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ABSTRACT 

Virtualizing the physical resources of a computing system 
to improve sharing and utilization has been done for 
decades. Virtualization had once been confined to 
specialized server and mainframe systems, but 
improvements in the performance of platforms based on 
Intel® technology now allow those platforms to efficiently 
support virtualization. However, the IA-32 and Itanium® 
processor architectures pose a number of significant 
challenges to virtualization. 

The first generation of Intel® Virtualization TechnologyΔ 
(VT) for IA-32 and Itanium processors provides hardware 
support that simplifies processor virtualization, enabling 
reductions in virtual machine monitor (VMM) software 
size and complexity. Resulting VMMs can support a 
wider range of legacy and future operating systems (OSs) 
on the same physical platform while maintaining high 
performance. 

In this paper, we provide details of the virtualization 
challenges posed by IA-32 and Itanium processors; 
present an overview and furnish details of VT-x (Intel 
Virtualization Technology for the IA-32 architecture) and 
VT-i (Intel Virtualization Technology for the Itanium 
architecture); show how VT-x and VT-i address 
virtualization challenges; and finally provide examples of 
usage of the VT-x and VT-i architecture.  

INTRODUCTION 
Virtualizing the physical resources of a computing system 
to achieve improved degrees of sharing and utilization is a 
well-established concept that goes back decades [1]. Full 
virtualization of all system resources (including 
processors, memory and I/O devices) makes it possible to 
run multiple operating systems (OSs) on a single physical 

platform. In contrast to a non-virtualized system, in which 
a single OS is solely in control of all hardware platform 
resources, a virtualized system includes a new layer of 
software, called a virtual-machine monitor (VMM). The 
principal role of the VMM is to arbitrate access to the 
underlying physical host platform resources so that these 
resources can be shared among multiple OSs that are 
“guests” of the VMM. The VMM presents to each guest 
OS a set of virtual platform interfaces that constitute a 
virtual machine (VM). 

Virtualization was once confined to specialized, 
proprietary, high-end server and mainframe systems. It is 
now becoming more broadly available and is supported in 
off-the-shelf IA-based systems—systems based on Intel 
architecture hardware. This development is due in part to 
the steady performance improvements of IA-based 
systems, which mitigate traditional virtualization 
performance overheads. Other factors include new 
creative software approaches addressing the difficulties 
inherent to IA virtualization [2–4] and the emergence of 
novel applications for virtualization in both industry and 
academia. 

In the sections that follow, we examine some of the 
technical difficulties with bringing virtualization to IA-
based systems and present an overview of Intel 
Virtualization Technology (VT), which provides hardware 
assists for overcoming these difficulties. The first 
generation of VT focuses on a set of hardware assists that 
facilitates the virtualization of IA processors. VT-x refers 
to new architectural extensions that aid in IA-32 processor 
virtualization, while VT-i refers to a set of assists for 
virtualizing Itanium processors. VT-x and VT-i eliminate 
many of the problems that make writing a VMM for IA-
based systems a challenge and hence make possible the 
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broader availability of virtualization technology in both 
server and client systems.  

SOFTWARE-ONLY VIRTUALIZATION 
WITH THE IA-32 AND ITANIUM® 
ARCHITECTURES  
Established and emerging uses provide strong motivation 
for improving virtualization support in both server and 
client computing systems. Unfortunately, the IA-32 and 
Itanium architectures present many challenges to 
providing such support. Software techniques exist that 
address some of those challenges.  

Challenges to Virtualizing Intel Architectures  
Intel microprocessors (both IA-32 and Itanium 
architecture) provide protection based on the concept of a 
2-bit privilege level, using 0 for most-privileged software 
and 3 for least-privileged. The privilege level determines 
whether privileged instructions, which control basic CPU 
functionality, can execute without fault. It also controls 
address-space accessibility based on the configuration of 
the processor’s page tables and, for IA-32, segment 
registers. Most IA software uses only privilege levels 0 
and 3.  

For an OS to control the CPU, some of its components 
must run with privilege level 0. Because a VMM cannot 
allow a guest OS such control, a guest OS cannot execute 
at privilege level 0. Thus, VMMs running on either IA-32 
or Itanium processors must use ring deprivileging, a 
technique that runs all guest software at a privilege level 
greater than 0. A guest OS could be deprivileged in two 
distinct ways: it could run either at privilege level 1 (the 
0/1/3 model) or at privilege level 3 (the 0/3/3 model). 

Although the 0/1/3 model supports simpler VMMs, it 
cannot be used for guests on IA-32 processors in 64-bit 
mode (more details in “ring compression” section). (64-bit 
mode is part of Intel® Extended Memory 64 
TechnologyΦ—Intel® EM64T—the 64-bit extensions to 
IA-32.) 

Ring Aliasing  
Ring aliasing refers to problems that arise when software 
is run at a privilege level other than the privilege level for 
which it was written. 

An example in IA-32 involves the CS segment register, 
which points to the code segment.  If the PUSH 
instruction is executed with the CS segment register, the 
contents of that register (which include the current 
privilege level) is pushed on the stack. Similarly, the 
Itanium instruction br.call saves the current privilege level 
into the ppl field of the Previous Function State (PFS) 
register, which can be read at any privilege level. In either 

case, a guest OS could easily determine that it is not 
running at privilege level 0. 

Address-Space Compression 
OSs expect to have access to the processor’s full virtual-
address space (known as the linear-address space in 
IA-32). A VMM must reserve for itself some portion of 
the guest’s virtual-address space. It could run entirely 
within the guest’s virtual-address space, which allows it 
easy access to guest data, but the VMM’s instructions and 
data structures would use a substantial amount of the 
guest’s virtual-address space.  

Alternatively, the VMM can run in a separate address 
space, but even in that case, the VMM must use a minimal 
amount of the guest’s virtual-address space for the control 
structures that manage transitions between guest software 
and the VMM. For IA-32, these structures include the 
interrupt-descriptor table (IDT) and the global-descriptor 
table (GDT), which reside in the linear-address space. For 
the Itanium architecture, the structures include the 
interruption vector table (IVT), which resides in the 
virtual-address space. 

The VMM must prevent guest access to those portions of 
the guest’s virtual-address space that the VMM is using. 
Otherwise, the VMM’s integrity could be compromised (if 
the guest can write to those portions) or the guest could 
detect that it is running in a VM (if it can read those 
portions). Guest attempts to access these portions of the 
address space must generate transitions to the VMM, 
which can emulate or otherwise support them. The term 
address-space compression refers to the challenges of 
protecting these portions of the virtual-address space and 
supporting guest accesses to them.  

Non-Faulting Access to Privileged State  
Privilege-based protection prevents unprivileged software 
from accessing certain components of CPU state. In most 
cases, attempted accesses result in faults, allowing a 
VMM to emulate the desired guest instruction. However, 
the IA-32 and Itanium architectures both include 
instructions that access privileged state and do not fault 
when executed with insufficient privilege. For example, 
the IA-32 registers GDTR, IDTR, LDTR, and TR contain 
pointers to data structures that control CPU operation. 
Software can execute the instructions that write to, or 
load, these registers (LGDT, LIDT, LLDT, and LTR) only 
at privilege level 0. However, software can execute the 
instructions that read, or store, from these registers 
(SGDT, SIDT, SLDT, and STR) at any privilege level. If 
the VMM maintains these registers with unexpected 
values, a guest OS using the latter instructions could 
determine that it does not have full control of the CPU. 

Another example pertains to the page-table address (PTA) 
register of the Itanium architecture, a field that references 
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the base address of the virtual hash page table (VHPT). 
The instruction mov to cr.PTA is the normal way to access 
this register, and software can execute it only at privilege 
level 0. However, the thash instruction indirectly exposes 
all or part of the VHPT base address, and software can 
execute it at any privilege level. If the VMM maintains the 
VHPT at a different address than the guest OS expects, a 
guest OS using the thash instruction could determine that 
it does not have full control of the CPU. 

Adverse Impact on Guest System Calls  

Ring deprivileging can interfere with the effectiveness of 
facilities in the IA-32 architecture that accelerate the 
delivery and handling of transitions to OS software. The 
IA-32 SYSENTER and SYSEXIT instructions support low-
latency system calls. SYSENTER always effects a 
transition to privilege level 0, and SYSEXIT faults if 
executed outside that ring. Ring deprivileging thus has the 
following implications: 

• Executions of SYSENTER by a guest application 
cause transitions to the VMM and not to the guest 
OS. The VMM must emulate every guest execution of 
SYSENTER.  

• Executions of SYSEXIT by a guest OS cause faults to 
the VMM. The VMM must emulate every guest 
execution of SYSEXIT. 

Interrupt Virtualization 
Providing support for external interrupts, especially 
regarding interrupt masking, presents some specific 
challenges to VMM design. Both the IA-32 and Itanium 
architectures provide mechanisms for masking external 
interrupts thus preventing their delivery when the OS is 
not ready for them. IA-32 uses the interrupt flag (IF) in 
the EFLAGS register to control interrupt masking; the 
Itanium architecture uses the i bit in the processor status 
register (PSR) to provide this function. In both cases, a 
value of 0 indicates that interrupts are masked. 

A VMM will likely manage external interrupts and deny 
guest software the ability to control interrupt masking. 
Existing protection mechanisms allow such denial of 
control by ensuring that guest attempts to control interrupt 
masking fault in the context of ring deprivileging. Such 
faulting can cause problems because some OSs frequently 
mask and unmask interrupts. Intercepting every guest 
attempt to do so could significantly affect system 
performance. 

Even if it were possible to prevent guest modifications of 
interrupt masking without intercepting each attempt, 
challenges would remain when a VMM has a “virtual 
interrupt” to deliver to a guest. A virtual interrupt should 
be delivered only when the guest has unmasked interrupts. 
To deliver virtual interrupts in a timely way, a VMM 

should intercept some but not all attempts by a guest to 
modify interrupt masking. Doing so could significantly 
complicate the design of a VMM. 

Access to Hidden State 
Some components of IA-32 and Itanium processor state 
are not represented in any software-accessible register. 
Examples for IA-32 include the hidden descriptor caches 
for the segment registers. A segment-register load copies 
the referenced descriptor (from the GDT or LDT) into this 
cache, which is not modified if software later writes to the 
descriptor tables. IA-32 does not provide a mechanism for 
saving and restoring hidden components of a guest context 
when changing VMs or for preserving them while the 
VMM is running.  

In the Itanium architecture, there is a field in the Register 
Stack Engine (RSE) called the current frame load enable 
(CFLE). There is no direct way to write this value. There 
are cases where the VMM may take an external interrupt 
and wants to return to the guest OS with this value equal 
to zero. The return from interrupt (rfi) instruction forces 
this value to a one. 

Ring Compression  
Ring deprivileging uses privilege-based mechanisms to 
protect the VMM from guest software. IA-32 includes two 
such mechanisms: segment limits and paging. Because 
segment limits do not apply in 64-bit mode, paging must 
be used in this mode. Because IA-32 paging does not 
distinguish privilege levels 0–2, the guest OS must run at 
privilege level 3 (the 0/3/3 model). Thus, the guest OS 
runs at the same privilege level as guest applications and 
is not protected from them. This problem is called ring 
compression. 

Frequent Access to Privileged Resources 
A VMM may prevent guest access to privileged resources 
by forcing attempts at such accesses to fault. Even when 
this ensures correct behavior, performance may be 
compromised if the frequency of such faults is excessive. 

In the IA-32 and Itanium architectures, an example 
involves the task-priority register (TPR). For the IA-32 
architecture, this register is located in the advanced 
programmable interrupt controller (APIC), and for the 
Itanium architecture, it is one of the control registers. 
Because it controls interrupt prioritization, a VMM must 
not allow a guest OS access to the TPR. However, some 
OSs perform such accesses with very high frequency. 
These accesses require VMM intervention only if they 
cause the TPR to drop below a value determined by the 
VMM. 

The Itanium architecture supports efficient interruption 
handlers by providing them with information about the 
interruption and the interrupted context. These data are 
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recorded, not in memory, but in a set of interruption-
control registers. The processor protects system integrity 
by generating faults in response to accesses to those 
registers outside privilege level 0. Typically, every 
interruption handler reads these registers. If each such 
access generates a fault to the VMM, the performance of 
these handlers will be severely compromised. 

ADDRESSING VIRTUALIZATION 
CHALLENGES IN SOFTWARE  
To address the virtualization challenges that the IA-32 and 
Itanium architecture present, VMM designers have 
developed creative techniques for modifying guest 
software (source or binary). Denali [5] and Xen* [2] are 
examples of VMMs that use source-level modifications in 
a technique called paravirtualization. Developers of these 
VMMs modify the source code of a guest OS to create an 
interface that is easier to virtualize. Paravirtualization 
offers high performance and does not require changes to 
guest applications. A disadvantage of paravirtualization is 
that it limits the range of supported OSs; VMMs that rely 
on paravirtualization cannot support an OS whose source 
code the VMM’s developers have not modified. 

A VMM can support unmodified OSs by transforming 
guest-OS binaries on-the-fly to handle virtualization-
sensitive operations. VMMs that use such binary-
translation techniques include those developed by 
VMware [4] as well as Virtual PC* and Virtual Server* 
from Microsoft. [3]. Such VMMs support a broader range 
of OSs than VMMs that use paravirtualization. 

A central design goal for Intel VT has been to eliminate 
the need for CPU paravirtualization and binary translation 
techniques, to simplify the implementation of robust 
VMMs that can support a broad range of unmodified 
guest OSs, and to maintain high levels of performance. 

INTEL® VIRTUALIZATION 
ARCHITECTURE OVERVIEW 
In this section, we discuss some of the details of Intel VT 
architecture. We first describe the VT-x support for IA-32 
processor virtualization [6], and then we describe the VT-i 
support for Itanium processor virtualization [7].  

VT-x Architecture Overview 
VT-x augments IA-32 with two new forms of CPU 
operation: VMX root operation and VMX non-root 
operation. VMX root operation is intended for use by a 
VMM, and its behavior is very similar to that of IA-32 
without VT-x. VMX non-root operation provides an 
alternative IA-32 environment controlled by a VMM and 
designed to support a VM. Both forms of operation 
support all four privilege levels, allowing guest software 

to run at its intended privilege level, and providing a 
VMM with the flexibility to use multiple privilege levels. 

VT-x defines two new transitions: a transition from VMX 
root operation to VMX non-root operation is called a 
VM entry, and a transition from VMX non-root operation 
to VMX root operation is called a VM exit. VM entries 
and VM exits are managed by a new data structure called 
the virtual-machine control structure (VMCS). The VMCS 
includes a guest-state area and a host-state area, each of 
which contains fields corresponding to different 
components of processor state. VM entries load processor 
state from the guest-state area. VM exits save processor 
state to the guest-state area and then load processor state 
from the host-state area. 

Processor operation is changed substantially in VMX non-
root operation. The most important change is that many 
instructions and events cause VM exits. Some instructions 
(e.g., INVD) cause VM exits unconditionally and thus can 
never be executed in VMX non-root operation. Other 
instructions (e.g., INVLPG) and all events can be 
configured to do so conditionally using VM-execution 
control fields in the VMCS. 

Guest-State Area 
The guest-state area of the VMCS is used to contain 
elements of the state of virtual CPU associated with that 
VMCS. 

For proper VMM operation, certain registers must be 
loaded by every VM exit. These include those IA-32 
registers that manage operation of the processor, such as 
the segment registers (to map from logical to linear 
addresses), CR3 (to map from linear to physical 
addresses), IDTR (for event delivery), and many others. 
The guest-state area contains fields for these registers so 
that their values can be saved as part of each VM exit. 

In addition, the guest-state area contains fields 
corresponding to elements of processor state that are not 
held in any software-accessible register. One of these 
elements is the processor’s interruptibility state, which 
indicates whether external interrupts are temporarily 
masked (e.g., due to execution of the MOV-SS 
instruction) and whether non-maskable interrupts (NMIs) 
are masked because software is handling an earlier NMI. 

The guest-state area does not contain fields corresponding 
to registers that can be saved and loaded by the VMM 
itself (e.g., the general-purpose registers). Exclusion of 
such registers improves the performance of VM entries 
and VM exits. Software can manage these additional 
registers more efficiently as it knows better than the CPU 
when they need to be saved and loaded. 
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VM-Execution Control Fields 
The VMCS contains a number of fields that control VMX 
non-root operation by specifying the instructions and 
events that cause VM exits. In this section, we present 
some of these controls. 

The VMCS includes controls that support interrupt 
virtualization: 

• External-interrupt exiting. When this control is set, 
all external interrupts cause VM exits; in addition, the 
guest is not able to mask these interrupts (e.g., 
interrupts are not masked if EFLAGS.IF=0). 

• Interrupt-window exiting. When this control is set, a 
VM exit occurs whenever guest software is ready to 
receive interrupts (e.g., when EFLAGS.IF=1). 

• Use TPR shadow. When this control is set, accesses 
to the APIC’s TPR through control register CR8 
(available only in 64-bit mode) are handled in a 
special way: executions of MOV CR8 access a TPR 
shadow referenced by a pointer in the VMCS. The 
VMCS also includes a TPR threshold; a VM exit 
occurs after any instruction that reduces the TPR 
shadow below the TPR threshold. 

There are also VM-execution control fields that support 
efficient virtualization of the IA-32 control registers CR0 
and CR4. These registers each comprise a set of bits 
controlling processor operation. A VMM may wish to 
retain control of some of these bits (e.g., those that 
manage paging) but not others (e.g., those that control 
floating-point instructions). The VMCS includes, for each 
of these registers, a guest/host mask that a VMM can use 
to indicate which bits it wants to protect. Guest writes can 
freely modify the unmasked bits, but an attempt to modify 
a masked bit causes a VM exit. The VMCS also includes, 
for each of these registers, a read shadow whose value is 
returned to guest reads of the register. 

To support VMM flexibility, the VMCS includes bitmaps 
that allow a VMM selectivity regarding the causes of 
some VM exits. The following items detail three of these: 

• Exception bitmap: This field contains 32 entries for 
the IA-32 exceptions. It allows a VMM to specify 
which exceptions should cause VM exits and which 
should not. For page faults, further selectivity is 
supported based on a fault’s error code. 

• I/O bitmaps: These bitmaps contain one entry for 
each port in the 16-bit I/O space. An I/O instruction 
(e.g., IN) causes a VM exit if it attempts to access a 
port whose entry is set in the I/O bitmaps. 

• MSR bitmaps: These bitmaps contain two entries (one 
for read, one for write) for each model-specific 
register (MSR) currently in use. An execution of 

RDMSR (or WRMSR) causes a VM exit if it attempts 
to read (or write) an MSR whose read bit (or write 
bit) is set in the MSR bitmaps. 

In addition to the controls mentioned above, there are 
VM-execution controls that support flexible VM exiting 
for a number of privileged instructions. 

VMCS Details 
Like the IA-32 page tables, each VMCS is referenced with 
a physical (not linear) address. This eliminates the need to 
locate the VMCS in the guest’s linear-address space 
(which, as noted below, may be different from that of the 
VMM). The format and layout of the VMCS in memory is 
not architecturally defined, allowing implementation-
specific optimizations to improve performance in VMX 
non-root operation and to reduce the latency of 
VM entries and VM exits. VT-x defines a set of new 
instructions that allows software to access the VMCS in 
an implementation-independent manner. 

Details of VM Entries and VM Exits 
As noted earlier, VM entries load processor state from the 
guest-state area of the VMCS. (Note that, because the 
state loaded includes CR3, the guest may run in a different 
linear-address space than the VMM.) In addition to 
loading guest state, VM entry can be optionally 
configured for event injection. The CPU effects this 
injection using the guest IDT to deliver an event 
(exception or interrupt) specified by the VMM, just as if it 
had actually occurred immediately after VM entry. This 
feature removes the need for a VMM to emulate delivery 
of these events. 

As noted above, VM exits save processor state into the 
guest-state area and then load processor state from the 
host-state area. (Again, because the state loaded includes 
CR3, the VMM may run in a different linear-address 
space than the guest.) This implies that all VM exits use a 
common entry point in the VMM. To simplify the design 
of a VMM, VT-x specifies that each VM exit save into the 
VMCS detailed information on the cause of the VM exit. 
Every VM exit records an exit reason (specifying, for 
example, which instruction caused the VM exit); many 
also record an exit qualification, which provides further 
details. For example, if a VM exit is caused by the MOV 
CR instruction, the exit reason would indicate “control-
register access” and the exit qualification would identify 
the following: (1) the specific control register (e.g., CR0); 
(2) whether the MOV was to or from the register; and 
(3) which other register was the source or destination of 
the instruction. 

Each VM exit due to an IA-32 exception saves, in 
addition to information about the exception, information 
about any event (e.g., an external interrupt) that was being 
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delivered at the time the exception occurred. This allows a 
VMM to virtualize nested exceptions properly. 

VT-i Architecture Overview 
VT-i expands the Itanium architecture with extensions to 
the processor hardware and the Processor Abstraction 
Layer (PAL) firmware.  

VT-i adds a new PSR bit (PSR.vm) that allows guest OSs 
to be run at the privilege level for which they were 
designed and creates interceptions to a VMM necessary 
for the creation of a complete VM. The VMM runs with 
this bit equal to zero and runs guest software with this bit 
equal to one. 

The PSR.vm bit modifies the behavior of all privileged 
instructions as well as that of some non-privileged 
instructions that access state that a VMM may want to 
control (including the thash, ttag, and mov cpuid 
instructions). When a guest OS executes one of these 
instructions a virtualization intercept is caused which 
transfers control to the VMM with the PSR.vm bit set to 
zero. 

PSR.vm is orthogonal to the privilege level. This fact 
allows guest software to run at its designated privilege 
level; if desired, a VMM can span multiple privilege 
levels.  

PSR.vm also controls the number of virtual-address bits 
available to software. When a VMM is running 
(PSR.vm = 0), all implemented virtual-address bits are 
available. When a guest is running (PSR.vm = 1) the 
uppermost implemented virtual-address bit is not available 
and unimplemented data/instruction address faults or 
unimplemented instruction address traps are created if this 
bit is used. This provides a VMM a dedicated address 
space that guest software cannot access. 

VT-i also includes a number of additions to the PAL 
firmware layer. These additions provide a consistent 
programming interface to a VMM even if the hardware is 
not implemented identically across processor generations. 
These PAL extensions include a set of new procedures; 
the addition of PAL services for high-frequency VMM 
operations; and a virtual processor descriptor (VPD) table.  

The PAL procedures are used for setting up and tearing 
down a VM environment; for setting global VMM 
configuration options; for initializing and terminating 
virtual processors; and for saving and restoring a subset of 
state of a virtual processor. These procedures follow the 
same calling convention as existing PAL procedures. In 
addition, a new PAL interface called a PAL service has 
been introduced for virtualization. PAL services reduce 
overhead through use of a new calling convention 
specifically targeted for use by a VMM. PAL services 

provide functionality to synchronize guest hardware 
registers and the VPD; to save and restore a subset of the 
state of a virtual processor; to resume execution of the 
guest software after a virtualization intercept; to calculate 
guest VHPT hashes and tags; and to set up pending 
interrupts for the guest.  

The VPD table is located in memory selected by the 
VMM. It is usually located in the VMM’s virtual-address 
space and is accessed by both the PAL firmware and the 
VMM. The VPD contains configuration settings for the 
virtual processor and a subset of the virtual processor’s 
state that influences its execution characteristics. For 
example, the virtual processor’s control-register values are 
located in the VPD but not its general registers. The 
layout of the VPD is architected to be 64K in size and 
includes reserved  space for future usage. 

The VPD contains two configuration fields that allow the 
VMM to customize the virtualization environment: 

• Virtualization-acceleration field. This field allows the 
VMM to customize the virtualization of a particular 
resource or instruction, leading to a reduction in the 
number of virtualization intercepts that the VMM has 
to handle. It provides accelerations for external-
interrupt handling as well as  intercept control for 
reads and writes to interruption control registers 
(cr16-cr25), reads of the PSR, reads of CPUID, the 
cover instruction, and the bank-switch instruction 
(bsw). 

For example, a VMM could enable the bank-switch 
optimization. Guest execution of bsw would use 
values that the VMM had set up in the VPD for the 
guest OS and would never cause a virtualization 
intercept to the VMM. 

• Virtualization-disable field. This field allows the 
VMM to disable virtualization of a particular 
resource or instruction, leading to a reduction in the 
number of virtualization intercepts the VMM handles. 
This field provides disables for virtualization of the 
external interrupt control registers (cr65–71), the 
performance monitoring registers, the debug registers, 
the PSR.i bit, and the interval timer match register.   

To provide efficient handling of virtualization intercepts 
for a VMM, the architecture has added two new vectors 
into the IVT: 

• Virtualization vector. This vector is used for all 
virtualization-related intercepts. To reduce decoding 
complexity, a VMM can configure the processor to 
provide the cause of the virtualization intercept (a 
bitmap field of intercepting instructions) as well as 
the faulting opcode in two of the processor banked 
registers. A VMM can relocate this handler to a 
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memory location outside the IVT as well through a 
PAL interface. 

• Virtual external interrupt vector. The processor uses 
this vector when the guest unmasks a pending 
external interrupt. It would be used when the VMM 
has a virtual interrupt for the guest that it cannot 
deliver due to guest masking. When the guest 
performs an operation to unmask the highest pending 
interrupt, the guest state is updated and control is 
transferred to this new vector. This streamlines 
delivery of guest external interrupts for the VMM. 

VT-i also provides global configuration options that a 
VMM can set that apply to all virtual processors activated 
by the VMM. These global configuration options 
determine whether the cause of a virtualization intercept is 
provided, if the opcode of the instruction causing the 
virtualization intercept is provided, if the performance 
counters are frozen for all virtualization intercepts, and the 
byte order (or endianness) of the date located in the VPD.  

VT-i also includes the vmsw instruction. This instruction 
transitions the PSR.vm bit with minimum overhead. This 
can reduce transition overhead between guest software 
and a VMM in cooperative virtualization environments. 

SOLVING VIRTUALIZATION 
CHALLENGES WITH VT-X  AND VT-I 
VT-x and VT-i allow guest software to run at its intended 
privilege level. Guest software is constrained, not by 
privilege level, but because for VT-x it runs in VMX non-
root operation or for VT-i with PSR.vm = 1. These facts 
allow VMMs to avoid the virtualization challenges 
identified earlier. 

Address-Space Compression 
VT-x and VT-i provide two different techniques for 
solving address-space compression problems. 

With VT-x, every transition between guest software and 
the VMM can change the linear-address space, allowing 
guest software full use of its own address space. The 
VMX transitions are managed by the VMCS, which 
resides in the physical-address space, not the linear-
address space. 

With VT-i, the VMM has a virtual-address bit that guest 
software cannot use. A VMM can conceal hardware 
support for this bit by intercepting guest calls to the PAL 
procedure that reports the number of implemented virtual-
address bits. As a result, the guest will not expect to use 
this uppermost bit, and hardware will not allow it to do so, 
thus providing the VMM exclusive use of half of the 
virtual-address space. 

Ring Aliasing and Ring Compression 
VT-x and VT-i allow a VMM to run guest software at its 
intended privilege level. This fact eliminates ring aliasing 
problems because instructions such as PUSH (of CS) and 
br.call cannot reveal that software is running in a VM. It 
also eliminates ring compression problems that arise when 
a guest OS executes at the same privilege level as guest 
applications.  

Nonfaulting Access to Privileged State 
VT-x and VT-i avoid the problem of providing 
nonfaulting access to privileged state in two ways: by 
adding support that causes such accesses to transition to a 
VMM and by adding support that causes the state to 
become unimportant to a VMM. 

A VMM based on VT-x does not require control of the 
guest privilege level, and the VMCS controls the 
disposition of interrupts and exceptions. Thus, it can allow 
its guest access to the GDT, IDT, LDT, and TSS. VT-x 
allows guest software running at privilege level 0 to use 
the instructions LGDT, LIDT, LLDT, LTR, SGDT, SIDT, 
SLDT, and STR. 

With VT-i, the thash instruction causes virtualization 
faults, giving a VMM the opportunity to conceal any 
modifications it may have made to the VHPT base 
address. 

Guest System Calls 
Problems occur with the IA-32 instructions SYSENTER 
and SYSEXIT when a guest OS runs outside privilege 
level 0. With VT-x, a guest OS can run at privilege level 
0, which eliminates problems associated with guest 
transitions. 

Interrupt Virtualization 
VT-x and VT-i both provide explicit support for interrupt 
virtualization.  

VT-x includes an external-interrupt exiting VM-execution 
control. When this control is set to 1, a VMM prevents 
guest control of interrupt masking without gaining control 
of every guest attempt to modify EFLAGS.IF. Similarly, 
VT-i includes a virtualization-acceleration field that 
prevents guest software from affecting interrupt masking 
and avoids making transitions to the VMM on every 
access to the PSR.i bit. 

VT-x also includes an interrupt-window exiting VM-
execution control. When this control is set to 1, a VM exit 
occurs whenever guest software is ready to receive 
interrupts. A VMM can set this control when it has a 
virtual interrupt to deliver to a guest. Similarly, VT-i 
includes a PAL service that a VMM can use to register the 



Intel Technology Journal, Volume 10, Issue 3, 2006 

Intel® Virtualization Technology: Hardware Support for Efficient Processor Virtualization 174 

vector of the pending virtual interrupt. When guest 
software executes instructions to unmask the pending 
interrupt, control is transferred to the VMM via the new 
virtual external interrupt vector. 

Access to Hidden State 
VT-x and VT-i use different techniques to allow a VMM 
to manipulate components of guest state that are not 
represented in any software-accessible register. 

VT-x includes, in the guest-state area of the VMCS, fields 
corresponding to CPU state not represented in any 
software-accessible register. The processor loads values 
from these VMCS fields on every VM entry and saves 
into them on every VM exit. This provides the support 
necessary for preserving this state while the VMM is 
running or when changing VMs. 

VT-i provides a way for the VMM to set the RSE CFLE 
bit to the desired value via an argument value in the PAL 
service used to return to guest interruption handlers. 

Frequent Access to Privileged Resources 
VT-x and VT-i allow a VMM to avoid the overhead of 
high-frequency guest accesses to the TPR register. A 
VMM can configure the VMCS (for VT-x) or use an 
acceleration (for VT-i) so that the VMM is invoked only 
when required: For VT-x this occurs when the value of the 
TPR shadow associated with the VMCS drops below that 
of a TPR threshold in the VMCS. For VT-i this occurs 
only when the writing of the TPR unmasks a virtual 
pending external interrupt for the guest. 

With VT-i, a VMM can use the virtualization-acceleration 
field in the VPD to indicate that guest software can read 
or write the interruption-control registers without invoking 
the VMM on each access. The VMM can establish the 
values of these registers before any virtual interruption is 
delivered and can revise them before the guest 
interruption handler returns. 

USAGE OF THE INTEL 
VIRTUALIZATION ARCHITECTURE  
We have described the basic architecture for VT-x and 
VT-i, and in the next section, we provide some usage 
examples of the architecture by a VMM. This is intended 
to highlight some usage models, but it is not a 
comprehensive set of all usage models. 

VMM Usage of VT-x Architecture Features 

Exception Handling  
VT-x allows a VMM to configure any IA-32 exception to 
cause a VM exit based on its vector (for page faults, 
further selectivity is supported based on a fault’s error 

code). When handling such VM exits, a VMM has access 
to complete information about the exception, including its 
error code and any other fault-specific information (e.g., 
the faulting linear address for a page fault). 

The VMM may determine that the exception causing the 
VM exit should be handled by the guest OS. In these 
cases, the VMM can perform a VM entry to guest using 
event injection to deliver the exception. 

Alternatively, a VMM may respond to such a VM exit by 
eliminating the cause of the exception (e.g., by modifying 
the page tables to mark present a page that had not been 
present). In these cases, the VMM can then perform a 
VM entry to the guest, which will resume execution at the 
point at which the exception occurred. If the VM exit was 
due to a nested fault, the VMM can use event injection to 
deliver to the guest that event whose delivery encountered 
that nested fault. 

Interrupt Virtualization 
When a VMM has an interrupt to deliver to a guest OS, it 
can do so using event injection with the next VM entry. If 
guest software is not ready for an interrupt (e.g., because 
EFLAGS.IF = 0), the VMM can instead re-enter the guest 
having set the interrupt-window exiting VM-execution 
control. A VM exit will occur the next time the guest is 
ready for an interrupt. A VMM can then use event 
injection as part of the next VM entry. 

Lazy Floating-Point State Processing  
The IA-32 architecture includes features by which an OS 
can avoid the time-consuming restoring the floating-point 
state when activating a user process that does not use the 
floating-point unit. It does this by setting the TS bit in 
control register CR0. If a user process then tries to use the 
floating-point unit, a device-not-available fault 
(exception 7 = #NM) occurs. The OS can respond to this 
by restoring the floating-point state and by clearing 
CR0.TS, which prevents the fault from recurring. 

VT-x includes features by which a VMM can process 
floating-point state lazily, even when supporting a guest 
OS that does so also. We outline how this may be done.  

Before entering a guest whose floating-point state has not 
been restored, a VMM can do the following: 

• Set the TS bit in the CR0 field in the guest-state area; 
this ensures that any guest floating-point access 
causes a #NM. 

• Set bit 7 (corresponding to #NM) in the exception 
bitmap; this ensures that any #NM causes a VM exit. 

• Set the TS bit in the CR0 guest/host mask; this 
ensures that any guest attempt to modify CR0.TS 
causes a VM exit. 
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• Set the TS bit in the CR0 read shadow to the value 
expected by guest software (determined on VM exits 
caused by guest attempts to modify CR0.TS). 

In response to a VM exit caused by a #NM, a VMM can 
check the value of the TS bit in the CR0 read shadow. If it 
is set, the guest would have incurred its own #NM; the 
VMM can use event injection to deliver it to the guest. 
Otherwise, the VMM can do the following: 

• Restore the guest’s floating-point state. 

• Set the TS bit in the CR0 field in the guest-state area 
to the value expected by guest software. 

• Clear bit 7 in the exception bitmap; this ensures that 
the guest OS will handle any subsequent #NM. 

• Clear the TS bit in the CR0 guest/host mask; this 
allows the guest to modify CR0.TS freely. 

VMM Usage of VT-i Architecture Features 

Instruction Emulation 
The VMM virtualization intercept handler is responsible 
for emulating certain instructions for a guest OS including 
side effects of successful emulation. One example of 
instruction emulation is the MOV-from-PTA instruction. 
The VMM emulates this instruction by placing the guest 
PTA value in the target register of the instruction. Since 
the VMM has successfully implemented the MOV-from-
PTA instruction, it needs to implement the side effects of 
the instruction execution required by the Itanium 
architecture. In this example the VMM must also update 
the value in the cr.iipa register, which records the last 
successfully executed instruction with PSR.ic equal to 1.  

Virtualization Configuration  
VT-i is capable of providing a virtualization intercept on 
every access to privileged resources that may be required 
or desired for certain VMM implementations. VT-i also 
provides a way for a VMM to specify virtualization 
policies on certain resources in advance such that 
interceptions to the VMM can be reduced for high 
frequency operations. This functionality is provided 
through virtualization-accelerations, virtualization-
disables, and new synchronization services. One example 
is the interruption control register reads. Guest OS 
interruption handlers read interruption control registers 
frequently and cause a lot of interceptions into the VMM. 
The interruption control register read acceleration allows 
VMM software to provide preset values for all 
interruption control registers in the VPD and invoke the 
PAL write synchronization service before returning to a 
guest handler. When this acceleration is enabled, guest 
reads of the interruption control registers are not 
intercepted to the VMM; instead the value preset by the 

VMM is returned to the guest. Similarly, the interruption 
control register write acceleration allows the guest to 
write to interruption control registers without VMM 
interceptions. VMM can invoke the PAL read 
synchronization service to obtain the latest values written 
by the guest and perform any virtualization functions 
required before emulating the return from interrupt (rfi) 
instruction of the guest handler. All other accelerations 
and disables in VT-i have the same goal—to allow the 
VMM to specify the virtualization policies of the 
privileged resources ahead of time such that guest 
instructions can execute without interceptions to the 
VMM. 

External and PAL-Based Interruption Handling 
In addition to implementing policies to virtualize accesses 
to privileged resources on the processor, VMM software 
also needs to virtualize external interruptions as well as 
accesses to platform resources that are considered 
privileged. For example, VMM software will continue to 
handle external interruptions or PAL-based interruptions 
even if the guest OS had masked these interruptions. 

VMM software delivers guest external interrupts only 
when they are unmasked. When unmasked, the VMM 
delivers the interruption to the guest handler required by 
the architecture. For example, the VMM needs to set up 
the values of the guest interruption control registers, PSR 
fields, and register stack engine (RSE) state. Since some 
of the RSE state is not accessible by VMM software, VT-i 
provides PAL service to allow VMMs to invoke guest 
handlers correctly. 

VMM software registers the corresponding handlers for 
PAL-based interruptions (e.g., initialization and machine 
check events) and provides the virtualization policies for 
these events. VT-i makes no changes to the handling of 
PAL-based interruptions. The handling and propagation of 
these events from the VMM to the guest OS is VMM 
design specific. 

FUTURE OF INTEL VIRTUALIZATION 
ARCHITECTURE 
The following features are anticipated for future 
processors supporting VT-x: 

• NMI-window exiting. The interrupt-window exiting 
VM-execution control (described earlier) causes a 
VM exit when a guest is ready for maskable external 
interrupts, allowing a VMM to deliver such interrupts 
in a timely way. NMI-window exiting provides 
corresponding support for non-maskable interrupts 
(NMIs), which are blocked by other conditions than 
those that block maskable external interrupts. 
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• Virtual-processor identifiers (VPIDs). This feature 
allows a VMM to assign a different non-zero VPID to 
each virtual processor (the zero VPID is reserved for 
the VMM). The CPU can use VPIDs to tag 
translations in the TLBs. This feature eliminates the 
need for TLB flushes on every VM entry and VM exit 
and eliminates the adverse impact of those flushes on 
performance. 

• Extended page tables (EPT). When this feature is 
active, the ordinary IA-32 page tables (referenced by 
control register CR3) translate from linear addresses 
to guest-physical addresses. A separate set of page 
tables (the EPT tables) translate form guest-physical 
addresses to the host-physical addresses that are used 
to access memory. As a result, guest software can be 
allowed to modify its own IA-32 page tables and 
directly handle page faults. This allows a VMM to 
avoid the VM exits associated with page-table 
virtualization, which are a major source of 
virtualization overhead without EPT. 

CONCLUSION 
While the use of virtualization was once confined to 
proprietary server and mainframe computing systems, 
established and emerging applications for virtualization in 
both server and client systems are moving it into the 
mainstream. Despite the promise of new and existing 
virtualization usages, many challenges stand in the way of 
achieving efficient virtualization of today’s IA-based 
systems. 

VT-x and VT-i are the first components of Intel VT, a 
series of processor innovations soon to become available 
in IA-based client and server platforms. VT-x and VT-i 
offer solutions to the problems inherent in IA-32 and 
Itanium processor virtualization and thus enable the 
development of simpler VMM software that supports a 
wider range of legacy and future OS’s while maintaining 
high levels of performance. 
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