
1Growth Models with Exogenous Saving Rates (the Solow–Swan Model)

1.1 The Basic Structure

The first question we ask in this chapter is whether it is possible for an economy to enjoy
positive growth rates forever by simply saving and investing in its capital stock. A look at
the cross-country data from 1960 to 2000 shows that the average annual growth rate of real
per capita GDP for 112 countries was 1.8 percent, and the average ratio of gross investment
to GDP was 16 percent.1 However, for 38 sub-Saharan African countries, the average
growth rate was only 0.6 percent, and the average investment ratio was only 10 percent.
At the other end, for nine East Asian “miracle” economies, the average growth rate was
4.9 percent, and the average investment ratio was 25 percent. These observations suggest
that growth and investment rates are positively related. However, before we get too excited
with this relationship, we might note that, for 23 OECD countries, the average growth
rate was 2.7 percent—lower than that for the East Asian miracles—whereas the average
investment ratio was 24 percent—about the same as that for East Asia. Thus, although
investment propensities cannot be the whole story, it makes sense as a starting point to try
to relate the growth rate of an economy to its willingness to save and invest. To this end, it
will be useful to begin with a simple model in which the only possible source of per capita
growth is the accumulation of physical capital.

Most of the growth models that we discuss in this book have the same basic general-
equilibrium structure. First, households (or families) own the inputs and assets of the
economy, including ownership rights in firms, and choose the fractions of their income to
consume and save. Each household determines how many children to have, whether to join
the labor force, and how much to work. Second, firms hire inputs, such as capital and labor,
and use them to produce goods that they sell to households or other firms. Firms have access
to a technology that allows them to transform inputs into output. Third, markets exist on
which firms sell goods to households or other firms and on which households sell the inputs
to firms. The quantities demanded and supplied determine the relative prices of the inputs
and the produced goods.

Although this general structure applies to most growth models, it is convenient to start
our analysis by using a simplified setup that excludes markets and firms. We can think
of a composite unit—a household/producer like Robinson Crusoe—who owns the inputs
and also manages the technology that transforms inputs into outputs. In the real world,
production takes place using many different inputs to production. We summarize all of
them into just three: physical capital K (t), labor L(t), and knowledge T (t). The production

1. These data—from Penn World Tables version 6.1—are described in Summers and Heston (1991) and Heston,
Summers, and Aten (2002). We discuss these data in chapter 12.
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function takes the form

Y (t) = F[K (t), L(t), T (t)] (1.1)

where Y (t) is the flow of output produced at time t .
Capital, K (t), represents the durable physical inputs, such as machines, buildings, pencils,

and so on. These goods were produced sometime in the past by a production function of the
form of equation (1.1). It is important to notice that these inputs cannot be used by multiple
producers simultaneously. This last characteristic is known as rivalry—a good is rival if it
cannot be used by several users at the same time.

The second input to the production function is labor, L(t), and it represents the inputs
associated with the human body. This input includes the number of workers and the amount
of time they work, as well as their physical strength, skills, and health. Labor is also a rival
input, because a worker cannot work on one activity without reducing the time available
for other activities.

The third input is the level of knowledge or technology, T (t). Workers and machines
cannot produce anything without a formula or blueprint that shows them how to do it. This
blueprint is what we call knowledge or technology. Technology can improve over time—for
example, the same amount of capital and labor yields a larger quantity of output in 2000
than in 1900 because the technology employed in 2000 is superior. Technology can also
differ across countries—for example, the same amount of capital and labor yields a larger
quantity of output in Japan than in Zambia because the technology available in Japan is
better. The important distinctive characteristic of knowledge is that it is a nonrival good: two
or more producers can use the same formula at the same time.2 Hence, two producers that
each want to produce Y units of output will each have to use a different set of machines and
workers, but they can use the same formula. This property of nonrivalry turns out to have
important implications for the interactions between technology and economic growth.3

2. The concepts of nonrivalry and public good are often confused in the literature. Public goods are nonrival (they
can be used by many people simultaneously) and also nonexcludable (it is technologically or legally impossible
to prevent people from using such goods). The key characteristic of knowledge is nonrivalry. Some formulas or
blueprints are nonexcludable (for example, calculus formulas on which there are no property rights), whereas
others are excludable (for example, the formulas used to produce pharmaceutical products while they are pro-
tected by patents). These properties of ideas were well understood by Thomas Jefferson, who said in a letter
of August 13, 1813, to Isaac McPherson: “If nature has made any one thing less susceptible than all others of
exclusive property, it is the actions of the thinking power called an idea, which an individual may exclusively
possess as long as he keeps it to himself; but the moment it is divulged, it forces itself into the possession of
everyone, and the receiver cannot dispossess himself of it. Its peculiar character, too, is that no one possesses the
less, because every other possesses the whole of it. He who receives an idea from me, receives instruction himself
without lessening mine” (available on the Internet from the Thomas Jefferson Papers at the Library of Congress,
lcweb2.loc.gov/ammem/mtjhtml/mtjhome.html).

3. Government policies, which depend on laws and institutions, would also affect the output of an economy. Since
basic public institutions are nonrival, we can include these factors in T (t) in the production function.
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We assume a one-sector production technology in which output is a homogeneous good
that can be consumed, C(t), or invested, I (t). Investment is used to create new units of
physical capital, K (t), or to replace old, depreciated capital. One way to think about the
one-sector technology is to draw an analogy with farm animals, which can be eaten or used
as inputs to produce more farm animals. The literature on economic growth has used more
inventive examples—with such terms as shmoos, putty, or ectoplasm—to reflect the easy
transmutation of capital goods into consumables, and vice versa.

In this chapter we imagine that the economy is closed: households cannot buy foreign
goods or assets and cannot sell home goods or assets abroad. (Chapter 3 allows for an open
economy.) We also start with the assumption that there are no government purchases of
goods and services. (Chapter 4 deals with government purchases.) In a closed economy
with no public spending, all output is devoted to consumption or gross investment,4 so
Y (t) = C(t) + I (t). By subtracting C(t) from both sides and realizing that output equals
income, we get that, in this simple economy, the amount saved, S(t) ≡ Y (t)− C(t), equals
the amount invested, I (t).

Let s(·) be the fraction of output that is saved—that is, the saving rate—so that 1 − s(·)
is the fraction of output that is consumed. Rational households choose the saving rate by
comparing the costs and benefits of consuming today rather than tomorrow; this comparison
involves preference parameters and variables that describe the state of the economy, such
as the level of wealth and the interest rate. In chapter 2, where we model this decision
explicitly, we find that s(·) is a complicated function of the state of the economy, a function
for which there are typically no closed-form solutions. To facilitate the analysis in this initial
chapter, we assume that s(·) is given exogenously. The simplest function, the one assumed
by Solow (1956) and Swan (1956) in their classic articles, is a constant, 0 ≤ s(·) = s ≤ 1.
We use this constant-saving-rate specification in this chapter because it brings out a large
number of results in a clear way. Given that saving must equal investment, S(t) = I (t), it
follows that the saving rate equals the investment rate. In other words, the saving rate of a
closed economy represents the fraction of GDP that an economy devotes to investment.

We assume that capital is a homogeneous good that depreciates at the constant rate δ > 0;
that is, at each point in time, a constant fraction of the capital stock wears out and, hence,
can no longer be used for production. Before evaporating, however, all units of capital are
assumed to be equally productive, regardless of when they were originally produced.

4. In an open economy with government spending, the condition is

Y (t) − r · D(t) = C(t) + I (t) + G(t) + N X (t)

where D(t) is international debt, r is the international real interest rate, G(t) is public spending, and N X (t) is
net exports. In this chapter we assume that there is no public spending, so that G(t) = 0, and that the economy is
closed, so that D(t) = N X (t) = 0.
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The net increase in the stock of physical capital at a point in time equals gross investment
less depreciation:

K̇ (t) = I (t) − δK (t) = s · F[K (t), L(t), T (t)] − δK (t) (1.2)

where a dot over a variable, such as K̇ (t), denotes differentiation with respect to time, K̇ (t) ≡
∂K (t)/∂t (a convention that we use throughout the book) and 0 ≤ s ≤ 1. Equation (1.2)
determines the dynamics of K for a given technology and labor.

The labor input, L , varies over time because of population growth, changes in participation
rates, shifts in the amount of time worked by the typical worker, and improvements in the
skills and quality of workers. In this chapter, we simplify by assuming that everybody
works the same amount of time and that everyone has the same constant skill, which we
normalize to one. Thus we identify the labor input with the total population. We analyze
the accumulation of skills or human capital in chapter 5 and the choice between labor and
leisure in chapter 9.

The growth of population reflects the behavior of fertility, mortality, and migration, which
we study in chapter 9. In this chapter, we simplify by assuming that population grows at
a constant, exogenous rate, L̇/L = n ≥ 0, without using any resources. If we normalize
the number of people at time 0 to 1 and the work intensity per person also to 1, then the
population and labor force at time t are equal to

L(t) = ent (1.3)

To highlight the role of capital accumulation, we start with the assumption that the level
of technology, T (t), is a constant. This assumption will be relaxed later.

If L(t) is given from equation (1.3) and technological progress is absent, then equa-
tion (1.2) determines the time paths of capital, K (t), and output, Y (t). Once we know how
capital or GDP changes over time, the growth rates of these variables are also determined.
In the next sections, we show that this behavior depends crucially on the properties of the
production function, F(·).

1.2 The Neoclassical Model of Solow and Swan

1.2.1 The Neoclassical Production Function

The process of economic growth depends on the shape of the production function. We
initially consider the neoclassical production function. We say that a production function,
F(K , L , T ), is neoclassical if the following properties are satisfied:5

5. We ignore time subscripts to simplify notation.
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1. Constant returns to scale. The function F(·) exhibits constant returns to scale. That
is, if we multiply capital and labor by the same positive constant, λ, we get λ the amount
of output:

F(λK , λL , T ) = λ · F(K , L , T ) for all λ > 0 (1.4)

This property is also known as homogeneity of degree one in K and L. It is important to
note that the definition of scale includes only the two rival inputs, capital and labor. In other
words, we did not define constant returns to scale as F(λK , λL , λT ) = λ · F(K , L , T ).

To get some intuition on why our assumption makes economic sense, we can use the
following replication argument. Imagine that plant 1 produces Y units of output using the
production function F and combining K and L units of capital and labor, respectively, and
using formula T . It makes sense to assume that if we create an identical plant somewhere
else (that is, if we replicate the plant), we should be able to produce the same amount of
output. In order to replicate the plant, however, we need a new set of machines and workers,
but we can use the same formula in both plants. The reason is that, while capital and labor are
rival goods, the formula is a nonrival good and can be used in both plants at the same time.
Hence, because technology is a nonrival input, our definition of returns to scale makes sense.

2. Positive and diminishing returns to private inputs. For all K > 0 and L > 0, F(·)
exhibits positive and diminishing marginal products with respect to each input:

∂ F

∂K
> 0,

∂2 F

∂K 2
< 0

∂ F

∂L
> 0,

∂2 F

∂L2
< 0

(1.5)

Thus, the neoclassical technology assumes that, holding constant the levels of technology
and labor, each additional unit of capital delivers positive additions to output, but these
additions decrease as the number of machines rises. The same property is assumed for labor.

3. Inada conditions. The third defining characteristic of the neoclassical production
function is that the marginal product of capital (or labor) approaches infinity as capital
(or labor) goes to 0 and approaches 0 as capital (or labor) goes to infinity:
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)
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= ∞
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(
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)
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L→∞

(
∂ F

∂L

)
= 0

(1.6)

These last properties are called Inada conditions, following Inada (1963).
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4. Essentiality. Some economists add the assumption of essentiality to the definition of a
neoclassical production function. An input is essential if a strictly positive amount is needed
to produce a positive amount of output. We show in the appendix that the three neoclassical
properties in equations (1.4)–(1.6) imply that each input is essential for production, that is,
F(0, L) = F(K , 0) = 0. The three properties of the neoclassical production function also
imply that output goes to infinity as either input goes to infinity, another property that is
proven in the appendix.

Per Capita Variables When we say that a country is rich or poor, we tend to think in
terms of output or consumption per person. In other words, we do not think that India is
richer than the Netherlands, even though India produces a lot more GDP, because, once we
divide by the number of citizens, the amount of income each person gets on average is a lot
smaller in India than in the Netherlands. To capture this property, we construct the model
in per capita terms and study primarily the dynamic behavior of the per capita quantities of
GDP, consumption, and capital.

Since the definition of constant returns to scale applies to all values of λ, it also applies
to λ = 1/L . Hence, output can be written as

Y = F(K , L , T ) = L · F(K/L , 1, T ) = L · f (k) (1.7)

where k ≡ K/L is capital per worker, y ≡ Y/L is output per worker, and the function f (k) is
defined to equal F(k, 1, T ).6 This result means that the production function can be expressed
in intensive form (that is, in per worker or per capita form) as

y = f (k) (1.8)

In other words, the production function exhibits no “scale effects”: production per person is
determined by the amount of physical capital each person has access to and, holding constant
k, having more or fewer workers does not affect total output per person. Consequently, very
large economies, such as China or India, can have less output or income per person than
very small economies, such as Switzerland or the Netherlands.

We can differentiate this condition Y = L · f (k) with respect to K , for fixed L , and then
with respect to L , for fixed K , to verify that the marginal products of the factor inputs are
given by

∂Y/∂K = f ′(k) (1.9)

∂Y/∂L = f (k) − k · f ′(k) (1.10)

6. Since T is assumed to be constant, it is one of the parameters implicit in the definition of f (k).
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Figure 1.1
The Solow–Swan model. The curve for gross investment, s · f (k), is proportional to the production function, f (k).
Consumption per person equals the vertical distance between f (k) and s · f (k). Effective depreciation (for k) is
given by (n + δ) · k, a straight line from the origin. The change in k is given by the vertical distance between
s · f (k) and (n + δ) · k. The steady-state level of capital, k∗, is determined at the intersection of the s · f (k) curve
with the (n + δ) · k line.

The Inada conditions imply limk→0[ f ′(k)] = ∞ and limk→∞[ f ′(k)] = 0. Figure 1.1 shows
the neoclassical production in per capita terms: it goes through zero; it is vertical at zero,
upward sloping, and concave; and its slope asymptotes to zero as k goes to infinity.

A Cobb–Douglas Example One simple production function that is often thought to pro-
vide a reasonable description of actual economies is the Cobb–Douglas function,7

Y = AK α L1−α (1.11)

where A > 0 is the level of the technology and α is a constant with 0 < α < 1. The
Cobb–Douglas function can be written in intensive form as

y = Akα (1.12)

7. Douglas is Paul H. Douglas, who was a labor economist at the University of Chicago and later a U.S. Senator
from Illinois. Cobb is Charles W. Cobb, who was a mathematician at Amherst. Douglas (1972, pp. 46–47) says that
he consulted with Cobb in 1927 on how to come up with a production function that fit his empirical equations for
production, employment, and capital stock in U.S. manufacturing. Interestingly, Douglas says that the functional
form was developed earlier by Philip Wicksteed, thus providing another example of Stigler’s Law (whereby nothing
is named after the person who invented it).
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Note that f ′(k) = Aαkα−1 > 0, f ′′(k) = −Aα(1 − α)kα−2 < 0, limk→∞ f ′(k) = 0, and
limk→0 f ′(k) = ∞. Thus, the Cobb–Douglas form satisfies the properties of a neoclassical
production function.

The key property of the Cobb–Douglas production function is the behavior of factor
income shares. In a competitive economy, as discussed in section 1.2.3, capital and labor
are each paid their marginal products; that is, the marginal product of capital equals the
rental price R, and the marginal product of labor equals the wage rate w. Hence, each unit of
capital is paid R = f ′(k) = αAkα−1, and each unit of labor is paid w = f (k) − k · f ′(k) =
(1 − α) · Akα . The capital share of income is then Rk/ f (k) = α, and the labor share is
w/ f (k) = 1 − a. Thus, in a competitive setting, the factor income shares are constant—
independent of k—when the production function is Cobb–Douglas.

1.2.2 The Fundamental Equation of the Solow–Swan Model

We now analyze the dynamic behavior of the economy described by the neoclassical pro-
duction function. The resulting growth model is called the Solow–Swan model, after the
important contributions of Solow (1956) and Swan (1956).

The change in the capital stock over time is given by equation (1.2). If we divide both
sides of this equation by L , we get

K̇/L = s · f (k) − δk

The right-hand side contains per capita variables only, but the left-hand side does not. Hence,
it is not an ordinary differential equation that can be easily solved. In order to transform it
into a differential equation in terms of k, we can take the derivative of k ≡ K/L with respect
to time to get

k̇ ≡ d(K/L)

dt
= K̇/L − nk

where n = L̇/L . If we substitute this result into the expression for K̇/L , we can rearrange
terms to get

k̇ = s · f (k) − (n + δ) · k (1.13)

Equation (1.13) is the fundamental differential equation of the Solow–Swan model. This
nonlinear equation depends only on k.

The term n +δ on the right-hand side of equation (1.13) can be thought of as the effective
depreciation rate for the capital-labor ratio, k ≡ K/L . If the saving rate, s, were 0, capital
per person would decline partly due to depreciation of capital at the rate δ and partly due
to the increase in the number of persons at the rate n.
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Figure 1.1 shows the workings of equation (1.13). The upper curve is the production func-
tion, f (k). The term (n + δ) · k, which appears in equation (1.13), is drawn in figure 1.1 as a
straight line from the origin with the positive slope n + δ. The term s · f (k) in equation (1.13)
looks like the production function except for the multiplication by the positive fraction s.
Note from the figure that the s · f (k) curve starts from the origin [because f (0) = 0], has
a positive slope [because f ′(k) > 0], and gets flatter as k rises [because f ′′(k) < 0]. The
Inada conditions imply that the s · f (k) curve is vertical at k = 0 and becomes flat as k goes
to infinity. These properties imply that, other than the origin, the curve s · f (k) and the line
(n + δ) · k cross once and only once.

Consider an economy with the initial capital stock per person k(0) > 0. Figure 1.1 shows
that gross investment per person equals the height of the s · f (k) curve at this point. Con-
sumption per person equals the vertical difference at this point between the f (k) and s · f (k)

curves.

1.2.3 Markets

In this section we show that the fundamental equation of the Solow–Swan model can be
derived in a framework that explicitly incorporates markets. Instead of owning the tech-
nology and keeping the output produced with it, we assume that households own financial
assets and labor. Assets deliver a rate of return r(t), and labor is paid the wage rate w(t).
The total income received by households is, therefore, the sum of asset and labor income,
r(t) · (assets) + w(t) · L(t). Households use the income that they do not consume to accu-
mulate more assets

d(assets)/dt = [r · (assets) + w · L] − C (1.14)

where, again, time subscripts have been omitted to simplify notation. Divide both sides of
equation (1.14) by L , define assets per person as a, and take the derivative of a with respect
to time, ȧ = (1/L) · d(assets)/dt −na, to get that the change in assets per person is given by

ȧ = (r · a + w) − c − na (1.15)

Firms hire labor and capital and use these two inputs with the production technology in
equation (1.1) to produce output, which they sell at unit price. We think of firms as renting
the services of capital from the households that own it. (None of the results would change
if the firms owned the capital, and the households owned shares of stock in the firms.)
Hence, the firms’ costs of capital are the rental payments, which are proportional to K . This
specification assumes that capital services can be increased or decreased without incurring
any additional expenses, such as costs for installing machines.
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Let R be the rental price for a unit of capital services, and assume again that capital stocks
depreciate at the constant rate δ ≥ 0. The net rate of return to a household that owns a unit
of capital is then R − δ. Households also receive the interest rate r on funds lent to other
households. In the absence of uncertainty, capital and loans are perfect substitutes as stores
of value and, as a result, they must deliver the same return, so r = R − δ or, equivalently,
R = r + δ.

The representative firm’s flow of net receipts or profit at any point in time is given by

π = F(K , L , T ) − (r + δ) · K − wL (1.16)

that is, gross receipts from the sale of output, F(K , L , T ), less the factor payments, which
are rentals to capital, (r + δ) · K , and wages to workers, wL . Technology is assumed to
be available for free, so no payment is needed to rent the formula used in the process
of production. We assume that the firm seeks to maximize the present value of profits.
Because the firm rents capital and labor services and has no adjustment costs, there are
no intertemporal elements in the firm’s maximization problem.8 (The problem becomes
intertemporal when we introduce adjustment costs for capital in chapter 3.)

Consider a firm of arbitrary scale, say with level of labor input L . Because the produc-
tion function exhibits constant returns to scale, the profit for this firm, which is given by
equation (1.16), can be written as

π = L · [ f (k) − (r + δ) · k − w] (1.17)

A competitive firm, which takes r and w as given, maximizes profit for given L by setting

f ′(k) = r + δ (1.18)

That is, the firm chooses the ratio of capital to labor to equate the marginal product of capital
to the rental price.

The resulting level of profit is positive, zero, or negative depending on the value of w.
If profit is positive, the firm could attain infinite profits by choosing an infinite scale. If
profit is negative, the firm would contract its scale to zero. Therefore, in a full market
equilibrium, w must be such that profit equals zero; that is, the total of the factor payments,
(r + δ) · K + wL , equals the gross receipts in equation (1.17). In this case, the firm is
indifferent about its scale.

8. In chapter 2 we show that dynamic firms would maximize the present discounted value of all future profits,
which is given if r is constant by

∫ ∞
0

L · [ f (k) − (r + δ) · k − w] · e−r t dt . Because the problem does not involve
any dynamic constraint, the firm maximizes static profits at all points in time. In fact, this dynamic problem is
nothing but a sequence of static problems.
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For profit to be zero, the wage rate has to equal the marginal product of labor correspond-
ing to the value of k that satisfies equation (1.18):

[ f (k) − k · f ′(k)] = w (1.19)

It can be readily verified from substitution of equations (1.18) and (1.19) into equation (1.17)
that the resulting level of profit equals zero for any value of L . Equivalently, if the factor
prices equal the respective marginal products, the factor payments just exhaust the total
output (a result that corresponds in mathematics to Euler’s theorem).9

The model does not determine the scale of an individual, competitive firm that operates
with a constant-returns-to-scale production function. The model will, however, determine
the capital/labor ratio k, as well as the aggregate level of production, because the aggregate
labor force is determined by equation (1.3).

The next step is to define the equilibrium of the economy. In a closed economy, the only
asset in positive net supply is capital, because all the borrowing and lending must cancel
within the economy. Hence, equilibrium in the asset market requires a = k. If we substitute
this equality, as well as r = f ′(k) − δ and w = f (k) − k · f ′(k), into equation (1.15), we get

k̇ = f (k) − c − (n + δ) · k

Finally, if we follow Solow–Swan in making the assumption that households consume a
constant fraction of their gross income, c = (1 − s) · f (k), we get

k̇ = s · f (k) − (n + δ) · k

which is the same fundamental equation of the Solow–Swan model that we got in equa-
tion (1.13). Hence, introducing competitive markets into the Solow–Swan model does not
change any of the main results.10

1.2.4 The Steady State

We now have the necessary tools to analyze the behavior of the model over time. We first
consider the long run or steady state, and then we describe the short run or transitional
dynamics. We define a steady state as a situation in which the various quantities grow at

9. Euler’s theorem says that if a function F(K , L) is homogeneous of degree one in K and L , then F(K , L) =
FK · K + FL · L . This result can be proven using the equations F(K , L) = L · f (k), FK = f ′(k), and FL = f (k)−
k · f ′(k).

10. Note that, in the previous section and here, we assumed that each person saved a constant fraction of his or her
gross income. We could have assumed instead that each person saved a constant fraction of his or her net income,
f (k) − δk, which in the market setup equals ra + w. In this case, the fundamental equation of the Solow–Swan
model would be k̇ = s · f (k) − (sδ + n) · k. Again, the same equation applies to the household-producer and
market setups.
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constant (perhaps zero) rates.11 In the Solow–Swan model, the steady state corresponds to
k̇ = 0 in equation (1.13),12 that is, to an intersection of the s · f (k) curve with the (n +δ) · k
line in figure 1.1.13 The corresponding value of k is denoted k∗. (We focus here on the
intersection at k > 0 and neglect the one at k = 0.) Algebraically, k∗ satisfies the condition

s · f (k∗) = (n + δ) · k∗ (1.20)

Since k is constant in the steady state, y and c are also constant at the values y∗ = f (k∗)
and c∗ = (1 − s) · f (k∗), respectively. Hence, in the neoclassical model, the per capita
quantities k, y, and c do not grow in the steady state. The constancy of the per capita
magnitudes means that the levels of variables—K , Y , and C—grow in the steady state at
the rate of population growth, n.

Once-and-for-all changes in the level of the technology will be represented by shifts of
the production function, f ( · ). Shifts in the production function, in the saving rate s, in the
rate of population growth n, and in the depreciation rate δ, all have effects on the per capita
levels of the various quantities in the steady state. In figure 1.1, for example, a proportional
upward shift of the production function or an increase in s shifts the s · f (k) curve upward
and leads thereby to an increase in k∗. An increase in n or δ moves the (n + δ) · k line
upward and leads to a decrease in k∗.

It is important to note that a one-time change in the level of technology, the saving rate,
the rate of population growth, and the depreciation rate do not affect the steady-state growth
rates of per capita output, capital, and consumption, which are all still equal to zero. For this
reason, the model as presently specified will not provide explanations of the determinants
of long-run per capita growth.

1.2.5 The Golden Rule of Capital Accumulation and Dynamic Inefficiency

For a given level of A and given values of n and δ, there is a unique steady-state value k∗ > 0
for each value of the saving rate s. Denote this relation by k∗(s), with dk∗(s)/ds > 0. The
steady-state level of per capita consumption is c∗ = (1 − s) · f [k∗(s)]. We know from

11. Some economists use the expression balanced growth path to describe the state in which all variables grow at
a constant rate and use steady state to describe the particular case when the growth rate is zero.

12. We can show that k must be constant in the steady state. Divide both sides of equation (1.13) by k to get
k̇/k = s · f (k)/k − (n + δ). The left-hand side is constant, by definition, in the steady state. Since s, n, and δ are
all constants, it follows that f (k)/k must be constant in the steady state. The time derivative of f (k)/k equals
−{[ f (k) − k f ′(k)]/k} · (k̇/k). The expression f (k) − k f ′(k) equals the marginal product of labor (as shown by
equation [1.19]) and is positive. Therefore, as long as k is finite, k̇/k must equal 0 in the steady state.

13. The intersection in the range of positive k exists and is unique because f (0) = 0, n + δ < limk→0[s · f ′(k)] =
∞, n + δ > limk→∞[s · f ′(k)] = 0, and f ′′(k) < 0.
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cgold

sgold
s

c*

Figure 1.2
The golden rule of capital accumulation. The vertical axis shows the steady-state level of consumption per
person that corresponds to each saving rate. The saving rate that maximizes steady-state consumption per person
is called the golden-rule saving rate and is denoted by sGold.

equation (1.20) that s · f (k∗) = (n + δ) · k∗; hence, we can write an expression for c∗ as

c∗(s) = f [k∗(s)] − (n + δ) · k∗(s) (1.21)

Figure 1.2 shows the relation between c∗ and s that is implied by equation (1.21). The
quantity c∗ is increasing in s for low levels of s and decreasing in s for high values of s.
The quantity c∗ attains its maximum when the derivative vanishes, that is, when [ f ′(k∗) −
(n + δ)] · dk∗/ds = 0. Since dk∗/ds > 0, the term in brackets must equal 0. If we denote
the value of k∗ that corresponds to the maximum of c∗ by kgold, then the condition that
determines kgold is

f ′(kgold) = n + δ (1.22)

The corresponding saving rate can be denoted as sgold, and the associated level of steady-state
per capita consumption is given by cgold = f (kgold) − (n + δ) · kgold.

The condition in equation (1.22) is called the golden rule of capital accumulation (see
Phelps, 1966). The source of this name is the biblical Golden Rule, which states, “Do unto
others as you would have others do unto you.” In economic terms, the golden-rule result
can be interpreted as “If we provide the same amount of consumption to members of each
current and future generation—that is, if we do not provide less to future generations than
to ourselves—then the maximum amount of per capita consumption is cgold.”

Figure 1.3 illustrates the workings of the golden rule. The figure considers three possible
saving rates, s1, sgold, and s2, where s1 < sgold < s2. Consumption per person, c, in each
case equals the vertical distance between the production function, f (k), and the appropriate
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s2 � f (k)

sgold � f (k)
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1 k*
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k
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cgold

s1 � f (k)

f (k)

Figure 1.3
The golden rule and dynamic inefficiency. If the saving rate is above the golden rule (s2 > sgold in the figure),
a reduction in s increases steady-state consumption per person and also raises consumption per person along the
transition. Since c increases at all points in time, a saving rate above the golden rule is dynamically inefficient. If the
saving rate is below the golden rule (s1 < sgold in the figure), an increase in s increases steady-state consumption
per person but lowers consumption per person along the transition. The desirability of such a change depends on
how households trade off current consumption against future consumption.

s · f (k) curve. For each s, the steady-state value k∗ corresponds to the intersection between
the s · f (k) curve and the (n + δ) · k line. The steady-state per capita consumption, c∗, is
maximized when k∗ = kgold because the tangent to the production function at this point
parallels the (n + δ) · k line. The saving rate that yields k∗ = kgold is the one that makes the
s · f (k) curve cross the (n + δ) · k line at the value kgold. Since s1 < sgold < s2, we also see
in the figure that k∗

1 < kgold < k∗
2 .

An important question is whether some saving rates are better than others. We will be
unable to select the best saving rate (or, indeed, to determine whether a constant saving rate
is desirable) until we specify a detailed objective function, as we do in the next chapter.
We can, however, argue in the present context that a saving rate that exceeds sgold forever
is inefficient because higher quantities of per capita consumption could be obtained at all
points in time by reducing the saving rate.

Consider an economy, such as the one described by the saving rate s2 in figure 1.3, for
which s2 > sgold, so that k∗

2 > k∗
gold and c∗

2 < cgold. Imagine that, starting from the steady
state, the saving rate is reduced permanently to sgold. Figure 1.3 shows that per capita
consumption, c—given by the vertical distance between the f (k) and sgold · f (k) curves—
initially increases by a discrete amount. Then the level of c falls monotonically during the



Growth Models with Exogenous Saving Rates 37

transition14 toward its new steady-state value, cgold. Since c∗
2 < cgold, we conclude that c

exceeds its previous value, c∗
2, at all transitional dates, as well as in the new steady state.

Hence, when s > sgold, the economy is oversaving in the sense that per capita consumption
at all points in time could be raised by lowering the saving rate. An economy that oversaves
is said to be dynamically inefficient, because the path of per capita consumption lies below
feasible alternative paths at all points in time.

If s < sgold—as in the case of the saving rate s1 in figure 1.3—then the steady-state amount
of per capita consumption can be increased by raising the saving rate. This rise in the saving
rate would, however, reduce c currently and during part of the transition period. The outcome
will therefore be viewed as good or bad depending on how households weigh today’s
consumption against the path of future consumption. We cannot judge the desirability of an
increase in the saving rate in this situation until we make specific assumptions about how
agents discount the future. We proceed along these lines in the next chapter.

1.2.6 Transitional Dynamics

The long-run growth rates in the Solow–Swan model are determined entirely by exoge-
nous elements—in the steady state, the per capita quantities k, y, and c do not grow and
the aggregate variables K , Y , and C grow at the exogenous rate of population growth n.
Hence, the main substantive conclusions about the long run are that steady-state growth
rates are independent of the saving rate or the level of technology. The model does, however,
have more interesting implications about transitional dynamics. This transition shows how
an economy’s per capita income converges toward its own steady-state value and to the per
capita incomes of other economies.

Division of both sides of equation (1.13) by k implies that the growth rate of k is given by

γk ≡ k̇/k = s · f (k)/k − (n + δ) (1.23)

where we have used the notation γz to represent the growth rate of variable z, notation that
we will use throughout the book. Note that, at all points in time, the growth rate of the level
of a variable equals the per capita growth rate plus the exogenous rate of population growth
n, for example,

K̇/K = k̇/k + n

For subsequent purposes, we shall find it convenient to focus on the growth rate of k, as
given in equation (1.23).

14. In the next subsection we analyze the transitional dynamics of the model.
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Growth rate � 0

Growth rate � 0

n � �

s � f (k)�k

k(0)poor k(0)rich

k
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Figure 1.4
Dynamics of the Solow–Swan model. The growth rate of k is given by the vertical distance between the saving
curve, s · f (k)/k, and the effective depreciation line, n + δ. If k < k∗, the growth rate of k is positive, and k
increases toward k∗. If k > k∗, the growth rate is negative, and k falls toward k∗. Thus, the steady-state capital
per person, k∗, is stable. Note that, along a transition from an initially low capital per person, the growth rate of k
declines monotonically toward zero. The arrows on the horizontal axis indicate the direction of movement of k
over time.

Equation (1.23) says that k̇/k equals the difference between two terms. The first term,
s · f (k)/k, we call the saving curve and the second term, (n + δ), the depreciation curve.
We plot the two curves versus k in figure 1.4. The saving curve is downward sloping;15 it
asymptotes to infinity at k = 0 and approaches 0 as k tends to infinity.16 The depreciation
curve is a horizontal line at n + δ. The vertical distance between the saving curve and
the depreciation line equals the growth rate of capital per person (from equation [1.23]),
and the crossing point corresponds to the steady state. Since n + δ > 0 and s · f (k)/k falls
monotonically from infinity to 0, the saving curve and the depreciation line intersect once
and only once. Hence, the steady-state capital-labor ratio k∗ > 0 exists and is unique.

Figure 1.4 shows that, to the left of the steady state, the s · f (k)/k curve lies above n + δ.
Hence, the growth rate of k is positive, and k rises over time. As k increases, k̇/k declines
and approaches 0 as k approaches k∗. (The saving curve gets closer to the depreciation

15. The derivative of f (k)/k with respect to k equals −[ f (k)/k − f ′(k)]/k. The expression in brackets equals
the marginal product of labor, which is positive. Hence, the derivative is negative.

16. Note that limk→0[s · f (k)/k] = 0/0. We can apply l’Hôpital’s rule to get limk→0[s · f (k)/k] =
limk→0[s · f ′(k)] = ∞, from the Inada condition. Similarly, the Inada condition limk→∞[ f ′(k)] = 0 implies
limk→∞[s · f (k)/k] = 0.
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line as k gets closer to k∗; hence, k̇/k falls.) The economy tends asymptotically toward the
steady state in which k—and, hence, y and c—do not change.

The reason behind the declining growth rates along the transition is the existence of di-
minishing returns to capital: when k is relatively low, the average product of capital, f (k)/k,
is relatively high. By assumption, households save and invest a constant fraction, s, of this
product. Hence, when k is relatively low, the gross investment per unit of capital, s · f (k)/k,
is relatively high. Capital per worker, k, effectively depreciates at the constant rate n + δ.
Consequently, the growth rate, k̇/k, is also relatively high.

An analogous argument demonstrates that if the economy starts above the steady state,
k(0) > k∗, then the growth rate of k is negative, and k falls over time. (Note from figure 1.4
that, for k > k∗, the n + δ line lies above the s · f (k)/k curve, and, hence, k̇/k < 0.) The
growth rate increases and approaches 0 as k approaches k∗. Thus, the system is globally
stable: for any initial value, k(0) > 0, the economy converges to its unique steady state,
k∗ > 0.

We can also study the behavior of output along the transition. The growth rate of output
per capita is given by

ẏ/y = f ′(k) · k̇/ f (k) = [k · f ′(k)/ f (k)] · (k̇/k) (1.24)

The expression in brackets on the far right is the capital share, that is, the share of the rental
income on capital in total income.17

Equation (1.24) shows that the relation between ẏ/y and k̇/k depends on the behavior
of the capital share. In the Cobb–Douglas case (equation [1.11]), the capital share is the
constant α, and ẏ/y is the fraction α of k̇/k. Hence, the behavior of ẏ/y mimics that of k̇/k.

More generally, we can substitute for k̇/k from equation (1.23) into equation (1.24) to
get

ẏ/y = s · f ′(k) − (n + δ) · Sh(k) (1.25)

where Sh(k) ≡ k · f ′(k)/ f (k) is the capital share. If we differentiate with respect to k and
combine terms, we get

∂(ẏ/y)/∂k =
[

f ′′(k) · k

f (k)

]
· (k̇/k) − (n + δ) f ′(k)

f (k)
· [1 − Sh(k)]

Since 0 < Sh(k) < 1, the last term on the right-hand side is negative. If k̇/k ≥ 0, the first term

17. We showed before that, in a competitive market equilibrium, each unit of capital receives a rental equal to its
marginal product, f ′(k). Hence, k · f ′(k) is the income per person earned by owners of capital, and k · f ′(k)/ f (k)—
the term in brackets—is the share of this income in total income per person.
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on the right-hand side is nonpositive, and, hence, ∂(ẏ/y)/∂k < 0. Thus, ẏ/y necessarily
falls as k rises (and therefore as y rises) in the region in which k̇/k ≥ 0, that is, if k ≤ k∗. If
k̇/k < 0 (k > k∗), the sign of ∂(ẏ/y)/∂k is ambiguous for a general form of the production
function, f (k). However, if the economy is close to its steady state, the magnitude of k̇/k
will be small, and ∂(ẏ/y)/∂k < 0 will surely hold even if k > k∗.

In the Solow–Swan model, which assumes a constant saving rate, the level of consumption
per person is given by c = (1 − s) · y. Hence, the growth rates of consumption and income
per capita are identical at all points in time, ċ/c = ẏ/y. Consumption, therefore, exhibits
the same dynamics as output.

1.2.7 Behavior of Input Prices During the Transition

We showed before that the Solow–Swan framework is consistent with a competitive market
economy in which firms maximize profits and households choose to save a constant fraction
of gross income. It is interesting to study the behavior of wages and interest rates along
the transition as the capital stock increases toward the steady state. We showed that the
interest rate equals the marginal product of capital minus the constant depreciation rate,
r = f ′(k) − δ. Since the interest rate depends on the marginal product of capital, which
depends on the capital stock per person, the interest rate moves during the transition as
capital changes. The neoclassical production function exhibits diminishing returns to capital,
f ′′(k) < 0, so the marginal product of capital declines as capital grows. It follows that the
interest rate declines monotonically toward its steady-state value, given by r∗ = f ′(k∗)−δ.

We also showed that the competitive wage rate was given by w = f (k)−k · f ′(k). Again,
the wage rate moves as capital increases. To see the behavior of the wage rate, we can take
the derivative of w with respect to k to get

∂w

∂k
= f ′(k) − f ′(k) − k · f ′′(k) = −k · f ′′(k) > 0

The wage rate, therefore, increases monotonically as the capital stock grows. In the steady
state, the wage rate is given by w∗ = f (k∗) − k∗ · f ′(k∗).

The behavior of wages and interest rates can be seen graphically in figure 1.5. The curve
shown in the figure is again the production function, f (k). The income per worker received
by individual households is given by

y = w + Rk (1.26)

where R = r + δ is the rental price of capital. Once the interest rate and the wage rate are
determined, y is a linear function of k, with intercept w and slope R.
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Figure 1.5
Input prices during the transition. At k0, the straight line that is tangent to the production function has a slope
that equals the rental price R0 and an intercept that equals the wage rate w0. As k rises toward k1, the rental price
falls toward R1, and the wage rate rises toward w1.

Of course, R depends on k through the marginal productivity condition, f ′(k) = R = r + δ.
Therefore, R, the slope of the income function in equation (1.26), must equal the slope of
f (k) at the specified value of k. The figure shows two values, k0 and k1. The income func-
tions at these two values are given by straight lines that are tangent to f (k) at k0 and k1,
respectively. As k rises during the transition, the figure shows that the slope of the tangent
straight line declines from R0 to R1. The figure also shows that the intercept—which equals
w—rises from w0 to w1.

1.2.8 Policy Experiments

Suppose that the economy is initially in a steady-state position with the capital per person
equal to k∗

1 . Imagine that the saving rate rises permanently from s1 to a higher value s2,
possibly because households change their behavior or the government introduces some
policy that raises the saving rate. Figure 1.6 shows that the s · f (k)/k schedule shifts to
the right. Hence, the intersection with the n + δ line also shifts to the right, and the new
steady-state capital stock, k∗

2 , exceeds k∗
1 .

How does the economy adjust from k∗
1 to k∗

2? At k = k∗
1 , the gap between the s1 · f (k)/k

curve and the n + δ line is positive; that is, saving is more than enough to generate an
increase in k. As k increases, its growth rate falls and approaches 0 as k approaches k∗

2 .
The result, therefore, is that a permanent increase in the saving rate generates temporarily
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Figure 1.6
Effects from an increase in the saving rate. Starting from the steady-state capital per person k∗

1 , an increase
in s from s1 to s2 shifts the s · f (k)/k curve to the right. At the old steady state, investment exceeds effective
depreciation, and the growth rate of k becomes positive. Capital per person rises until the economy approaches its
new steady state at k∗

2 > k∗
1 .

positive per capita growth rates. In the long run, the levels of k and y are permanently higher,
but the per capita growth rates return to zero.

The positive transitional growth rates may suggest that the economy could grow forever
by raising the saving rate over and over again. One problem with this line of reasoning
is that the saving rate is a fraction, a number between zero and one. Since people cannot
save more than everything, the saving rate is bounded by one. Notice that, even if people
could save all their income, the saving curve would still cross the depreciation line and,
as a result, long-run per capita growth would stop.18 The reason is that the workings of
diminishing returns to capital eventually bring the economy back to the zero-growth steady
state. Therefore, we can now answer the question that motivated the beginning of this
chapter: “Can income per capita grow forever by simply saving and investing physical
capital?” If the production function is neoclassical, the answer is “no.”

We can also assess permanent changes in the growth rate of population, n. These changes
could reflect shifts of household behavior or changes in government policies that influence
fertility. A decrease in n shifts the depreciation line downward, so that the steady-state level
of capital per worker would be larger. However, the long-run growth rate of capital per
person would remain at zero.

18. Before reaching s = 1, the economy would reach sgold, so that further increases in saving rates would put the
economy in the dynamically inefficient region.
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A permanent, once-and-for-all improvement in the level of the technology has similar,
temporary effects on the per capita growth rates. If the production function f (k) shifts
upward in a proportional manner, then the saving curve shifts upward, just as in figure 1.6.
Hence, k̇/k again becomes positive temporarily. In the long run, the permanent improvement
in technology generates higher levels of k and y but no changes in the per capita growth
rates. The key difference between improvements in knowledge and increases in the saving
rate is that improvements in knowledge are not bounded. That is, the production function
can shift over and over again because, in principle, there are no limits to human knowledge.
The saving rate, however, is physically bounded by one. It follows that, if we want to
generate growth in long-run per capita income and consumption within the neoclassical
framework, growth must come from technological progress rather than from physical capital
accumulation.

We observed before (note 3) that differences in government policies and institutions can
amount to variations in the level of the technology. For example, high tax rates on capital
income, failures to protect property rights, and distorting government regulations can be
economically equivalent to a poorer level of technology. However, it is probably infeasible
to achieve perpetual growth through an unending sequence of improvements in government
policies and institutions. Therefore, in the long run, sustained growth would still depend on
technological progress.

1.2.9 An Example: Cobb–Douglas Technology

We can illustrate the results for the case of a Cobb–Douglas production function (equa-
tion [1.11]). The steady-state capital-labor ratio is determined from equation (1.20) as

k∗ = [s A/(n + δ)]1/(1−α) (1.27)

Note that, as we saw graphically for a more general production function f (k), k∗ rises with
the saving rate s and the level of technology A, and falls with the rate of population growth
n and the depreciation rate δ. The steady-state level of output per capita is given by

y∗ = A1/(1−α) · [s/(n + δ)]α/(1−α)

Thus y∗ is a positive function of s and A, and a negative function of n and δ.
Along the transition, the growth rate of k is given from equation (1.23) by

k̇/k = s Ak−(1−α) − (n + δ) (1.28)

If k(0) < k∗, then k̇/k in equation (1.28) is positive. This growth rate declines as k rises
and approaches 0 as k approaches k∗. Since equation (1.24) implies ẏ/y = α · (k̇/k), the
behavior of ẏ/y mimics that of k̇/k. In particular, the lower y(0), the higher ẏ/y.
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A Closed-Form Solution It is interesting to notice that, when the production function is
Cobb–Douglas and the saving rate is constant, it is possible to get a closed-form solution
for the exact time path of k. Equation (1.28) can be written as

k̇ · k−α + (n + δ) · k1−α = s A

If we define v ≡ k1−α , we can transform the equation to(
1

1 − α

)
· v̇ + (n + δ) · v = s A

which is a first-order, linear differential equation in v. The solution to this equation is

v ≡ k1−α = s A

(n + δ)
+

{
[k(0)]1−α − s A

(n + δ)

}
· e−(1−α) · (n+δ) · t

The last term is an exponential function with exponent equal to −(1 − α) · (n + δ). Hence,
the gap between k1−α and its steady-state value, s A/(n+δ), vanishes exactly at the constant
rate (1 − α) · (n + δ).

1.2.10 Absolute and Conditional Convergence

The fundamental equation of the Solow–Swan model (equation [1.23]) implies that the
derivative of k̇/k with respect to k is negative:

∂(k̇/k)/∂k = s · [ f ′(k) − f (k)/k]/k < 0

Other things equal, smaller values of k are associated with larger values of k̇/k. An important
question arises: does this result mean that economies with lower capital per person tend to
grow faster in per capita terms? In other words, does there tend to be convergence across
economies?

To answer these questions, consider a group of closed economies (say, isolated regions or
countries) that are structurally similar in the sense that they have the same values of the pa-
rameters s, n, and δ and also have the same production function f ( · ). Thus, the economies
have the same steady-state values k∗ and y∗. Imagine that the only difference among the
economies is the initial quantity of capital per person k(0). These differences in starting val-
ues could reflect past disturbances, such as wars or transitory shocks to production functions.
The model then implies that the less-advanced economies—with lower values of k(0) and
y(0)—have higher growth rates of k and, in the typical case, also higher growth rates of y.19

19. This conclusion is unambiguous if the production function is Cobb–Douglas, if k ≤ k∗, or if k is only a small
amount above k∗.
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Figure 1.4 distinguished two economies, one with the low initial value, k(0)poor, and the
other with the high initial value, k(0)rich. Since each economy has the same underlying
parameters, the dynamics of k are determined in each case by the same s · f (k)/k and n + δ

curves. Hence, the growth rate k̇/k is unambiguously higher for the economy with the lower
initial value, k(0)poor. This result implies a form of convergence: regions or countries with
lower starting values of the capital-labor ratio have higher per capita growth rates k̇/k, and
tend thereby to catch up or converge to those with higher capital-labor ratios.

The hypothesis that poor economies tend to grow faster per capita than rich ones—
without conditioning on any other characteristics of economies—is referred to as absolute
convergence. This hypothesis receives only mixed reviews when confronted with data on
groups of economies. We can look, for example, at the growth experience of a broad cross
section of countries over the period 1960 to 2000. Figure 1.7 plots the average annual growth
rate of real per capita GDP against the log of real per capita GDP at the start of the period,
1960, for 114 countries. The growth rates are actually positively correlated with the initial
position; that is, there is some tendency for the initially richer countries to grow faster in
per capita terms. Thus, this sample rejects the hypothesis of absolute convergence.
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Figure 1.7
Convergence of GDP across countries: Growth rate versus initial level of real per capita GDP for 114 coun-
tries. For a sample of 114 countries, the average growth rate of GDP per capita from 1960 to 2000 (shown on
the vertical axis) has little relation with the 1960 level of real per capita GDP (shown on the horizontal axis).
The relation is actually slightly positive. Hence, absolute convergence does not apply for a broad cross section of
countries.



46 Chapter 1

.045

.010
8.0 10.09.69.28.88.4

.015

.020

.025

.030

.035

.040

Log of per capita GDP in 1960

IRE

SPA

GRE

LUX

NOR

SWI

US

ITA
AUS

ICEBEL
FRA

NET

UK SWE

CAN

DEN

G
ro

w
th

 ra
te

, 1
96

0–
20

00

POR

Figure 1.8
Convergence of GDP across OECD countries: Growth rate versus initial level of real per capita GDP for
18 OECD countries. If the sample is limited to 18 original OECD countries (from 1961), the average growth rate
of real per capita GDP from 1960 to 2000 is negatively related to the 1960 level of real per capita GDP. Hence,
absolute convergence applies for these OECD countries.

The hypothesis fares better if we examine a more homogeneous group of economies.
Figure 1.8 shows the results if we limit consideration to 18 relatively advanced countries that
were members of the Organization for Economic Cooperation and Development (OECD)
from the start of the organization in 1961.20 In this case, the initially poorer countries did
experience significantly higher per capita growth rates.

This type of result becomes more evident if we consider an even more homogeneous
group, the continental U.S. states, each viewed as a separate economy. Figure 1.9 plots the
growth rate of per capita personal income for each state from 1880 to 2000 against the log
of per capita personal income in 1880.21 Absolute convergence—the initially poorer states
growing faster in per capita terms—holds clearly in this diagram.

We can accommodate the theory to the empirical observations on convergence if we
allow for heterogeneity across economies, in particular, if we drop the assumption that all
economies have the same parameters, and therefore, the same steady-state positions. If the

20. Germany is omitted because of missing data, and Turkey is omitted because it was not an advanced economy
in 1960.

21. There are 47 observations on U.S. states or territories. Oklahoma is omitted because 1880 preceded the
Oklahoma land rush, and the data are consequently unavailable.
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Figure 1.9
Convergence of personal income across U.S. states: 1880 personal income and income growth from 1880
to 2000. The relation between the growth rate of per capita personal income from 1880 to 2000 (shown on the
vertical axis) is negatively related to the level of per capita income in 1880 (shown on the horizontal axis). Thus
absolute convergence holds for the states of the United States.

steady states differ, we have to modify the analysis to consider a concept of conditional
convergence. The main idea is that an economy grows faster the further it is from its own
steady-state value.

We illustrate the concept of conditional convergence in figure 1.10 by considering two
economies that differ in only two respects: first, they have different initial stocks of capital
per person, k(0)poor < k(0)rich, and second, they have different saving rates, spoor �= srich. Our
previous analysis implies that differences in saving rates generate differences in the same
direction in the steady-state values of capital per person, that is, k∗

poor �= k∗
rich. [In figure 1.10,

these steady-state values are determined by the intersection of the si · f (k)/k curves with
the common n + δ line.] We consider the case in which spoor < srich and, hence, k∗

poor < k∗
rich

because these differences likely explain why k(0)poor < k(0)rich applies at the initial date.
(It is also true empirically, as discussed in the introduction, that countries with higher levels
of real per capita GDP tend to have higher saving rates.)
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Figure 1.10
Conditional convergence. If a rich economy has a higher saving rate than a poor economy, the rich economy
may be proportionately further from its steady-state position. In this case, the rich economy would be predicted
to grow faster per capita than the poor economy; that is, absolute convergence would not hold.

The question is, Does the model predict that the poor economy will grow faster than the
rich one? If they have the same saving rate, then the per capita growth rate—the distance
between the s · f (k)/k curve and the n+δ line—would be higher for the poor economy, and
(k̇/k)poor > (k̇/k)rich would apply. However, if the rich economy has a higher saving rate, as
in figure 1.10, then (k̇/k)poor < (k̇/k)rich might hold, so that the rich economy grows faster.
The intuition is that the low saving rate of the poor economy offsets its higher average
product of capital as a determinant of economic growth. Hence, the poor economy may
grow at a slower rate than the rich one.

The neoclassical model does predict that each economy converges to its own steady state
and that the speed of this convergence relates inversely to the distance from the steady state.
In other words, the model predicts conditional convergence in the sense that a lower starting
value of real per capita income tends to generate a higher per capita growth rate, once we
control for the determinants of the steady state.

Recall that the steady-state value, k∗, depends on the saving rate, s, and the level of the
production function, f ( · ). We have also mentioned that government policies and institutions
can be viewed as additional elements that effectively shift the position of the production
function. The findings on conditional convergence suggest that we should hold constant
these determinants of k∗ to isolate the predicted inverse relationship between growth rates
and initial positions.
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Algebraically, we can illustrate the concept of conditional convergence by returning to
the formula for k̇/k in equation (1.23). One of the determinants of k̇/k is the saving rate s.
We can use the steady-state condition from equation (1.20) to express s as follows:

s = (n + δ) · k∗/ f (k∗)

If we replace s by this expression in equation (1.23), then k̇/k can be expressed as

k̇/k = (n + δ) ·
[

f (k)/k

f (k∗)/k∗ − 1

]
(1.29)

Equation (1.29) is consistent with k̇/k = 0 when k = k∗. For given k∗, the formula implies
that a reduction in k, which raises the average product of capital, f (k)/k, increases k̇/k. But
a lower k matches up with a higher k̇/k only if the reduction is relative to the steady-state
value, k∗. In particular, f (k)/k must be high relative to the steady-state value, f (k∗)/k∗.
Thus a poor country would not be expected to grow rapidly if its steady-state value, k∗, is
as low as its current value, k.

In the case of a Cobb–Douglas technology, the saving rate can be written as

s = (n + δ)

A
· k∗(1−α)

which we can substitute into equation (1.23) to get

k̇/k = (n + δ) ·
[(

k

k∗

)α−1

− 1

]
(1.30)

We see that the growth rate of capital, k, depends on the ratio k/k∗; that is, it depends on
the distance between the current and steady-state capital-labor ratio.

The result in equation (1.29) suggests that we should look empirically at the relation
between the per capita growth rate, ẏ/y, and the starting position, y(0), after holding
fixed variables that account for differences in the steady-state position, y∗. For a relatively
homogeneous group of economies, such as the U.S. states, the differences in steady-state
positions may be minor, and we would still observe the convergence pattern shown in
figure 1.9. For a broad cross section of 114 countries, however, as shown in figure 1.7, the
differences in steady-state positions are likely to be substantial. Moreover, the countries
with low starting levels, y(0), are likely to be in this position precisely because they have
low steady-state values, y∗, perhaps because of chronically low saving rates or persistently
bad government policies that effectively lower the level of the production function. In other
words, the per capita growth rate may have little correlation with log[y(0)], as in figure 1.7,
because log[y(0)] is itself uncorrelated with the gap from the steady state, log[y(0)/y∗]. The
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perspective of conditional convergence indicates that this gap is the variable that matters
for the subsequent per capita growth rate.

We show in chapter 12 that the inclusion of variables that proxy for differences in steady-
state positions makes a major difference in the results for the broad cross section of countries.
When these additional variables are held constant, the relation between the per capita growth
rate and the log of initial real per capita GDP becomes significantly negative, as predicted
by the neoclassical model. In other words, the cross-country data support the hypothesis of
conditional convergence.

1.2.11 Convergence and the Dispersion of Per Capita Income

The concept of convergence considered thus far is that economies with lower levels of per
capita income (expressed relative to their steady-state levels of per capita income) tend to
grow faster in per capita terms. This behavior is often confused with an alternative meaning
of convergence, that the dispersion of real per capita income across a group of economies
or individuals tends to fall over time.22 We show now that, even if absolute convergence
holds in our sense, the dispersion of per capita income need not decline over time.

Suppose that absolute convergence holds for a group of economies i = 1, . . . , N , where
N is a large number. In discrete time, corresponding for example to annual data, the real
per capita income for economy i can then be approximated by the process

log(yit ) = a + (1 − b) · log(yi,t−1) + uit (1.31)

where a and b are constants, with 0 < b < 1, and uit is a disturbance term. The condition b > 0
implies absolute convergence because the annual growth rate, log(yit/yi,t−1), is inversely
related to log(yi,t−1). A higher coefficient b corresponds to a greater tendency toward
convergence.23 The disturbance term picks up temporary shocks to the production function,
the saving rate, and so on. We assume that uit has zero mean, the same variance σ 2

u for all
economies, and is independent over time and across economies.

One measure of the dispersion or inequality of per capita income is the sample variance
of the log(yit ):

Dt ≡ 1

N
·

N∑
i=1

[log(yit ) − µt ]
2

22. See Sala-i-Martin (1990) and Barro and Sala-i-Martin (1992a) for further discussion of the two concepts of
convergence.

23. The condition b < 1 rules out a leapfrogging or overshooting effect, whereby an economy that starts out behind
another economy would be predicted systematically to get ahead of the other economy at some future date. This
leapfrogging effect cannot occur in the neoclassical model but can arise in some models of technological adaptation
that we discuss in chapter 8.



Growth Models with Exogenous Saving Rates 51

where µt is the sample mean of the log(yit ). If there are a large number N of observations,
the sample variance is close to the population variance, and we can use equation (1.31) to
derive the evolution of Dt over time:

Dt ≈ (1 − b)2 · Dt−1 + σ 2
u

This first-order difference equation for dispersion has a steady state given by

D∗ = σ 2
u /[1 − (1 − b)2]

Hence, the steady-state dispersion falls with b (the strength of the convergence effect) but
rises with the variance σ 2

u of the disturbance term. In particular, D∗ > 0 even if b > 0, as
long as σ 2

u > 0.

The evolution of Dt can be expressed as

Dt = D∗ + (1 − b)2 · (Dt−1 − D∗) = D∗ + (1 − b)2t · (D0 − D∗) (1.32)

where D0 is the dispersion at time 0. Since 0 < b < 1, Dt monotonically approaches its
steady-state value, D∗, over time. Equation (1.32) implies that Dt rises or falls over time
depending on whether D0 begins below or above the steady-state value.24 Note especially
that a rising dispersion is consistent with absolute convergence (b > 0).

These results about convergence and dispersion are analogous to Galton’s fallacy about
the distribution of heights in a population (see Quah, 1993, and Hart, 1995, for discussions).
The observation that heights in a family tend to regress toward the mean across generations
(a property analogous to our convergence concept for per capita income) does not imply that
the dispersion of heights across the full population (a measure that parallels the dispersion
of per capita income across economies) tends to narrow over time.

1.2.12 Technological Progress

Classification of Inventions We have assumed thus far that the level of technology is
constant over time. As a result, we found that all per capita variables were constant in the
long run. This feature of the model is clearly unrealistic; in the United States, for example,
the average per capita growth rate has been positive for over two centuries. In the absence of
technological progress, diminishing returns would have made it impossible to maintain per
capita growth for so long just by accumulating more capital per worker. The neoclassical
economists of the 1950s and 1960s recognized this problem and amended the basic model

24. We could extend the model by allowing for temporary shocks to σ 2
u or for major disturbances like wars or oil

shocks that affect large subgroups of economies in a common way. In this extended model, the dispersion could
depart from the deterministic path that we derived; for example, Dt could rise in some periods even if D0 began
above its steady-state value.
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to allow the technology to improve over time. These improvements provided an escape from
diminishing returns and thus enabled the economy to grow in per capita terms in the long
run. We now explore how the model works when we allow for such technological advances.

Although some discoveries are serendipitous, most technological improvements reflect
purposeful activity, such as research and development (R&D) carried out in universities
and corporate or government laboratories. This research is sometimes financed by private
institutions and sometimes by governmental agencies, such as the National Science Foun-
dation. Since the amount of resources devoted to R&D depends on economic conditions,
the evolution of the technology also depends on these conditions. This relation will be the
subject of our analysis in chapters 6–8. At present, we consider only the simpler case in
which the technology improves exogenously.

The first issue is how to introduce exogenous technological progress into the model.
This progress can take various forms. Inventions may allow producers to generate the same
amount of output with either relatively less capital input or relatively less labor input, cases
referred to as capital-saving or labor-saving technological progress, respectively. Inventions
that do not save relatively more of either input are called neutral or unbiased.

The definition of neutral technological progress depends on the precise meaning of capital
saving and labor saving. Three popular definitions are due to Hicks (1932), Harrod (1942),
and Solow (1969).

Hicks says that a technological innovation is neutral (Hicks neutral) if the ratio of marginal
products remains unchanged for a given capital-labor ratio. This property corresponds to a
renumbering of the isoquants, so that Hicks-neutral production functions can be written as

Y = T (t) · F(K , L) (1.33)

where T (t) is the index of the state of the technology, and Ṫ (t) ≥ 0.

Harrod defines an innovation as neutral (Harrod neutral) if the relative input shares,
(K · FK )/(L · FL), remain unchanged for a given capital-output ratio. Robinson (1938) and
Uzawa (1961) showed that this definition implied that the production function took the form

Y = F[K , L · T (t)] (1.34)

where T (t) is the index of the technology, and Ṫ (t) ≥ 0. This form is called labor-augmenting
technological progress because it raises output in the same way as an increase in the stock
of labor. (Notice that the technology factor, T (t), appears in the production function as a
multiple of L .)

Finally, Solow defines an innovation as neutral (Solow neutral) if the relative input shares,
(L · FL)/(K · FK ), remain unchanged for a given labor/output ratio. This definition can be
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shown to imply a production function of the form

Y = F[K · T (t), L] (1.35)

where T (t) is the index of the technology, and Ṫ (t) ≥ 0. Production functions of this form
are called capital augmenting because a technological improvement increases production
in the same way as an increase in the stock of capital.

The Necessity for Technological Progress to Be Labor Augmenting Suppose that we
consider only constant rates of technological progress. Then, in the neoclassical growth
model with a constant rate of population growth, only labor-augmenting technological
change turns out to be consistent with the existence of a steady state, that is, with constant
growth rates of the various quantities in the long run. This result is proved in the appendix
to this chapter (section 1.5).

If we want to consider models that possess a steady state, we have to assume that tech-
nological progress takes the labor-augmenting form. Another approach, which would be
substantially more complicated, would be to deal with models that lack steady states, that is,
in which the various growth rates do not approach constants in the long run. However, one
reason to stick with the simpler framework that possesses a steady state is that the long-term
experiences of the United States and some other developed countries indicate that per capita
growth rates can be positive and trendless over long periods of time (see chapter 12). This
empirical phenomenon suggests that a useful theory would predict that per capita growth
rates approach constants in the long run; that is, the model would possess a steady state.

If the production function is Cobb–Douglas, Y = AK α L1−α in equation (1.11), then
it is clear from inspection that the form of technological progress—augmenting A, K ,
or L—will not matter for the results (see the appendix for discussion). Thus, in the
Cobb–Douglas case, we will be safe in assuming that technological progress is labor aug-
menting. Recall that the key property of the Cobb–Douglas function is that, in a competitive
setting, the factor-income shares are constant. Thus, if factor-income shares are reasonably
stable—as seems to be true for the U.S. economy but not for some others—we may be
okay in regarding the production function as approximately Cobb–Douglas and, hence, in
assuming that technogical progress is labor augmenting.

Another approach, when the production function is not Cobb–Douglas, is to derive the
form of technological progress from a theory of technological change. Acemoglu (2002)
takes this approach, using a variant of the model of endogenous technological change that
we develop in chapter 6. He finds that, under some conditions, the form of technological
progress would be asymptotically labor augmenting.
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The Solow–Swan Model with Labor-Augmenting Technological Progress We assume
now that the production function includes labor-augmenting technological progress, as
shown in equation (1.34), and that the technology term, T (t), grows at the constant rate x .
The condition for the change in the capital stock is

K̇ = s · F[K , L · T (t)] − δK

If we divide both sides of this equation by L , we can derive an expression for the change in
k over time:

k̇ = s · F[k, T (t)] − (n + δ) · k (1.36)

The only difference from equation (1.13) is that output per person now depends on the level
of the technology, T (t).

Divide both sides of equation (1.36) by k to compute the growth rate:

k̇/k = s · F[k, T (t)]/k − (n + δ) (1.37)

As in equation (1.23), k̇/k equals the difference between two terms, where the first term is
the product of s and the average product of capital, and the second term is n + δ. The only
difference is that now, for given k, the average product of capital, F[k, T (t)]/k, increases
over time because of the growth in T (t) at the rate x . In terms of figure 1.4, the downward-
sloping curve, s · F( · )/k, shifts continually to the right, and, hence, the level of k that
corresponds to the intersection between this curve and the n + δ line also shifts continually
to the right. We now compute the growth rate of k in the steady state.

By definition, the steady-state growth rate, (k̇/k)∗, is constant. Since s, n, and δ are
also constants, equation (1.37) implies that the average product of capital, F[k, T (t)]/k,
is constant in the steady state. Because of constant returns to scale, the expression for the
average product equals F[1, T (t)/k] and is therefore constant only if k and T (t) grow at
the same rate, that is, (k̇/k)∗ = x .

Output per capita is given by

y = F[k, T (t)] = k · F[1, T (t)/k]

Since k and T (t) grow in the steady state at the rate x , the steady-state growth rate of y
equals x . Moreover, since c = (1 − s) · y, the steady-state growth rate of c also equals x .

To analyze the transitional dynamics of the model with technological progress, it will be
convenient to rewrite the system in terms of variables that remain constant in the steady
state. Since k and T (t) grow in the steady state at the same rate, we can work with the ratio
k̂ ≡ k/T (t)= K/[L · T (t)]. The variable L · T (t) ≡ L̂ is often called the effective amount of
labor—the physical quantity of labor, L , multiplied by its efficiency, T (t). (The terminology



Growth Models with Exogenous Saving Rates 55

effective labor is appropriate because the economy operates as if its labor input were L̂ .)
The variable k̂ is then the quantity of capital per unit of effective labor.

The quantity of output per unit of effective labor, ŷ ≡ Y/[L · T (t)], is given by

ŷ = F(k̂, 1) ≡ f (k̂) (1.38)

Hence, we can again write the production function in intensive form if we replace y and k
by ŷ and k̂, respectively. If we proceed as we did before to get equations (1.13) and (1.23),
but now use the condition that A(t) grows at the rate x , we can derive the dynamic equation
for k̂:

˙̂k/k̂ = s · f (k̂)/k̂ − (x + n + δ) (1.39)

The only difference between equations (1.39) and (1.23), aside from the hats (ˆ), is that
the last term on the right-hand side includes the parameter x . The term x + n + δ is now the
effective depreciation rate for k̂ ≡ K/L̂ . If the saving rate, s, were zero, k̂ would decline
partly due to depreciation of K at the rate δ and partly due to growth of L̂ at the rate x + n.

Following an argument similar to that of section 1.2.4, we can show that the steady-state
growth rate of k̂ is zero. The steady-state value k̂∗ satisfies the condition

s · f (k̂∗) = (x + n + δ) · k̂∗ (1.40)

The transitional dynamics of k̂ are qualitatively similar to those of k in the previous model.
In particular, we can construct a picture like figure 1.4 in which the horizontal axis involves
k̂, the downward-sloping curve is now s · f (k̂)/k̂, and the horizontal line is at the level
x + n + δ, rather than n + δ. The new construction is shown in figure 1.11. We can use this
figure, as we used figure 1.4 before, to assess the relation between the initial value, k̂(0),
and the growth rate, ˙̂k/k̂.

In the steady state, the variables with hats—k̂, ŷ, ĉ—are now constant. Therefore, the per
capita variables—k, y, c—now grow in the steady state at the exogenous rate of technological
progress, x .25 The level variables—K , Y , C—grow accordingly in the steady state at the
rate n + x , that is, the sum of population growth and technological change. Note that, as in
the prior analysis that neglected technological progress, shifts to the saving rate or the level
of the production function affect long-run levels—k̂∗, ŷ∗, ĉ∗—but not steady-state growth
rates. As before, these kinds of disturbances influence growth rates during the transition
from an initial position, represented by k̂(0), to the steady-state value, k̂∗.

25. We always have the condition (1/k̂) · (dk̂/dt) = k̇/k − x . Therefore, (1/k̂) · (dk̂/dt) = 0 implies k̇/k = x ,
and similarly for ẏ/y and ċ/c.
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x � n � �

s � f (k̂)�k̂

k̂*
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Figure 1.11
The Solow–Swan model with technological progress. The growth rate of capital per effective worker (k̂ ≡
K/LT ) is given by the vertical distance between the s · f (k̂)/k̂ curve and the effective depreciation line, x +n +δ.
The economy is at a steady state when k̂ is constant. Since T grows at the constant rate x , the steady-state growth
rate of capital per person, k, also equals x .

1.2.13 A Quantitative Measure of the Speed of Convergence

It is important to know the speed of the transitional dynamics. If convergence is rapid, we
can focus on steady-state behavior, because most economies would typically be close to
their steady states. Conversely, if convergence is slow, economies would typically be far
from their steady states, and, hence, their growth experiences would be dominated by the
transitional dynamics.

We now provide a quantitative assessment of how fast the economy approaches its steady
state for the case of a Cobb–Douglas production function, shown in equation (1.11). (We
generalize later to a broader class of production functions.) We can use equation (1.39),
with L replaced by L̂ , to determine the growth rate of k̂ in the Cobb–Douglas case as

˙̂k/k̂ = s A · (k̂)−(1−α) − (x + n + δ) (1.41)

The speed of convergence, β, is measured by how much the growth rate declines as the
capital stock increases in a proportional sense, that is,

β ≡ −∂( ˙̂k/k̂)

∂ log k̂
(1.42)
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Notice that we define β with a negative sign because the derivative is negative, so that β is
positive.

To compute β, we have to rewrite the growth rate in equation (1.41) as a function of
log(k̂):

˙̂k/k̂ = s A · e−(1−α) · log(k̂) − (x + n + δ) (1.43)

We can take the derivative of equation (1.43) with respect to log(k̂) to get an expression
for β:

β = (1 − α) · s A · (k̂)−(1−α) (1.44)

Notice that the speed of convergence is not constant but, rather, declines monotonically as
the capital stock increases toward its steady-state value. At the steady state, s A · (k̂)−(1−α) =
(x + n + δ) holds. Therefore, in the neighborhood of the steady state, the speed of conver-
gence equals

β∗ = (1 − α) · (x + n + δ) (1.45)

During the transition to the steady state, the convergence rate, β, exceeds β∗ but declines
over time.

Another way to get the formula for β∗ is to consider a log-linear approximation of
equation (1.41) in the neighborhood of the steady state:

˙̂k/k̂ ∼= −β∗ · [log(k̂/k̂∗)] (1.46)

where the coefficient β∗ comes from a log-linearization of equation (1.41) around the steady
state. The resulting coefficient can be shown to equal the right-hand side of equation (1.45).
See the appendix at the end of this chapter (section 1.5) for the method of derivation of this
log-linearization.

Before we consider further the implications of equation (1.45), we will show that it
applies also to the growth rate of ŷ. For a Cobb–Douglas production function, shown in
equation (1.11), we have

˙̂y/ŷ = α · ( ˙̂k/k̂)

log(ŷ/ŷ∗) = α · log(k̂/k̂∗)

If we substitute these formulas into equation (1.46), we get

˙̂y/ŷ ≈ −β∗ · [log(ŷ/ŷ∗)] (1.47)

Hence, the convergence coefficient for ŷ is the same as that for k̂.
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The termβ∗ = (1−α) · (x + n + δ) in equation (1.45) indicates how rapidly an economy’s
output per effective worker, ŷ, approaches its steady-state value, ŷ∗, in the neighborhood
of the steady state. For example, if β∗ = 0.05 per year, 5 percent of the gap between ŷ
and ŷ∗ vanishes in one year. The half-life of convergence—the time that it takes for half
the initial gap to be eliminated—is thus about 14 years.26 It would take about 28 years for
three-quarters of the gap to vanish.

Consider what the theory implies quantitatively about the convergence coefficient, β∗ =
(1 − α) · (x + n + δ), in equation (1.45). One property is that the saving rate, s, does not
affect β∗. This result reflects two offsetting forces that exactly cancel in the Cobb–Douglas
case. First, given k̂, a higher saving rate leads to greater investment and, therefore, to a
faster speed of convergence. Second, a higher saving rate raises the steady-state capital
intensity, k̂∗, and thereby lowers the average product of capital in the vicinity of the steady
state. This effect reduces the speed of convergence. The coefficient β∗ is also independent
of the overall level of efficiency of the economy, A. Differences in A, like differences in s,
have two offsetting effects on the convergence speed, and these effects exactly cancel in the
Cobb–Douglas case.

To see the quantitative implications of the parameters that enter into equation (1.45),
consider the benchmark values x = 0.02 per year, n = 0.01 per year, and δ = 0.05 per year.
These values appear reasonable, for example, for the U.S. economy. The long-term growth
rate of real GDP, which is about 2 percent per year, corresponds in the theory to the
parameter x . The rate of population growth in recent decades is about 1 percent per year,
and the measured depreciation rate for the overall stock of structures and equipment is
around 5 percent per year.

For given values of the parameters x , n, and δ, the coefficient β∗ in equation (1.45) is
determined by the capital-share parameter, α. A conventional share for the gross income
accruing to a narrow concept of physical capital (structures and equipment) is about 1

3
(see Denison, 1962; Maddison, 1982; and Jorgenson, Gollop, and Fraumeni, 1987). If we
use α = 1

3 , equation (1.45) implies β∗ = 5.6 percent per year, which implies a half-life of
12.5 years. In other words, if the capital share is 1

3 , the neoclassical model predicts relatively
short transitions.

26. Equation (1.47) is a differential equation in log[ŷ(t)] with the solution

log[ŷ(t)] = (1 − e−β∗t ) · log(ŷ∗) + e−β∗t · log[ŷ(0)]

The time t for which log[ŷ(t)] is halfway between log[ŷ(0)] and log(ŷ∗) satisfies the condition e−β∗t = 1/2. The
half-life is therefore log(2)/β∗ = 0.69/β∗. Hence, if β∗ = 0.05 per year, the half-life is 14 years.
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In chapters 11 and 12 we argue that this predicted speed of convergence is much too
high to accord with the empirical evidence. A convergence coefficient, β, in the range of
1.5 percent to 3.0 percent per year appears to fit better with the data. If β∗ = 2.0 percent
per year, the half-life is about 35 years, and the time needed to eliminate three-quarters of
an initial gap from the steady-state position is about 70 years. In other words, convergence
speeds that are consistent with the empirical evidence imply that the time required for
substantial convergence is typically on the order of several generations.

To accord with an observed rate of convergence of about 2 percent per year, the neoclassi-
cal model requires a much higher capital-share coefficient. For example, the value α = 0.75,
together with the benchmark values for the other parameters, implies β∗ = 2.0 percent
per year. Although a capital share of 0.75 is too high for a narrow concept of physi-
cal capital, this share is reasonable for an expanded measure that also includes human
capital.

An Extended Solow–Swan Model with Physical and Human Capital One way to
increase the capital share is to add human capital to the model. Consider a Cobb–Douglas
production function that uses physical capital, K , human capital, H ,27 and raw labor, L:

Y = AK α Hη[T (t) · L]1−α−η (1.48)

where T (t) again grows at the exogenous rate x . Divide the production function by T (t) · L
to get output per unit of effective labor:

ŷ = Ak̂α ĥη (1.49)

Output can be used on a one-to-one basis for consumption or investment in either type
of capital. Following Solow and Swan, we still assume that people consume a constant
fraction, 1 − s, of their gross income, so the accumulation is given by

˙̂k + ˙̂h = s Ak̂α ĥη − (δ + n + x) · (k̂ + ĥ) (1.50)

where we have assumed that the two capital goods depreciate at the same constant rate.
The key question is how overall savings will be allocated between physical and human

capital. It is reasonable to think that households will invest in the capital good that delivers
the higher return, so that the two rates of return—and, hence, the two marginal products of
capital—will have to be equated if both forms of investment are taking place. Therefore,

27. Chapters 4 and 5 discuss human capital in more detail.
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we have the condition28

α · ŷ

k̂
− δ = η · ŷ

ĥ
− δ (1.51)

The equality between marginal products implies a one-to-one relationship between phys-
ical and human capital:

ĥ = η

α
· k̂ (1.52)

We can use this relation to eliminate ĥ from equation (1.50) to get

˙̂k = s Ãk̂α+η − (δ + n + x) · k̂ (1.53)

where Ã ≡ (
ηηα(1−η)

α+η
) · A is a constant. Notice that this accumulation equation is the same as

equation (1.41), except that the exponent on the capital stock per worker is now the sum of
the physical and human capital shares, α + η, instead of α. Using a derivation analogous to
that of the previous section, we therefore get an expression for the convergence coefficient
in the steady state:

β∗ = (1 − α − η) · (δ + n + x) (1.54)

Jorgenson, Gollop, and Fraumeni (1987) estimate a human-capital share of between 0.4 and
0.5. With η = 0.4 and with the benchmark parameters of the previous section, including
α = 1

3 , the predicted speed of convergence would be β∗ = 0.021. Thus, with a broad concept
of capital that includes human capital, the Solow–Swan model can generate the rates of
convergence that have been observed empirically.

Mankiw, Romer, and Weil (1992) use a production function analogous to equation (1.48).
However, instead of making the Solow–Swan assumption that the overall gross saving rate
is constant and exogenous, they assume that the investment rates in the two forms of capital
are each constant and exogenous. For physical capital, the growth rate is therefore

˙̂k = sk Ãk̂α−1ĥη − (δ + n + x) = sk Ã · e−(1−α) ln k̂ · eη ln ĥ − (δ + n + x) (1.55)

28. In a market setup, profit would be π = AK α
t Hη

t (Tt Lt )
1−α−η − Rk K − Rh H − wL , where Rk and Rh are

the rental rates of physical and human capital, respectively. The first-order conditions for the firm require that
the marginal products of each of the capital goods be equalized to the rental rates, Rk = α

ŷ
k̂

and Rh = η
ŷ
ĥ

. In
an environment without uncertainty, like the one we are considering, physical capital, human capital, and loans
are perfect substitutes as stores of value and, as a result, their net returns must be the same. In other words,
r = Rk − δ = Rh − δ. Optimizing firms will, therefore, rent physical and human capital up to the point where
their marginal products are equal.
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where sk is an exogenous constant. Similarly, for human capital, the growth rate is

˙̂h = sh Ãk̂α ĥη−1 − (δ + n + x) = sh Ã · eα ln k̂ · e−(1−η) ln ĥ − (δ + n + x) (1.56)

where sh is another exogenous constant. A shortcoming of this approach is that the rates of
return to physical and human capital are not equated.

The growth rate of ŷ is a weighted average of the growth rates of the two inputs:

˙̂y/ŷ = α · ( ˙̂k/k̂) + η · ( ˙̂h/ĥ)

If we use equations (1.55) and (1.56) and take a two-dimensional first-order Taylor-series
expansion, we get

˙̂y/ŷ = [
αsk Ã · e−(1−α) ln k̂∗ · eη ln ĥ∗ · [−(1 − α)]

+ ηsh Ã · eα ln k̂∗ · e−(1−η) ln ĥ∗ · α]· (ln k̂ − ln k̂∗)

+ [
αsk Ã · e−(1−α) ln k∗ · eη̂ ln h∗ · η

+ ηsh Ã · eα ln k̂ · e−(1−η) ln ĥ∗ · [−(1 − η)]
]· (ln ĥ − ln ĥ∗)

The steady-state conditions derived from equations (1.55) and (1.56) can be used to get

˙̂y/ŷ = −(1 − α − η) · (δ + n + x) · [α · (ln k̂ − ln k̂∗) + η · (ln ĥ − ln ĥ∗)]
= −β∗ · (ln ŷ − ln ŷ∗) (1.57)

Therefore, in the neighborhood of the steady state, the convergence coefficient is β∗ =
(1 − α − η) · (δ + n + x), just as in equation (1.54).

1.3 Models of Endogenous Growth

1.3.1 Theoretical Dissatisfaction with Neoclassical Theory

In the mid-1980s it became increasingly clear that the standard neoclassical growth model
was theoretically unsatisfactory as a tool to explore the determinants of long-run growth.
We have seen that the model without technological change predicts that the economy will
eventually converge to a steady state with zero per capita growth. The fundamental reason is
the diminishing returns to capital. One way out of this problem was to broaden the concept
of capital, notably to include human components, and then assume that diminishing returns
did not apply to this broader class of capital. This approach is the one outlined in the
next section and explored in detail in chapters 4 and 5. However, another view was that
technological progress in the form of the generation of new ideas was the only way that an
economy could escape from diminishing returns in the long run. Thus it became a priority to
go beyond the treatment of technological progress as exogenous and, instead, to explain this
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progress within the model of growth. However, endogenous approaches to technological
change encountered basic problems within the neoclassical model—the essential reason is
the nonrival nature of the ideas that underlie technology.

Remember that a key characteristic of the state of technology, T , is that it is a nonrival
input to the production process. Hence, the replication argument that we used before to
justify the assumption of constant returns to scale suggests that the correct measure of scale
is the two rival inputs, capital and labor. Hence, the concept of constant returns to scale that
we used is homogeneity of degree one in K and L:

F(λK , λL , T ) = λ · F(K , L , T )

Recall also that Euler’s theorem implies that a function that is homogeneous of degree one
can be decomposed as

F(K , L , T ) = FK · K + FL · L (1.58)

In our analysis up to this point, we have been assuming that the same technology, T , is
freely available to all firms. This availability is technically feasible because T is nonrival.
However, it may be that T is at least partly excludable—for example, patent protection,
secrecy, and experience might allow some producers to have access to technologies that
are superior to those available to others. For the moment, we maintain the assumption that
technology is nonexcludable, so that all producers have the same access. This assumption
also means that a technological advance is immediately available to all producers.

We know from our previous analysis that perfectly competitive firms that take the input
prices, R and w, as given end up equating the marginal products to the respective input
prices, that is, FK = R and FL = w. It follows from equation (1.58) that the factor payments
exhaust the output, so that each firm’s profit equals zero at every point in time.

Suppose that a firm has the option to pay a fixed cost, κ , to improve the technology from
T to T ′. Since the new technology would, by assumption, be freely available to all other
producers, we know that the equilibrium values of R and w would again entail a zero flow of
profit for each firm. Therefore, the firm that paid the fixed cost, κ , will end up losing money
overall, because the fixed cost would not be recouped by positive profits at any future dates.
It follows that the competitive, neoclassical model cannot sustain purposeful investment in
technical change if technology is nonexcludable (as well as nonrival).

The obvious next step is to allow the technology to be at least partly excludable. To
bring out the problems with this extension, consider the polar case of full excludability,
that is, where each firm’s technology is completely private. Assume, however, that there are
infinitely many ways in which firms can improve knowledge from T to T ′ by paying the fixed
cost κ—in other words, there is free entry into the business of creating formulas. Suppose
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that all firms begin with the technology T . Would an individual firm then have the incentive
to pay κ to improve the technology to T ′? In fact, the incentive appears to be enormous.
At the existing input prices, R and w, a neoclassical firm with a superior technology would
make a pure profit on each unit produced. Because of the assumed constant returns to scale,
the firm would be motivated to hire all the capital and labor available in the economy. In
this case, the firm would have lots of monopoly power and would likely no longer act as a
perfect competitor in the goods and factor markets. So, the assumptions of the competitive
model would break down.

A more basic problem with this result is that other firms would have perceived the same
profit opportunity and would also have paid the cost κ to acquire the better technology, T ′.
However, when many firms improve their technology by the same amount, the competition
pushes up the factor prices, R and w, so that the flow of profit is again zero. In this case,
none of the firms can cover their fixed cost, κ , just as in the model in which technology
was nonexcludable. Therefore, it is not an equilibrium for technological advance to occur
(because all innovators make losses) and it is also not an equilibrium for this advance not
to occur (because the potential profit to a single innovator is enormous).

These conceptual difficulties motivated researchers to introduce some aspects of imper-
fect competition to construct satisfactory models in which the level of the technology can be
advanced by purposeful activity, such as R&D expenditures. This potential for endogenous
technological progress and, hence, endogenous growth, may allow an escape from dimin-
ishing returns at the aggregate level. Models of this type were pioneered by Romer (1990)
and Aghion and Howitt (1992); we consider them in chapters 6–8. For now, we deal only
with models in which technology is either fixed or varying in an exogenous manner.

1.3.2 The AK Model

The key property of this class of endogenous-growth models is the absence of diminishing
returns to capital. The simplest version of a production function without diminishing returns
is the AK function:29

Y = AK (1.59)

where A is a positive constant that reflects the level of the technology. The global absence
of diminishing returns may seem unrealistic, but the idea becomes more plausible if we
think of K in a broad sense to include human capital.30 Output per capita is y = Ak, and
the average and marginal products of capital are constant at the level A > 0.

29. We think that the first economist to use a production function of the AK type was von Neumann (1937).

30. Knight (1944) stressed the idea that diminishing returns might not apply to a broad concept of capital.
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If we substitute f (k)/k = A in equation (1.13), we get

k̇/k = s A − (n + δ)

We return here to the case of zero technological progress, x = 0, because we want to show
that per capita growth can now occur in the long run even without exogenous technological
change. For a graphical presentation, the main difference is that the downward-sloping
saving curve, s · f (k)/k, in figure 1.4 is replaced in figure 1.12 by the horizontal line at
the level s A. The depreciation curve is still the same horizontal line at n + δ. Hence,
k̇/k is the vertical distance between the two lines, s A and n + δ. We depict the case in
which s A > (n + δ), so that k̇/k > 0. Since the two lines are parallel, k̇/k is constant;
in particular, it is independent of k. Therefore, k always grows at the steady-state rate,
(k̇/k)∗ = s A − (n + δ).

Since y = Ak, ẏ/y = k̇/k at every point in time. In addition, since c = (1−s) · y, ċ/c =
k̇/k also applies. Hence, all the per capita variables in the model always grow at the same,
constant rate, given by

γ ∗ = s A − (n + δ) (1.60)

Note that an economy described by the AK technology can display positive long-run
per capita growth without any technological progress. Moreover, the per capita growth rate

n � �

k

sA

�k � 0 for all k

Figure 1.12
The AK Model. If the technology is AK , the saving curve, s · f (k)/k, is a horizontal line at the level s A. If
s A > n + δ, perpetual growth of k occurs, even without technological progress.
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shown in equation (1.60) depends on the behavioral parameters of the model, including s,
A, and n. For example, unlike the neoclassical model, a higher saving rate, s, leads to a
higher rate of long-run per capita growth, γ ∗.31 Similarly if the level of the technology,
A, improves once and for all (or if the elimination of a governmental distortion effectively
raises A), then the long-run growth rate is higher. Changes in the rates of depreciation, δ,
and population growth, n, also have permanent effects on the per capita growth rate.

Unlike the neoclassical model, the AK formulation does not predict absolute or condi-
tional convergence, that is, ∂(ẏ/y)/∂y = 0 applies for all levels of y. Consider a group of
economies that are structurally similar in that the parameters s, A, n, and δ are the same. The
economies differ only in terms of their initial capital stocks per person, k(0), and, hence,
in y(0) and c(0). Since the model says that each economy grows at the same per capita
rate, γ ∗, regardless of its initial position, the prediction is that all the economies grow at the
same per capita rate. This conclusion reflects the absence of diminishing returns. Another
way to see this result is to observe that the AK model is just a Cobb–Douglas model with
a unit capital share, α = 1. The analysis of convergence in the previous section showed
that the speed of convergence was given in equation (1.45) by β∗ = (1 − α) · (x + n + δ);
hence, α = 1 implies β∗ = 0. This prediction is a substantial failing of the model, because
conditional convergence appears to be an empirical regularity. See chapters 11 and 12 for
a detailed discussion.

We mentioned that one way to think about the absence of diminishing returns to capital
in the AK production function is to consider a broad concept of capital that encompassed
physical and human components. In chapters 4 and 5 we consider in more detail models
that allow for these two types of capital.

Other approaches have been used to eliminate the tendency for diminishing returns in
the neoclassical model. We study in chapter 4 the notion of learning by doing, which was
introduced by Arrow (1962) and used by Romer (1986). In these models, the experience with
production or investment contributes to productivity. Moreover, the learning by one producer
may raise the productivity of others through a process of spillovers of knowledge from one
producer to another. Therefore, a larger economy-wide capital stock (or a greater cumulation
of the aggregate of past production) improves the level of the technology for each producer.
Consequently, diminishing returns to capital may not apply in the aggregate, and increasing
returns are even possible. In a situation of increasing returns, each producer’s average

31. With the AK production function, we can never get the kind of inefficient oversaving that is possible in the
neoclassical model. A shift at some point in time to a permanently higher s means a lower level of c at that point
but a permanently higher per capita growth rate, γ ∗, and, hence, higher levels of c after some future date. This
change cannot be described as inefficient because it may be desirable or undesirable depending on how households
discount future levels of consumption.
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product of capital, f (k)/k, tends to rise with the economy-wide value of k. Consequently,
the s · f (k)/k curve in figure 1.4 tends to be upward sloping, at least over some range,
and the growth rate, k̇/k, rises with k in this range. Thus these kinds of models predict at
least some intervals of per capita income in which economies tend to diverge. It is unclear,
however, whether these divergence intervals are present in the data.

1.3.3 Endogenous Growth with Transitional Dynamics

The AK model delivers endogenous growth by avoiding diminishing returns to capital in
the long run. This particular production function also implies, however, that the marginal
and average products of capital are always constant and, hence, that growth rates do not
exhibit the convergence property. It is possible to retain the feature of constant returns to
capital in the long run, while restoring the convergence property—an idea brought out by
Jones and Manuelli (1990).32

Consider again the expression for the growth rate of k from equation (1.13):

k̇/k = s · f (k)/k − (n + δ) (1.61)

If a steady state exists, the associated growth rate, (k̇/k)∗, is constant by definition. A positive
(k̇/k)∗ means that k grows without bound. Equation (1.13) implies that it is necessary and
sufficient for (k̇/k)∗ to be positive to have the average product of capital, f (k)/k, remain
above (n + δ)/s as k approaches infinity. In other words, if the average product approaches
some limit, then limk→∞[ f (k)/k] > (n + δ)/s is necessary and sufficient for endogenous,
steady-state growth.

If f (k) → ∞ as k → ∞, then an application of l’Hôpital’s rule shows that the limits
as k approaches infinity of the average product, f (k)/k, and the marginal product, f ′(k),
are the same. (We assume here that limk→∞[ f ′(k)] exists.) Hence, the key condition for
endogenous, steady-state growth is that f ′(k) be bounded sufficiently far above 0:

lim
k→∞

[ f (k)/k] = lim
k→∞

[ f ′(k)] > (n + δ)/s > 0

This inequality violates one of the standard Inada conditions in the neoclassical model,
limk→∞[ f ′(k)] = 0. Economically, the violation of this condition means that the tendency
for diminishing returns to capital tends to disappear. In other words, the production function
can exhibit diminishing or increasing returns to k when k is low, but the marginal product
of capital must be bounded from below as k becomes large. A simple example, in which
the production function converges asymptotically to the AK form, is

Y = F(K , L) = AK + BK α L1−α (1.62)

32. See Kurz (1968) for a related discussion.
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where A > 0, B > 0, and 0 < α < 1. Note that this production function is a combination of
the AK and Cobb–Douglas functions. It exhibits constant returns to scale and positive and
diminishing returns to labor and capital. However, one of the Inada conditions is violated
because limK→∞(FK ) = A > 0.

We can write the function in per capita terms as

y = f (k) = Ak + Bkα

The average product of capital is given by

f (k)/k = A + Bk−(1−α)

which is decreasing in k but approaches A as k tends to infinity.
The dynamics of this model can be analyzed with the usual expression from equa-

tion (1.13):

k̇/k = s · [A + Bk−(1−α)
] − (n + δ) (1.63)

Figure 1.13 shows that the saving curve is downward sloping, and the line n + δ is horizontal.
The difference from figure 1.4 is that, as k goes to infinity, the saving curve in figure 1.13
approaches the positive quantity s A, rather than 0. If s A > n + δ, as assumed in the figure,
the steady-state growth rate, (k̇/k)∗, is positive.

n � �

k
k(0)

�k

s � f (k)�k
sA

Figure 1.13
Endogenous growth with transitional dynamics. If the technology is F(K , L) = AK + BK α L1−α , the growth
rate of k is diminishing for all k. If s A > n + δ, the growth rate of k asymptotically approaches a positive constant,
given by s A − n − δ. Hence, endogenous growth coexists with a transition in which the growth rate diminishes
as the economy develops.



68 Chapter 1

This model yields endogenous, steady-state growth but also predicts conditional conver-
gence, as in the neoclassical model. The reason is that the convergence property derives
from the inverse relation between f (k)/k and k, a relation that still holds in the model.
Figure 1.13 shows that if two economies differ only in terms of their initial values, k(0),
the one with the smaller capital stock per person will grow faster in per capita terms.

1.3.4 Constant-Elasticity-of-Substitution Production Functions

Consider as another example the production function (due to Arrow et al., 1961) that has a
constant elasticity of substitution (CES) between labor and capital:

Y = F(K , L) = A · {a · (bK )ψ + (1 − a) · [(1 − b) · L]ψ }1/ψ (1.64)

where 0 < a < 1, 0 < b < 1,33 and ψ < 1. Note that the production function exhibits con-
stant returns to scale for all values of ψ . The elasticity of substitution between capital
and labor is 1/(1 − ψ) (see the appendix, section 1.5.4). As ψ → − ∞, the produc-
tion function approaches a fixed-proportions technology (discussed in the next section),
Y = min[bK , (1 − b)L], where the elasticity of substitution is 0. As ψ → 0, the production
function approaches the Cobb–Douglas form, Y = (constant) · K a L1−a , and the elasticity
of substitution is 1 (see the appendix, section 1.5.4). For ψ = 1, the production function is
linear, Y = A · [abK + (1 − a) · (1 − b) · L], so that K and L are perfect substitutes (infinite
elasticity of substitution).

Divide both sides of equation (1.64) by L to get an expression for output per capita:

y = f (k) = A · [a · (bk)ψ + (1 − a) · (1 − b)ψ ]1/ψ

The marginal and average products of capital are given, respectively, by

f ′(k) = Aabψ [abψ + (1 − a) · (1 − b)ψ · k−ψ ](1−ψ)/ψ

f (k)/k = A[abψ + (1 − a) · (1 − b)ψ · k−ψ ]1/ψ

Thus, f ′(k) and f (k)/k are each positive and diminishing in k for all values of ψ .
We can study the dynamic behavior of a CES economy by returning to the expression

from equation (1.13):

k̇/k = s · f (k)/k − (n + δ) (1.65)

33. The standard formulation does not include the terms b and 1 − b. The implication then is that the shares of K
and L in total product each approach one-half as ψ → −∞. In our formulation, the shares of K and L approach
b and 1 − b, respectively, as ψ → −∞.
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If we graph versus k, then s · f (k)/k is a downward-sloping curve, n + δ is a horizontal
line, and k̇/k is still represented by the vertical distance between the curve and the line. The
behavior of the growth rate now depends, however, on the parameter ψ , which governs the
elasticity of substitution between L and K .

Consider first the case 0 < ψ < 1, that is, a high degree of substitution between L and K .
The limits of the marginal and average products of capital in this case are

lim
k→∞

[ f ′(k)] = lim
k→∞

[ f (k)/k] = Aba1/ψ > 0

lim
k→0

[ f ′(k)] = lim
k→0

[ f (k)/k] = ∞
Hence, the marginal and average products approach a positive constant, rather than 0, as k
goes to infinity. In this sense, the CES production function with high substitution between
the factors (0 < ψ < 1) looks like the example in equation (1.62) in which diminishing
returns vanished asymptotically. We therefore anticipate that this CES model can generate
endogenous, steady-state growth.

Figure 1.14 shows the results graphically. The s · f (k)/k curve is downward sloping, and
it asymptotes to the positive constant s Ab · a1/ψ . If the saving rate is high enough, so that
s Ab · a1/ψ > n + δ—as assumed in the figure—then the s · f (k)/k curve always lies above
the n + δ line. In this case, the per capita growth rate is always positive, and the model

n � �
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k(0)
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Figure 1.14
The CES model with 0 < ψ < 1 and s Ab · a1/ψ > n + δ. If the CES technology exhibits a high elasticity of
substitution (0 < ψ < 1), endogenous growth arises if the parameters satisfy the inequality s Ab · a1/ψ > n + δ.
Along the transition, the growth rate of k diminishes.
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n � �
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Figure 1.15
The CES model withψ < 0 and s Ab · a1/ψ < n + δ. If the CES technology exhibits a low elasticity of substitution
(ψ < 0), the growth rate of k would be negative for all levels of k if s Ab · a1/ψ < n + δ.

generates endogenous, steady-state growth at the rate

γ ∗ = s Ab · a1/ψ − (n + δ)

The dynamics of this model are similar to those described in figure 1.13.34

Assume now ψ < 0, that is, a low degree of substitution between L and K . The limits
of the marginal and average products of capital in this case are

lim
k→∞

[ f ′(k)] = lim
k→∞

[ f (k)/k] = 0

lim
k→0

[ f ′(k)] = lim
k→0

[ f (k)/k] = Ab · a1/ψ < ∞
Since the marginal and average products approach 0 as k approaches infinity, the key
Inada condition is satisfied, and the model does not generate endogenous growth. In this
case, however, the violation of the Inada condition as k approaches 0 may cause problems.
Suppose that the saving rate is low enough so that s Ab · a1/ψ < n + δ. In this case, the
s · f (k)/k curve starts at a point below n + δ, and it converges to 0 as k approaches infinity.
Figure 1.15 shows, accordingly, that the curve never crosses the n + δ line, and, hence, no
steady state exists with a positive value of k. Since the growth rate k̇/k is always negative,
the economy shrinks over time, and k, y, and c all approach 0.35

34. If 0 < ψ < 1 and s Ab · a1/ψ < n + δ, then the s · f (k)/k curve crosses n + δ at the steady-state value k∗, as
in the standard neoclassical model of figure 1.4. Endogenous growth does not apply in this case.

35. If ψ < 0 and s Ab · a1/ψ > n + δ, then the s · f (k)/k curve again intersects the n + δ line at the steady-state
value k∗.
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Since the average product of capital, f (k)/k, is a negative function of k for all values
of ψ , the growth rate k̇/k is also a negative function of k. The CES model therefore
always exhibits the convergence property: for two economies with identical parameters and
different initial values, k(0), the one with the lower value of k(0) has the higher value of k̇/k.
When the parameters differ across economies, the model predicts conditional convergence,
as described before.

We can use the method developed earlier for the case of a Cobb–Douglas production
function to derive a formula for the convergence coefficient in the neighborhood of the
steady state. The result for a CES production function, which extends equation (1.45), is36

β∗ = −(x + n + δ) ·
[

1 − a ·
(

bs A

x + n + δ

)ψ
]

(1.66)

For the Cobb–Douglas case, where ψ = 0 and a = α, equation (1.66) reduces to equa-
tion (1.45). For ψ �= 0, a new result is that β∗ in equation (1.66) depends on s and A. If ψ > 0
(high substitutability between L and K ), then β∗ falls with s A, and vice versa if ψ < 0. The
coefficient β∗ is independent of s and A only in the Cobb–Douglas case, where ψ = 0.

1.4 Other Production Functions . . . Other Growth Theories

1.4.1 The Leontief Production Function and the Harrod–Domar Controversy

A production function that was used prior to the neoclassical one is the Leontief (1941), or
fixed-proportions, function,

Y = F(K , L) = min(AK , BL) (1.67)

where A > 0 and B > 0 are constants. This specification, which corresponds to ψ → −∞
in the CES form in equation (1.64), was used by Harrod (1939) and Domar (1946). With
fixed proportions, if the available capital stock and labor force happen to be such that
AK = BL , then all workers and machines are fully employed. If K and L are such that
AK > BL , then only the quantity of capital (B/A) · L is used, and the remainder remains
idle. Conversely, if AK < BL , then only the amount of labor (A/B) · K is used, and the
remainder is unemployed. The assumption of no substitution between capital and labor led
Harrod and Domar to predict that capitalist economies would have undesirable outcomes
in the form of perpetual increases in unemployed workers or machines. We provide here a
brief analysis of the Harrod–Domar model using the tools developed earlier in this chapter.

36. See Chua (1993) for additional discussion. The formula for β in equation (1.66) applies only for cases in
which the steady-state level k∗ exists. If 0 < ψ < 1, it applies for bs A · a1/ψ < x + n + δ. If ψ < 0, it applies
for bs A · a1/ψ > x + n + δ.
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Figure 1.16
The Leontief production function in per capita terms. In per capita terms, the Leontief production function
can be written as y = min(Ak, B). For k < B/A, output per capita is given by y = Ak. For k > B/A, output per
capita is given by y = B.

Divide both sides of equation (1.67) by L to get output per capita:

y = min(Ak, B)

For k < B/A, capital is fully employed, and y = Ak. Hence, figure 1.16 shows that the
production function in this range is a straight line from the origin with slope A. For k > B/A,
the quantity of capital used is constant, and Y is the constant multiple B of labor, L . Hence,
output per worker, y, equals the constant B, as shown by the horizontal part of f (k) in the
figure. Note that, as k approaches infinity, the marginal product of capital, f ′(k), is zero.
Hence, the key Inada condition is satisfied, and we do not expect this production function
to yield endogenous steady-state growth.

We can use the expression from equation (1.13) to get

k̇/k = s · [min(Ak, B)]/k − (n + δ) (1.68)

Figures 1.17a and 1.17b show that the first term, s · [min(Ak, B)]/k, is a horizontal line
at s A for k ≤ B/A. For k > B/A, this term is a downward-sloping curve that approaches
zero as k goes to infinity. The second term in equation (1.68) is the usual horizontal line at
n + δ.

Assume first that the saving rate is low enough so that s A < n + δ, as depicted in
figure 1.17. The saving curve, s · f (k)/k, then never crosses the n + δ line, so there is no
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Figure 1.17
The Harrod–Domar model. In panel a, which assumes s A < n + δ, the growth rate of k is negative for all k.
Therefore, the economy approaches k = 0. In panel b, which assumes s A > n + δ, the growth rate of k is positive
for k < k∗ and negative for k > k∗, where k∗ is the stable steady-state value. Since k∗ exceeds B/A, a part of the
capital stock always remains idle. Moreover, the quantity of idle capital grows steadily (along with K and L).

positive steady-state value, k∗. Moreover, the growth rate of capital, k̇/k, is always negative,
so the economy shrinks in per capita terms, and k, y, and c all approach 0. The economy
therefore ends up to the left of B/A and has permanent and increasing unemployment.

Suppose now that the saving rate is high enough so that s A > n + δ, as shown in
figure 1.17b. Since the s · f (k)/k curve approaches 0 as k tends to infinity, this curve
eventually crosses the n + δ line at the point k∗ > B/A. Therefore, if the economy begins
at k(0) < k∗, k̇/k equals the constant s A − n − δ > 0 until k attains the value B/A. At
that point, k̇/k falls until it reaches 0 at k = k∗. If the economy starts at k(0) > k∗, k̇/k is
initially negative and approaches 0 as k approaches k∗.

Since k∗ > B/A, the steady state features idle machines but no unemployed workers.
Since k is constant in the steady state, the quantity K grows along with L at the rate n. Since
the fraction of machines that are employed remains constant, the quantity of idle machines
also grows at the rate n (yet households are nevertheless assumed to keep saving at the
rate s).

The only way to reach a steady state in which all capital and labor are employed is for the
parameters of the model to satisfy the condition s A = n + δ. Since the four parameters that
appear in this condition are all exogenous, there is no reason for the equality to hold. Hence,
the conclusion from Harrod and Domar was that an economy would, in all probability, reach
one of two undesirable outcomes: perpetual growth of unemployment or perpetual growth
of idle machinery.
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We know now that there are several implausible assumptions in the arguments of Harrod
and Domar. First, the Solow–Swan model showed that Harrod and Domar’s parameter A—
the average product of capital—would typically depend on k, and k would adjust to satisfy
the equality s · f (k)/k = n + δ in the steady state. Second, the saving rate could adjust to
satisfy this condition. In particular, if agents maximize utility (as we assume in the next
chapter), they would not find it optimal to continue to save at the constant rate s when the
marginal product of capital was zero. This adjustment of the saving rate would rule out an
equilibrium with permanently idle machinery.

1.4.2 Growth Models with Poverty Traps

One theme in the literature of economic development concerns poverty traps.37 We can think
of a poverty trap as a stable steady state with low levels of per capita output and capital
stock. This outcome is a trap because, if agents attempt to break out of it, the economy has
a tendency to return to the low-level, stable steady state.

We observed that the average product of capital, f (k)/k, declines with k in the neoclas-
sical model. We also noted, however, that this average product may rise with k in some
models that feature increasing returns, for example, in formulations that involve learning
by doing and spillovers. One way for a poverty trap to arise is for the economy to have
an interval of diminishing average product of capital followed by a range of rising average
product. (Poverty traps also arise in some models with nonconstant saving rates; see Galor
and Ryder, 1989.)

We can get a range of increasing returns by imagining that a country has access to a
traditional, as well as a modern, technology.38 Imagine that producers can use a primitive
production function, which takes the usual Cobb–Douglas form,

YA = AK α L1−α (1.69)

The country also has access to a modern, higher productivity technology,39

YB = BK α L1−α (1.70)

where B > A. However, in order to exploit this better technology, the country as a whole
is assumed to have to pay a setup cost at every moment in time, perhaps to cover the
necessary public infrastructure or legal system. We assume that this cost is proportional to

37. See especially the big-push model of Lewis (1954). A more modern formulation of this idea appears in Murphy,
Shleifer, and Vishny (1989).

38. This section is an adaptation of Galor and Zeira (1993), who use two technologies in the context of education.

39. More generally, the capital intensity for the advanced technology would differ from that for the primitive
technology. However, this extension complicates the algebra without making any substantive differences.
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the labor force and given by bL , where b > 0. We assume further that this cost is borne by
the government and financed by a tax at rate b on each worker. The results are the same
whether the tax is paid by producers or workers (who are, in any event, the same persons
an economy with household-producers).

In per worker terms, the first production function is

yA = Akα (1.71)

The second production function, when considered net of the setup cost and in per worker
terms, is

yB = Bkα − b (1.72)

The two production functions are drawn in figure 1.18.
If the government has decided to pay the setup cost, which equals b per worker, all

producers will use the modern technology (because the tax b for each worker must be paid
in any case). If the government has not paid the setup cost, all producers must use the
primitive technology. A sensible government would pay the setup cost if the shift to the
modern technology leads to an increase in output per worker at the existing value of k and
when measured net of the setup cost. In the present setting, the shift is warranted if k exceeds
a critical level, given by k̃ = [b/(B − A)]1/α . Thus, the critical value of k rises with the
setup cost parameter, b, and falls with the difference in the productivity parameters, B − A.
We assume that the government pays the setup cost if k ≥ k̃ and does not pay it if k < k̃.

M T2T1

�F

y � R �k � w

y B

A

Figure 1.18
Traditional and modern production functions. The traditional production function has relatively low produc-
tivity. The modern production function exhibits higher productivity but is assumed to require a fixed cost to
operate.
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The growth rate of capital per worker is still given by the fundamental equation of the
Solow–Swan model, equation (1.23), as

k̇/k = s · f (k)/k − (δ + n)

where f (k) = Akα if k < k̃ and f (k) = Bkα − b if k ≥ k̃. The average product of capital,
f (k)/k, can be measured graphically in figure 1.18 by the slope of the cord that goes from
the origin to the effective production function. We can see that there is a range of k ≥ k̃ where
the average product is increasing. The saving curve therefore looks like the one depicted in
figure 1.19: it has the familiar negative slope at low levels of k, is then followed by a range
with a positive slope, and again has a negative slope at very high levels of k.

Figure 1.19 shows that the s · f (k)/k curve first crosses the n + δ line at the low steady-
state value, k∗

low, where we assume here that k∗
low < k̃. This steady state has the properties

that are familiar from the neoclassical model. In particular, k̇/k > 0 for k < k∗
low, and k̇/k < 0

at least in an interval of k > k∗
low. Hence, k∗

low is a stable steady state: it is a poverty trap in
the sense described before.

The tendency for increasing returns in the middle range of k is assumed to be strong
enough so that the s · f (k)/k curve eventually rises to cross the n + δ line again at the

n � �

s � f (k)�k

k
k*

high
(stable)

k*
middle

(unstable)
k*

low
(stable)

Figure 1.19
A poverty trap. The production function is assumed to exhibit diminishing returns to k when k is low, increasing
returns for a middle range of k, and either constant or diminishing returns when k is high. The curve s · f (k)/k
is therefore downward sloping for low values of k, upward sloping for an intermediate range of k, and downward
sloping or horizontal for high values of k. The steady-state value k∗

low is stable and therefore constitutes a poverty
trap for countries that begin with k between 0 and k∗

middle. If a country begins with k > k∗
middle, it converges to k∗

high
if diminishing returns to k ultimately set in. If the returns to capital are constant at high values of k, as depicted
by the dashed portion of the curve, the country converges to a positive long-run growth rate of k.
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steady-state value k∗
middle. This steady state is, however, unstable, because k̇/k < 0 applies to

the left, and k̇/k > 0 holds to the right. Thus, if the economy begins with k∗
low < k(0) < k∗

middle,
its natural tendency is to return to the development trap at k∗

low, whereas if it manages some-
how to get to k(0) > k∗

middle, it tends to grow further to reach still higher levels of k.
In the range where k > k∗

middle, the economy’s tendency toward diminishing returns even-
tually brings s · f (k)/k down enough to equal n + δ at the steady-state value k∗

high. This
steady state, corresponding to a high level of per capita income but to zero long-term per
capita growth, is familiar from our study of the neoclassical model. The key problem for a
less-developed economy at the trap level k∗

low is to get over the hump and thereby attain a
high long-run level of per capita income.

One empirical implication of the model described by figure 1.19 is that there would exist a
middle range of values of k—around k∗

middle—for which the growth rate, k̇/k, is increasing
in k and, hence, in y. That is, a divergence pattern should hold over this range of per
capita incomes. Our reading of the evidence across countries, discussed in chapter 12, does
not support this hypothesis. These results are, however, controversial—see, for example,
Quah (1996).

1.5 Appendix: Proofs of Various Propositions

1.5.1 Proof That Each Input Is Essential for Production
with a Neoclassical Production Function

We noted in the main body of this chapter that the neoclassical properties of the production
function imply that the two inputs, K and L , are each essential for production. To verify
this proposition, note first that if Y → ∞ as K → ∞, then

lim
K→∞

Y

K
= lim

K→∞
∂Y

∂K
= 0

where the first equality comes from l’Hôpital’s rule and the second from the Inada condition.
If Y remains bounded as K tends to infinity, then

lim
K→∞

(Y/K ) = 0

follows immediately. We also know from constant returns to scale that, for any finite L ,

lim
K→∞

(Y/K ) = lim
K→∞

[F(1, L/K )] = F(1, 0)

so that F(1, 0) = 0. The condition of constant returns to scale then implies

F(K , 0) = K · F(1, 0) = 0
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for any finite K . We can show from an analogous argument that F(0, L) = 0 for any finite L .
These results verify that each input is essential for production.

To demonstrate that output goes to infinity when either input goes to infinity, note that

F(K , L) = L · f (k) = K · [ f (k)/k]

Therefore, for any finite K ,

lim
L→∞

[F(K , L)] = K · lim
k→0

[ f (k)/k] = K · lim
k→0

[ f ′(k)] = ∞
where the last equalities follow from l’Hôpital’s rule (because essentiality implies f [0] = 0)
and the Inada condition. We can show from an analogous argument that limK→∞
[F(K , L)] = ∞. Therefore, output goes to infinity when either input goes to infinity.

1.5.2 Properties of the Convergence Coefficient in the Solow–Swan Model

Equation (1.46) is a log-linearization of equation (1.41) around the steady-state position.
To obtain equation (1.46), we have to rewrite equation (1.41) in terms of log(k̂). Note that
˙̂k/k̂ is the time derivative of log(k̂), and (k̂)−(1−α) can be written as e−(1−α) · log(k̂). The
steady-state value of s A(k̂)−(1−α) equals x + n + δ. We can now take a first-order Taylor
expansion of log(k̂) around log(k̂∗) to get equation (1.46). See the appendix on mathematics
at the end of the book for additional discussion. This result appears in Sala-i-Martin (1990)
and Mankiw, Romer, and Weil (1992).

The true speed of convergence for k̂ or ŷ is not constant; it depends on the distance from
the steady state. The growth rate of ŷ can be written as

˙̂y/ŷ = α · [s · A1/α · (ŷ)−(1−α)/α − (x + n + δ)
]

If we use the condition ŷ∗ = A · [s A/(x + n + δ)]α/(1−α), we can express the growth rate as

˙̂y/ŷ = α · (x + n + δ) · [(ŷ/ŷ∗)−(1−α)/α − 1
]

The convergence coefficient is

β = −d( ˙̂y/ŷ)]/d[log(ŷ)] = (1 − α) · (x + n + δ) · (ŷ/ŷ∗)−(1−α)/α

At the steady state, ŷ = ŷ∗ and β = (1 − α) · (x + n + δ), as in equation (1.45). More
generally, β declines as ŷ/ŷ∗ rises.

1.5.3 Proof That Technological Progress Must Be Labor Augmenting

We mentioned in the text that technological progress must take the labor-augmenting form
shown in equation (1.34) in order for the model to have a steady state with constant
growth rates. To prove this result, we start by assuming a production function that includes
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labor-augmenting and capital-augmenting technological progress:

Y = F[K · B(t), L · A(t)] (1.73)

where B(t) = A(t) implies that the technological progress is Hicks neutral.
We assume that A(t) = ext and B(t) = ezt , where x ≥ 0 and z ≥ 0 are constants. If we

divide both sides of equation (1.73) by K , we can express output per unit of capital as

Y/K = ezt ·
{

F

[
1,

L · A(t)

K · B(t)

]}
= ezt · ϕ[

(L/K ) · e(x−z) · t
]

where ϕ( · ) ≡ F[1, L · A(t)
K · B(t) ]. The population, L , grows at the constant rate n. If γ ∗

K is the
constant growth rate of K in the steady state, the expression for Y/K can be written as

Y/K = ezt · ϕ[
e(n+x−z−γ ∗

K ) · t
]

(1.74)

Recall that the growth rate of K is given by

K̇/K = s · (Y/K ) − δ

In the steady state, K̇/K equals the constant γ ∗
K , and, hence, Y/K must be constant. There

are two ways to get the right-hand side of equation (1.74) to be constant. First, z = 0 and
γ ∗

K = n + x ; that is, technological progress is solely labor augmenting, and the steady-state
growth rate of capital equals n + x . In this case, the production function can be written in
the form of equation (1.34).

The second way to get the right-hand side of equation (1.74) to be constant is with z �= 0
and for the term ϕ[e(n+x−z−γ ∗

K )t ] exactly to offset the term ezt . For this case to apply, the
derivative of Y/K (in the proposed steady state) with respect to time must be identically
zero. If we take the derivative of equation (1.74), set it to zero, and rearrange terms, we get

ϕ′(χ) · χ/ϕ(χ) = −z/(n + x − z − γ ∗
K )

where χ ≡ e(n+x−z−γ ∗
K ) · t , and the right-hand side is a constant. If we integrate out, we can

write the solution as

ϕ(χ) = (constant) · χ1−α

where α is a constant. This result implies that the production function can be written as

Y = (constant) · (K ezt )α · (Lext )1−α = (constant) · K α · (Leνt )1−α

where ν = [zα + x · (1 − α)]/(1 − α). In other words, if the rate of capital-augmenting
technological progress, z, is nonzero and a steady state exists, the production function
must take the Cobb–Douglas form. Moreover, if the production function is Cobb–Douglas,
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we can always express technological change as purely labor augmenting (at the rate ν).
The conclusion, therefore, is that the existence of a steady state implies that technological
progress can be written in the labor-augmenting form.

Another approach to technological progress assumes that capital goods produced later—
that is, in a more recent vintage—are of higher quality for a given cost. If quality improves
in accordance with T (t), the equation for capital accumulation in this vintage model is

K̇ = s · T (t) · F(K , L) − δK (1.75)

where K is measured in units of constant quality. This equation corresponds to Hicks-neutral
technological progress given by T (t) in the production function. The only difference from
the standard specification is that output is Y = F(K , L)—not T (t) · F(K , L).

If we want to use a model that possesses a steady state, we would still have to assume that
F(K , L) was Cobb–Douglas. In that case, the main properties of the vintage model turn
out to be indistinguishable from those of the model that we consider in the text in which
technological progress is labor augmenting (see Phelps, 1962, and Solow, 1969, for further
discussion). One difference in the vintage model is that, although K and Y grow at constant
rates in the steady state, the growth rate of K (in units of constant quality) exceeds that of
Y . Hence, K/Y is predicted to rise steadily in the long run.

1.5.4 Properties of the CES Production Function

The elasticity of substitution is a measure of the curvature of the isoquants. The slope of an
isoquant is

d L

d K isoquant
= −∂ F( · )/∂K

∂ F( · )/∂L

The elasticity is given by[
∂(Slope)

∂(L/K )
· L/K

Slope

]−1

For the CES production function shown in equation (1.64), the slope of the isoquant is

−(L/K )1−ψ · a · bψ/[(1 − a) · (1 − b)ψ ]

and the elasticity is 1/(1 − ψ), a constant.
To compute the limit of the production function as ψ approaches 0, use equation (1.64)

to get limψ→0[log(Y )] = log(A) + 0/0, which involves an indeterminate form. Apply
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l’Hôpital’s rule to get

lim
ψ→0

[log(Y )]

= log(A) +
[

a(bK )ψ · log(bK ) + (1 − a) · [(1 − b) · L]ψ · log[(1 − b) · L]

a · (bK )ψ + (1 − a) · [(1 − b) · L]ψ

]
ψ=0

= log(A) + a · log(bK ) + (1 − a) · log[(1 − b) · L]

It follows that Y = ÃK a L1−a , where Ã = Aba · (1 − b)1−a . That is, the CES production
function approaches the Cobb–Douglas form as ψ tends to zero.

1.6 Problems

1.1 Convergence.

a. Explain the differences among absolute convergence, conditional convergence, and a
reduction in the dispersion of real per capita income across groups.

b. Under what circumstances does absolute convergence imply a decline in the dispersion
of per capita income?

1.2 Forms of technological progress. Assume that the rate of exogenous technological
progress is constant.

a. Show that a steady state can coexist with technological progress only if this progress
takes a labor-augmenting form. What is the intuition for this result?

b. Assume that the production function is Y = F[B(T ) · K , A(t) · L], where B(t) = ezt and
A(T ) = ext , with z ≥ 0 and x ≥ 0. Show that if z > 0 and a steady state exists, the production
function must take the Cobb–Douglas form.

1.3 Dependence of the saving rate, population growth rate, and depreciation rate
on the capital intensity. Assume that the production function satisfies the neoclassical
properties.

a. Why would the saving rate, s, generally depend on k? (Provide some intuition; the precise
answer will be given in chapter 2.)

b. How does the speed of convergence change if s(k) is an increasing function of k? What
if s(k) is a decreasing function of k?

Consider now an AK technology.

c. Why would the saving rate, s, depend on k in this context?

d. How does the growth rate of k change over time depending on whether s(k) is an
increasing or decreasing function of k?
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e. Suppose that the rate of population growth, n, depends on k. For an AK technology,
what would the relation between n and k have to be in order for the model to predict
convergence? Can you think of reasons why n would relate to k in this manner? (We
analyze the determination of n in chapter 9.)

f. Repeat part e in terms of the depreciation rate, δ. Why might δ depend on k?

1.4 Effects of a higher saving rate. Consider this statement: “Devoting a larger share
of national output to investment would help to restore rapid productivity growth and rising
living standards.” Under what conditions is the statement accurate?

1.5 Factor shares. For a neoclassical production function, show that each factor of pro-
duction earns its marginal product. Show that if owners of capital save all their income
and workers consume all their income, the economy reaches the golden rule of capital
accumulation. Explain the results.

1.6 Distortions in the Solow–Swan model (based on Easterly, 1993). Assume that
output is produced by the CES production function,

Y = [(
aF K η

F + aI K η
I

)ψ/η + aG K ψ
G

]1/ψ

where Y is output; KF is formal capital, which is subject to taxation; K I is informal capital,
which evades taxation; KG is public capital, provided by government and used freely by all
producers; aF , aI , aG > 0; η < 1; and ψ < 1. Installed formal and informal capital differ in
their location and form of ownership and, therefore, in their productivity.

Output can be used on a one-for-one basis for consumption or gross investment in the three
types of capital. All three types of capital depreciate at the rate δ. Population is constant,
and technological progress is nil.

Formal capital is subject to tax at the rate τ at the moment of its installation. Thus, the
price of formal capital (in units of output) is 1 + τ . The price of a unit of informal capital is
one. Gross investment in public capital is the fixed fraction sG of tax revenues. Any unused
tax receipts are rebated to households in a lump-sum manner. The sum of investment in the
two forms of private capital is the fraction s of income net of taxes and transfers. Existing
private capital can be converted on a one-to-one basis in either direction between formal
and informal capital.

a. Derive the ratio of informal to formal capital used by profit-maximizing producers.

b. In the steady state, the three forms of capital grow at the same rate. What is the ratio of
output to formal capital in the steady state?

c. What is the steady-state growth rate of the economy?

d. Numerical simulations show that, for reasonable parameter values, the graph of the
growth rate against the tax rate, τ , initially increases rapidly, then reaches a peak, and
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finally decreases steadily. Explain this nonmonotonic relation between the growth rate and
the tax rate.

1.7 A linear production function. Consider the production function Y = AK + BL ,
where A and B are positive constants.

a. Is this production function neoclassical? Which of the neoclassical conditions does it
satisfy and which ones does it not?

b. Write output per person as a function of capital per person. What is the marginal product
of k? What is the average product of k?

In what follows, we assume that population grows at the constant rate n and that capital
depreciates at the constant rate δ.

c. Write down the fundamental equation of the Solow–Swan model.

d. Under what conditions does this model have a steady state with no growth of per capita
capital, and under what conditions does the model display endogenous growth?

e. In the case of endogenous growth, how does the growth rate of the capital stock behave
over time (that is, does it increase or decrease)? What about the growth rates of output and
consumption per capita?

f. If s = 0.4, A = 1, B = 2, δ = 0.08, and n = 0.02, what is the long-run growth rate of
this economy? What if B = 5? Explain the differences.

1.8 Forms of technological progress and steady-state growth. Consider an economy
with a CES production function:

Y = D(t) · {[B(t) · K ]ψ + [A(t) · L]ψ }1/ψ

where ψ is a constant parameter different from zero. The terms D(t), B(t), and A(t)
represent different forms of technological progress. The growth rates of these three terms
are constant, and we denote them by xD , xB , and xA, respectively. Assume that population
is constant, with L = 1, and normalize the initial levels of the three technologies to one, so
that D(0) = B(0) = A(0) = 1. In this economy, capital accumulates according to the usual
equation:

K̇ = Y − C − δK

a. Show that, in a steady state (defined as a situation in which all the variables grow at
constant, perhaps different, rates), the growth rates of Y , K , and C are the same.

b. Imagine first that xB = xA = 0 and that xD > 0. Show that the steady state must have
γK = 0 (and, therefore, γY = γC = 0). (Hint: Show first that γY = xD + [K0eγk t ]ψ

1+[K0eγk t ]ψ · γK .)
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c. Using the results in parts a and b, what is the only growth rate of D(t) that is consistent
with a steady state? What, therefore, is the only possible steady-state growth rate of Y ?

d. Imagine now that xD = xA = 0 and that xB > 0. Show that, in the steady state, γK = −xB

(Hint: Show first that γY = (xB + γK ) · [Kt · Bt ]ψ

1+[Kt · Bt ]ψ
.)

e. Using the results in parts a and d, show that the only growth rate of B consistent with a
steady state is xB = 0.

f. Finally, assume that xD = xB = 0 and that xA > 0. Show that, in a steady state, the growth

rates must satisfy γK = γY = γC = xD . (Hint: Show first that γY = K ψ
t · γK +Aψ

t · xA

K ψ
t +Aψ

t
.)

g. What would be the steady-state growth rate in part f if population is not constant but,
instead, grows at the rate n > 0?


