of one of the �j, and each vertex corresponds
to a lift of bM . Thus, eM is made of in�nitely many copies of bM joined along their
boundary spheres; a copy of �+1

j in one copy of bM is identi�ed with a copy of ��1
j

in an adjacent copy of bM .
(C) The separant surface S. The assumption that A is separable in F means

that there exists an isomorphismF � F1�F2, where both F1 and F2 are non-trivial,
such that, appropriate conjugates being chosen, each element of A corresponds to
an element of F1 or F2. Realize F1 � F2 = �1(P1 _ P2), where Pi is a graph with
fundamental group Fi, and where \_" denotes the disjoint union with an arc added
connecting basepoints; let p denote the central point of this arc. There exists (using
the fact that P1 _P2 is aspherical) a continuous map f :M ! P1 _P2 giving this
isomorphism on �1. The curve �i maps by f in such a way as to be homotopic to
a map into P1 or into P2; the homotopy extension theorem then changes f so that
f(�i) is contained in either P1 or P2; smooth out f so that it behaves transversely
to p and nicely with respect to the �j. Now consider f�1(p) = S; this is a surface
in M , possibly not connected; it has three fundamental properties:
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(a) For all j, the intersection S \�j is empty.
(b) The surface S can be lifted homeomorphically to eM , to obtain a compact

surface S0 which represents a non-trivial element of H2( eM ), where this de-
notes homology with coe�cients in Z=2Z.

(c) The surface S is transverse to all the �j , and thus intersects each one in a
�nite number of simple closed curves.

Call any surface in M satisfying these properties, a separant surface.
The reason for (b) is that the universal cover of M maps to the universal cover

(P1 _ P2)e because of the isomorphism of fundamental groups. A lift of S in eM

corresponds to the pullback of a lift p0 of the point p in the universal cover of
P1_P2; denote such a lift of S by S0. There is (because of the isomorphism on �1)
an isomorphism of H1

f ((P1 _ P2)e) and H1
f ( eM ), cohomology with �nite cochains.

The point p0 is dual to a non-zero element of H1
f ((P1 _ P2)e); it decomposes

(P1 _ P2)e into two non-compact pieces since F1 and F2 are nontrivial. Thus, S0

is Poincar�e dual to a non-zero element of H1
f ( eM ) and is hence non-zero in H2( eM ).

(D) The complexity of a separant surface. Any separant surface S is compact
and therefore has a �nite number of connected components. By property (c), the
number of components of intersection with each �j is �nite. Let �(S) be the sum
over all j of the number of components of S \ �j ; and let (S) be the number of
components of S. The pair (�(S); (S)), lexicographically ordered, is the \com-
plexity" of S. The possible complexities form a well-ordered set, and thus there is
a minimum complexity.

(E) Existence of cut vertex . We now suppose that S is a separant surface of
minimum complexity, and show how this produces a cut vertex in �(A;X).

(E.1). The separant surface S is connected. Otherwise, it would be the
union of a �nite number of components; the sum of these components, lifted to
eM , homologically would equal S0, and thus one such component of S0 would be
non-zero homologically. That component, S1, viewed in M , would have smaller
complexity since �(S1) � �(S) and (S1) < (S). It would clearly satisfy the
three conditions listed in (C).

(E.2). The separant surface S intersects some �j non-trivially. Otherwise,
S would be totally contained in the interior of bM ; it separates bM into two pieces
Y and Z. The homological non-triviality of a lift S0 in eM then implies that each
of these pieces contains at least one of the boundary spheres ��1

j . Since S does
not intersect the A curves, it follows that the Whitehead graph �(A;X) has been
decomposed into two non-empty pieces which are not connected to each other.
This is contrary to the hypothesis of Theorem 2.4 that � is connected.

(E.3). Lift S to S0 in eM , and examine the tree-like structure of eM , discussed
in (B). The image of S0 in this tree is connected and has at least one edge; thus
it is a tree itself, a �nite tree; and thus it contains an extremal vertex, a vertex
with valence one. What this means is that there is a copy of bM in eM , call it bM1,
so that the intersection T 0 = bM1 \ S

0 is non-empty, and such that T 0 has all its
boundary curves on one and only one boundary sphere of bM1. Look back down
in bM at this situation. De�ne T = fT1; : : : ; Tmg to consist of those components of
S \ bM which intersect @ bM only in a subset of the single sphere � that corresponds
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to the sphere in eM containing @T 0. The argument in the universal cover shows
that T is non-empty. Each Ti may have several boundary curves, but they are all
contained in the one sphere �. Note that each component Ti of T separates bM into
two pieces, since @Ti = Ti \ @ bM , and bM is simply connected.

Consider one component T1 of T . Then @T1 divides the sphere � into two parts
K1 and L1 with @K1 = @L1 = @T1; it is not necessarily the case that K1 or L1 is
connected. The claim is that both K1 and L1 contain points of intersection of the
A curves.

(E.4). Suppose that K1, for instance, did not contain any point of the A
curves. Then look at T1 [K1 and push slightly into the interior of bM ; the result
is a closed surface U in bM which does not intersect A and does not intersect any
�i. The complexity of U is less than that of S, since S must (by E.2) intersect
some �i. Thus, U is not separant, and thus it must be null-homologous when lifted
to eM . This says that the 3-dimensional region bounded by U in the interior of bM

must contain no boundary sphere of bM . This implies that T1 separates bM into two
parts, one of which intersects only the boundary sphere � in K1 and no other part
of @ bM . Call that part R1, so that @R1 = T1 [K1, and R1 \ @ bM = K1 � �.

Let Ti be a component of T which intersects R1. Then it is contained in R1; it
divides bM into two pieces, one of which, Ri, does not intersect T1. Now the claim
is that Ri � R1; otherwise there would be points of Ri (near Ti) in the component
R1 of bM n T1, and another point in the other component of bM n T1; this would
show that T1 would not disconnect bM .

Thus, there is an innermost component T2 of T . This has the property that
it separates bM into two parts, one of which is R2 � R1, with the property that
R2 does not otherwise intersect T . Let K2 = R2 \ �. This is contained in K1,
and thus there is no intersection of an A curve with K2. Change S by removing
T2 and adding K2; then push slightly to the other side of the sphere �, getting a
surface J . Now, homologically up in eM it is the case that J 0 is homologous to S0

and thus is non-zero. The number of components of J may be greater than 1, but
the number of curves of intersection of J with the �j is reduced. In other words,
�(J) < �(S), and no relation can be deduced about (J) versus (S). In any case,
this would contradict the choice of S as a separant surface of minimal complexity.

Thus K1 and, by symmetry, L1 both intersect the A curves nontrivially.
(E.5). Since K1 and L1 both intersect the A curves, then the vertex repre-

sented by � is a cut vertex of �(A;X). For, T1 shows how to divide � into two
non-trivial pieces that intersect only in this vertex. ut

Algorithm 2.5 to detect separability. Let a �nite basis X of the free group
F be given, and let a �nite number of elements A of F be given.

(*) Represent each element of A by a cyclically reduced cyclic word in X. The
complexity is the sum of the lengths of these elements.

Construct the Whitehead graph �(A;X).
If � is not connected, then by Propositions 2.1 and 2.2, A is separable.
If � is connected, search for a cut vertex.

If there is no cut vertex, then by Theorem 2.4, the set A is not separable.
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If there is a cut vertex, apply the construction in Proposition 2.3, �nd a
Whitehead automorphism. This changes the basis X in such a way as to reduce
the complexity. Return to (*). ut

Remarks. It follows from this that one can consider another type of algorithm.
List all possible Whitehead automorphisms, apply each and compute whether the
complexity of A has been reduced; if the complexity is reduced, continue. If no
Whitehead automorphism reduces the complexity, then check to see whether or
not the basis X can be divided into two non-empty parts, such that each element
of A is a cyclic word in one of the two parts. This algorithm is probably more
time-consuming than the algorithm checking for the cut vertex, etc. If there is no
cut vertex, then we have found non-separability, although there might yet exist a
Whitehead automorphism reducing the complexity.

Corollary 2.5. Let F = F (X) be the free group on a �nite basis X, and let
� 2 F be written as a cyclically reduced word. If the Whitehead graph �(�;X) is
connected and contains no cut vertex, then � does not belong to any free factor of
F .

This is the case of Theorem 2.4 in which A is a singleton set. This was proved
by Berge [1], using techniques of Goldstein and Turner [7].

3. Curves on a handlebody

Handlebody, disk structure, essential disk. A handlebody of genus k is a
compact orientable 3-manifold H with boundary @H which is a connected surface
of genus k, such that there exist k disks �1; : : : ;�k properly embedded in H (that
is, �i \ @H = @�) and such that the result bH of cutting H along all the �i is
a 3-cell; call the handlebody H together with the collection of these disks a disk
structure on H. Each disk �j is two-sided; denote the two sides by �+1

j and ��1
j .

In @(bH) there are 2k disjoint disks that can be identi�ed with ��1
j . In general, in

a handlebody H an essential disk is a disk � properly embedded in H such that,
when H is cut along �, the result is either connected or else consists of two parts
neither of which is a 3-cell.

There are many possible collections of disks that will have the property that
the result of cutting H along them is a 3-cell; such a collection can be recognized
(assuming everything is smooth) easily: There are k such disks, all disjoint and
properly embedded in H, and their complement in H is connected. A choice of a
collection of such disks gives a choice of a free basis of the free group F = �1(H)
as in the topological picture used in Section 2; the 3-manifold M in Section 2 is
analogous to H, and the spheres �j there are analogous to the disks �j here.
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Waves and change of disk structure. Suppose H is a handlebody with disks
�1; : : : ;�k cutting H into bH which is a 3-cell. Call an arc E � @H a wave,
provided that E intersects the curves @�j in only two points, the endpoints of
E, and that these two points are both on the same side of a single @�j . In that
case, on @(bH) it is possible to draw the arc E, starting and ending at a single
disk; to be speci�c, suppose that disk is the disk �+1

1 ; then E [ �+1
1 separates

the 2-sphere @(bH) into two pieces, one of which will contain the complementary
disk ��1

1 ; the boundary of that piece consists of the arc E together with one of
the two arcs B1; B2 on @�

+1
1 with endpoints @E; suppose this piece has boundary

C = B1 [ E. Then C bounds a disk D properly embedded in bH, since the latter
is a 3-cell with C on its boundary. This can be seen also in H. Now, the disk
�1 can be removed from the picture and replaced with the disk D. The result of
cutting H along the disks fD;�2; : : : ;�kg is connected; the result of cutting along
them consists of bH cut along D and with the two disks �+1

1 and ��1
1 identi�ed;

the choice of @D = C separating �+1
1 and ��1

1 on @ bH makes this connected. In
this manner a wave determines a change of disk structure. This results in terms
of fundamental group in a Whitehead automorphism. However, the topological
situation is more constrained here than in the case of Section 2, and so not all
Whitehead automorphisms can be constructed in this way.

The handlebody picture. Consider a handlebody H of genus k with disk struc-
ture �1; : : : ;�k. On the boundary @H, consider a collection of �nitely many dis-
joint simple closed curves A = f�1; : : : ; �ng. Let F be the free group with basis
fx1; : : : ; xkg, realized as �1(H), in which xi is realized as a loop starting at some
basepoint disjoint from the �j , going to ��1

i , through �i, and back to the base-
point from �+1

i . Everything is supposed to be smooth and transverse so that the
A curves determine, by their intersections with the @�i on @H, cyclic words in F
with this basis; it is assumed that no �i represents the identity element of F . Let
� = �(A;X) be the Whitehead graph of A with respect to X. The complexity is
de�ned to be the total number of intersections of the A curves with all the @�j.

Proposition 3.1. In the handlebody picture, the cyclic words represented by A
can be made into cyclically reduced words by a �nite sequence of changes of disk
structure by waves modeled on the reductions in the words of A.

As an example, suppose that �1 contains, considered as a cyclic word, a subword
x1x

�1
1 . Then �1, as a curve on @H, contains an arc E which is a wave joining two

points on the side �+1
1 of �1. Do the change of disk structure modeled on E. As

described above, @E consists of two points on the circle @�1, dividing the latter
into two arcs B1 and B2. The change replaces �1 by D which has @D = E [B1,
assuming one of the two possibilities for the location of ��1

1 in @(bH). Part of
the intersection of @D with �1 is the arc E; push this arc of @D slightly in the
direction of B1; such a \direction" exists since @H is orientable. In the resulting
situation the intersections of �j with the boundary circles of the new disks have
not changed, except that all the intersections with B2 have been removed and the
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two intersections @E have been eliminated. Thus the complexity of the picture has
been decreased. A �nite number of these terminates with the situation where A
represent cyclically reduced words. ut

Theorem 3.2. In the handlebody picture, if A is separable in F , then a sequence
of wave changes in the disks in the handlebody can be found which ends by �nding
a disk D essential in H such that @D intersects the A curves in the empty set.

The proof involves decreasing the complexity to a minimumby waves that can
be found by looking at the graph � as it is embedded in @(bH). The Whitehead
graph �(A;X) exists in @(bH) as the arcs made out of pieces of the curves A,
together with the disks ��1

i (these disks are the \vertices" of �); thus, it is a
planar graph, embedded in a particular way in the 2-sphere @(bH).

If � is not connected, then it has various components. They are embedded in
the 2-sphere @(bH), and thus, there is an innermost such component; draw a curve
around this innermost component; the result is a simple closed curve on @(bH)
which does not hit any of the disks ��1

i ; that curve bounds a disk D in bH, and its
preimage in H is the desired disk. The reason this D is essential is that it separates
non-empty collections of the ��1

i on @(bH).
If � is connected, but the A curves are not cyclically reduced, the wave con-

struction in Proposition 3.1 will diminish the complexity. Then it might be that �
has become disconnected, and one goes to the preceding step. If, eventually � is
connected and the A are cyclically reduced, then, according to Theorem 2.4, � has
a cut vertex; on @(bH), this cut vertex corresponds to one of the disks ��1

i , say to
�+1

1 . The pieces of � into which this vertex cuts it lie in the 2-cell @(bH)n�+1
1 . The

important observation now is that there is an innermost such piece. An arc E can
be drawn around this innermost piece, so that one can use it as a wave to change
the disk structure of H. If that change replaces �1 by D, then the boundary of D
would be, say, E [B1, and the intersections of A with B2 have disappeared from
the picture. Thus the complexity is reduced.

Eventually, then, the picture yields a non-connected � which produces the
required D. ut

Remarks. The word \separable" as used here is an algebraic term. Call a �nite
set A of disjoint simple closed curves on the boundary of a handlebody H \geo-
metrically separable" if there is a disk D properly and non-trivially embedded in
H whose boundary is disjoint from A. The term \disk-busting" has also been used
for \not geometrically separable" in a more general situation by Canary [2].

The value of Theorem 3.2 is to �nd the essential D by an algorithm; starting
from a disk structure on H, decrease the complexity to get the curves A cyclically
reduced by doing wave restructuring, look for a cut vertex in the Whitehead graph
�(A;X); if there is none, then the situation is not geometrically separable; if there
is a cut vertex, then a wave can be found to decrease the complexity. In the end,
if A is geometrically separable on H, an essential disk D is found disjoint from A.
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Another aspect of Theorem 3.2 is that it shows that algebraic separability
implies geometric separability. There is another proof of this fact along these lines:
Map H into P1 _ P2 as in the construction of the separant surface in the proof of
Theorem 2.4, part (C). The inverse image of p will be a surface properly embedded
in H which maps trivially on fundamental group and which does not intersect A.
Dehn's Lemma and the Loop Theorem ([19], [15], [4]) will simplify the picture to
obtain an essential disk.

That geometrically separable implies the existence of a wave is to be found in
work of Starr [20, 21].

It is not hard to see (using Dehn's Lemma and the Loop Theorem) that a
singleton set A consisting of only one simple closed curve � is not geometrically
separable in H, if and only if for every basepoint �1(@H n �) ! �1(H) is injec-
tive. Theorem 3.2 yields an algorithm to determine whether � is geometrically
inseparable in H; this helps determine whether certain Heegaard splittings are
strongly irreducible [3]. This is useful for �nding incompressible surfaces in certain
3-manifolds.
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