Dual Thrust Modified Smokey Sam for Low Cost Testing and Simulation

NDIA 22nd National Test & Evaluation Conference 9 March 2006

Briefer: Bill Taylor

Tech Advisor for EOCM

AFRL/SNJW

EO Sensor Technology Division

Sensor Directorate

Air Force Research Laboratory

Project Description

Objective(s):

 Develop a low cost, dynamic stimulation capability for EO/IR missile warning and directed IRCM system

Requirements

- Provide motions and nominally representative rocket plume signature of MANPADS threats
- Provide method to stimulate Close Loop Laser IRCM testing
- Provide method to detect laser emissions from directed IRCM systems
- Provide controlled trajectory for operations in close quarters, or heavy clutter areas as well as free flight

Technical Approach:

- Use GTR-18A SMOKEY SAM rocket as baseline capability
- Naval Surface Warfare Center Indian Head modifies rocket motor
- Develop cable launch system for control flight
- Demonstrate both free & cable launch to validate capability
- Measures in-band intensities with reference to MANPADS
- Conduct testing to demonstrate capability

Background

- Smokey Sam is well used rocket for training of aircrews
- Testing using Smokey Sam rockets were useful in functional tests for laboratory programs
- An improved capability was thought to be useful but needed to be low cost for S&T use!

Smokey Sam Compared to Redeye

Generic IR SAM Shot Signature

- Baseline missile launch and flyout case:
 - Boost for 1.5 seconds
 - Sustain from 1.5-7.1 seconds
 - Burnout at 7.1 seconds

- Standard atmospheric cases (Desert, Urban, Maritime)
- Signatures at nominal viewing angle

Boost: IR=100 W/ster EO=10 mW/ster

Sustain: IR=10 W/ster EO=3 mW/ster

Burn Out: IR=0.1 W/ster EO=0 mW/ster

Sustain

Post Burn Out (PBO)

Boost

Rocket Motor Modifications

- The GTR-18A Rocket Motor was modified for a two part laminated grain
- External grain is standard zinc based fuel
- Internal grain is Aluminum based grain used in other operational system
- Combination gives a appearance Boost and Sustain signature
- Thrust is low initial but high for majority of burn given improved trajectory

Smokey Sam Test Rocket

• To provide a reflective surface for laser system, a nose cone modification was developed using coated bicycle reflectors

Trailer Launch System

- A telescoping mast trailer was procured and modified to support cable launch operations
- 2000 ft steel .25 in cable is stretched and anchored over the mast

Launcher

A low cost trolley was develop for the cable system

Trolley

Rocket on trolley mounted on launcher

Detectors System

Supporting requirement to detect lasers emissions

Detector and recorder mounted on trolley

Side view of detector/ recorder in trolley

T&E Supported

- Laser Infrared Flyout Experiment
 - 2003 Live Fire Test WSMR
 - 2004 Live Fire Test Tonopah
- Affordable Laser IRCM Survivability Program MWS testing
- Check 6 Testing
 - 2005 Flight Testing Aberdeen Proving Grounds
 - 2006 Live Fire Testing WSMR
- Missile Launch Detector Upgrade Testing WPAFB
- 2005 UK Laser Jammer Test WPAFB
- 2006 US Laser Jammer Test WPAFB
- Multiple AFRL MWS testing at WPAFB

Development Process

- DT Smokey Sam is a supported element in the overall development process
 - Concept Development
 - Analysis, and simulation studies
 - Build prototype hardware
 - Early testing to confirm design and simulation results
 - Smokey Sam firing provide low cost data
 - May need a few real missile shots to validate
 - Validate design against simulation and empirical data

Limitations

- DT Smokey Sam has limitations
 - Dynamics after first few seconds are not representative
 - Closure velocity does not present intensity rise factors used by some MWS algorithms
 - Eject motor signature not represented by rocket launch
 - Working separate eject motor stimulator for MWS testing

Modeling & Simulation Link

 Emulation level engagement modeling relies on empirical testing for validation

 Accurate modeling of missile warning performance and laser IRCM tracking is critical to the design and assessment of countermeasures effectiveness

Recap

- Dual Pulse Smokey Sam (DTSS) offer a low cost capability for early testing, calibration of optical/infrared missile warning and Directed IRCM systems
- Modification of the widely used GTR-18A Smokey Sam rocket with other innovation provides a useful tool for testing
- As part of concept development, DTSS can be used to validate initial design, analysis and simulations
- DTSS has limitations like all testing tools