
Upstart Intro, Cookbook and Best Practises

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Contents
1 Meta 12

1.1 Document Version 12

1.2 Authors 12

1.3 Acknowledgements 12

1.4 Purpose 13

1.5 Suggestions and Errata 13

1.6 Coverage 13

1.6.1 Upstream Upstart 13

1.6.2 Ubuntu Version of Upstart 14

1.6.3 Availability 14

1.6.4 Ubuntu-Specific 14

1.7 Audience 14

1.8 Document Preparation 14

1.9 Document Availability 15

1.10 Warning 15

2 Typographical Conventions 15

2.1 Commands and configuration stanzas 15

2.2 User Input and Command Output 15

2.2.1 Non-Privileged User 15

2.2.2 Super-User 15

2.3 Configuration Examples 15

3 Introduction 16

3.1 What is Upstart? 16

3.1.1 Reliability 16

3.1.2 Design History 16

3.1.2.1 Critique of the System V init System 16

3.1.2.1.1 SysV Benefits 16

3.1.2.1.1.1 Simplicity 16

3.1.2.1.1.2 Guaranteed Ordering of Services 17

3.1.2.1.2 SysV Limitations 17

3.1.2.1.2.1 Non-Optimal Performance 17

3.1.2.1.2.2 Server-Centric 17

3.1.2.1.2.3 Assumes Static Hardware at all Times 17

3.1.2.1.2.4 Every Service Does Heavy Lifting 17

3.1.2.2 Critique of Dependency-Based init Systems 18

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

3.1.2.2.1 Benefits of Dependency-based init 18

3.1.2.2.1.1 Recognises Services Require Other Services 18

3.1.2.2.2 Limitations of Dependency-based init 18

3.1.2.2.2.1 Does Not Recognise Dynamic Nature of Linux 18

3.1.2.3 Upstart's Design: Why It Is Revolutionary 18

3.1.3 Performance 19

3.1.4 Server 19

3.1.4.1 Boot Performance 19

3.1.4.2 Failure Modes 19

4 Concepts and Terminology 19

4.1 Job 20

4.1.1 Job Types 20

4.1.1.1 Task Job 20

4.1.1.2 Service Job 20

4.1.1.3 Abstract Job 20

4.1.2 Job States 20

4.1.2.1 Viewing State Transitions 21

4.2 Job Configuration File 21

4.2.1 System Job 21

4.2.2 User Job 22

4.2.2.1 Enabling 22

4.2.3 Odd Jobs 23

4.2.3.1 Job with start on, but no stop on 23

4.2.3.2 Job with stop on, but no start on 23

4.2.3.3 Job with no stop on or start on 23

4.2.3.4 Minimal Job Configuration 23

4.3 Event 23

4.3.1 Event Types 24

4.3.1.1 Signals 24

4.3.1.2 Methods 25

4.3.1.3 Hooks 25

4.3.2 Events, not States 25

4.4 Job Lifecycle 26

4.4.1 Starting a Job 26

4.4.2 Stopping a Job 26

4.5 Ordering 28

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

4.5.1 Order in which Events are Emitted 28

4.5.2 Order in Which Jobs Which start on the Same Event are Run 28

4.5.3 Ordering of Stop/Start Operations 28

4.5.3.1 Single Job 28

4.5.3.1.1 If Job is Not Currently Running 29

4.5.3.1.2 If Job is Currently Running 29

4.5.3.2 Multiple Jobs 30

4.6 Runlevels 31

4.6.1 Display Runlevel 31

4.6.2 Change Runlevel Immediately 31

4.6.3 Changing the Default Runlevel 31

4.6.3.1 Permanently 31

4.6.3.2 Single Boot 32

5 System Phases 32

5.1 Startup 32

5.1.1 Startup Process 32

5.2 Shutdown 33

5.2.1 Observations 33

5.2.2 Shutdown Process 33

5.3 Reboot 34

5.4 Single-User Mode 34

5.5 Recovery Mode () 34

5.6 Failsafe Mode () 34

6 Configuration 35

6.1 Stanzas by Category 35

6.2 author 36

6.3 console 36

6.3.1 console log 36

6.3.2 console none 37

6.3.3 console output 37

6.3.3.1 Example of console output 37

6.3.4 console owner 37

6.4 chdir 37

6.5 chroot 38

6.6 description 38

6.7 emits 38

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

6.8 end script 39

6.9 env 39

6.10 exec 39

6.11 expect 39

6.11.1 expect fork 40

6.11.2 expect daemon 40

6.11.3 expect stop 40

6.11.4 How to Establish Fork Count 40

6.11.5 Implications of Misspecifying expect 41

6.11.6 Recovery on Misspecification of expect 41

6.11.6.1 When start hangs 41

6.11.6.2 When Wrong PID is Tracked 42

6.12 export 42

6.13 instance 42

6.13.1 A Simple Instance Example 42

6.13.2 Another Instance Example 44

6.13.3 Starting an Instance Job Without Specifying an Instance Value 45

6.14 kill signal 46

6.15 kill timeout 46

6.16 limit 46

6.17 manual 47

6.18 nice 47

6.19 normal exit 47

6.20 oom score 47

6.21 post-start 48

6.22 post-stop 48

6.23 pre-start 49

6.23.1 pre-start example () 50

6.24 pre-stop 51

6.25 respawn 51

6.26 respawn limit 51

6.27 script 52

6.28 setgid 52

6.29 setuid 52

6.30 start on 53

6.30.1 Normal start 53

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

6.30.2 Start depends on another service 54

6.30.3 Start must precede another service 54

6.31 stop on 54

6.31.1 Normal shutdown 55

6.31.2 Stop before depended-upon service 55

6.31.3 Stop after dependent service 55

6.32 task 55

6.33 umask 56

6.34 usage 57

6.35 version 57

7 Command-Line Options 57

8 Explanations 58

8.1 Really understanding start on and stop on 58

8.1.1 The rc Job 59

8.2 Environment Variables 60

8.2.1 Restrictions 63

8.2.2 Standard Environment Variables 63

8.3 Job with Multiple Duplicate Stanzas 65

8.4 Job Specifying Same Condition in start on on stop on 65

9 Features 65

9.1 D-Bus Service Activation 65

10 Tools 65

10.1 Utilities 65

10.1.1 reload 65

10.1.2 restart 66

10.1.3 runlevel 66

10.1.4 start 66

10.1.4.1 Attempting to Start an Already Running Job 66

10.1.4.2 Attempting to Start a Job that requires an Instance Variable 66

10.1.5 stop 66

10.1.5.1 Attempting to Stop an Already Stopped Job 66

10.1.5.2 Attempting to Stop a Job that requires an Instance Variable 67

10.1.6 initctl 67

10.1.6.1 initctl Commands Summary 67

10.1.6.2 initctl check-config 68

10.1.6.3 initctl emit 68

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

10.1.6.4 initctl help 69

10.1.6.5 initctl list 69

10.1.6.6 initctl log-priority 69

10.1.6.7 initctl notify-disk-writeable 69

10.1.6.8 initctl reload 69

10.1.6.9 initctl reload-configuration 69

10.1.6.10 initctl restart 70

10.1.6.11 initctl show-config 70

10.1.6.12 initctl start 71

10.1.6.13 initctl status 71

10.1.6.13.1 Single Job Instance Running without PID 72

10.1.6.13.2 Single Job Instance Running Job with PID 72

10.1.6.13.3 Single Job Instance Running with Multiple PIDs 73

10.1.6.13.4 Multiple Running Job Instances Without PID 73

10.1.6.13.5 Multiple Running Job Instances With PIDs 74

10.1.6.13.6 Multiple Running Job Instances With Multiple PIDs 75

10.1.6.13.7 Stopped Job 76

10.1.6.14 initctl stop 76

10.1.6.15 initctl usage 76

10.1.6.16 initctl version 76

10.1.7 init-checkconf 76

10.1.8 mountall () 77

10.1.8.1 Mountall events 77

10.1.8.1.1 mounting 77

10.1.8.1.2 mounted 77

10.1.8.1.3 all-swaps 77

10.1.8.1.4 filesystem 77

10.1.8.1.5 virtual-filesystems 77

10.1.8.1.6 local-filesystems 78

10.1.8.1.7 remote-filesystems 78

10.1.8.2 Mountall Event Summary 78

10.1.8.3 mountall Examples 78

10.2 Bridges 83

10.2.1 plymouth-upstart-bridge () 83

10.2.2 upstart-socket-bridge 83

10.2.3 upstart-udev-bridge 84

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

10.2.3.1 Careful Use of udev Events 87

11 Cookbook and Best Practises 88

11.1 List All Jobs 88

11.2 List All Jobs With No stop on Condition 88

11.3 List All Events That Jobs Are Interested In On Your System 88

11.4 Create an Event 88

11.5 Create an Event Alias 88

11.5.1 Change the Type of an Event 89

11.6 Synchronisation 89

11.7 Determine if Job was Started by an Event or by "start" 92

11.8 Stop a Job from Running if A pre-start Condition Fails 92

11.9 Run a Job Only When an Event Variable Matches Some Value 92

11.10 Run a Job when an Event Variable Does Not Match Some Value 92

11.11 Run a Job as Soon as Possible After Boot 93

11.12 Run a Job When a User Logs in Graphically () 93

11.13 Run a Job When a User Logs in 93

11.13.1 Environment 94

11.14 Run a Job For All of a Number of Conditions 94

11.15 Run a Job Before Another Job 95

11.16 Run a Job After Another Job 95

11.17 Run a Job Once After Some Other Job Ends 95

11.18 Run a Job Before Another Job and Stop it After that Job Stops 96

11.19 Run a Job Only If Another Job Succeeds 96

11.20 Run a Job Only If Another Job Fails 96

11.21 Run a Job Only If One Job Succeeds and Another Fails 96

11.22 Run a Job If Another Job Exits with a particular Exit Code 96

11.23 Detect if Any Job Fails 97

11.24 Use Details of a Failed Job from Another Job 97

11.25 Stop a Job when Another Job Starts 98

11.25.1 Simple Mutual Exclusion 98

11.26 Run a Job Periodically 99

11.27 Restart a job on a Particular Event 100

11.28 Migration from System V initialization scripts 100

11.29 How to Establish a Jobs start on and stop on Conditions 101

11.29.1 Determining the start on Condition () 101

11.29.1.1 Standard Idioms 101

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

11.29.1.2 More Exotic start on Conditions 102

11.29.1.2.1 udev conditions 103

11.29.2 Determining the stop on Condition () 103

11.29.3 Final Words of Advice 104

11.30 Guarantee that a job will only run once 104

11.30.1 Method 1 104

11.30.2 Method 2 105

11.31 Stop a Job That is About to Start 105

11.32 Stop a Job That is About to Start From Within That Job 105

11.33 Stop a Job from Running if its Configuration file has not been
Created/Modified

105

11.34 Stop a Job When Some Other Job is about to Start 105

11.35 Start a Job when a Particular Filesystem is About to be Mounted 106

11.36 Start a Job when a Device is Hot-Plugged 106

11.36.1 To start a job when eth0 is added to the system 106

11.36.2 To start a job when eth0 is available 107

11.37 Stopping a Job if it Runs for Too Long 107

11.38 Run a Job When a File or Directory is Created/Deleted 107

11.39 Run a Job Each Time a Condition is True 108

11.40 Run a Job When a Particular Runlevel is Entered and Left 109

11.41 Pass State From a Script Section to its Job Configuration File 109

11.42 Pass State From Job Configuration File to a Script Section 110

11.43 Run a Job as a Different User 110

11.43.1 Running a User Job 110

11.43.2 Changing User 110

11.44 Disabling a Job from Automatically Starting 111

11.44.1 Override Files 111

11.45 Jobs that "Run Forever" 112

11.46 Run a Java Application 112

11.46.1 Alternative Method 113

11.47 Ensure a Directory Exists Before Starting a Job 113

11.48 Run a GUI Application 113

11.49 Run an Application through GNU Screen 113

11.50 Run Upstart in a chroot Environment 114

11.50.1 chroot Workaround for Older Versions of Upstart 114

11.50.2 chroots in Ubuntu Natty 114

11.51 Record all Jobs and Events which Emit an Event 114

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

11.52 Integrating your New Application with Upstart 115

11.53 Block Another Job Until Yours has Started 115

11.54 Controlling Upstart using D-Bus 116

11.54.1 Query Version of Upstart 116

11.54.2 Query Log Priority 116

11.54.3 Set Log Priority 116

11.54.4 List all Jobs via D-Bus 116

11.54.5 Get Status of Job via D-Bus 116

11.54.6 Get Jobs start on and stop on Conditions via D-Bus 117

11.54.7 To Start a Job via D-Bus 118

11.54.8 To Stop a Job via D-Bus 118

11.54.9 To Restart a Job via D-Bus 118

11.55 Establish Blocking Job 118

11.56 Determine if a Job is Disabled 119

11.57 Visualising Jobs and Events 119

11.58 Sourcing Files 119

11.58.1 Develop Scripts Using /bin/sh 119

11.58.2 ureadahead 120

11.59 Determining How to Stop a Job with Multiple Running Instances 120

11.60 Logging Boot and Shutdown Times 121

11.61 Running an Alternative Job on a tty 122

11.62 Creating a SystemV Service that Communicates with Upstart 123

12 Test Your Knowledge 124

12.1 Questions about start on 124

12.2 General Questions 124

13 Common Problems 125

13.1 Cannot Start a Job 125

13.2 Cannot stop a job 125

13.3 Strange Error When Running start/stop/restart or initctl emit 125

13.4 The initctl command shows "the wrong PID" 126

13.5 Symbolic Links don't work in /etc/init 126

13.6 Sometimes status shows PID, but other times does not 126

14 Testing 126

15 Daemon Behaviour 127

16 Precepts for Creating a Job Configuration File 128

16.1 Determining the value of expect 128

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

16.2 start on and stop on condition 128

16.3 Services 128

16.4 Ubuntu Rules () 129

16.4.1 Console attributes 129

17 Debugging 129

17.1 Obtaining a List of Events 129

17.1.1 Add --verbose or --debug to the kernel command-line 129

17.1.2 Change the log-priority 129

17.2 See the Environment a Job Runs In 130

17.3 Checking How a Service Might React When Run as a Job 130

17.4 Obtaining a log of a Script Section 131

17.4.1 Upstart 1.4 (and above) 131

17.4.2 Versions of Upstart older than 1.4 131

17.5 Log Script Section Output to Syslog 131

17.6 Checking a Job Configuration File for Syntax Errors 131

17.7 Check a Script Section for Errors 131

17.7.1 Older versions of Upstart 132

17.8 Debugging a Script Which Appears to be Behaving Oddly 132

18 Recovery 133

18.1 Boot into Recovery Mode 133

18.2 Boot to a shell directly 133

19 Advanced Topics 134

19.1 Changing the Default Shell 134

19.2 Running a script Section with Python 134

19.3 Running a script Section with Perl 135

20 Development and Testing 135

20.1 Unit Tests 135

20.1.1 Building Within a Chroot 135

20.1.2 Statistics 135

20.1.3 Test Coverage 136

20.2 Enable Full Compiler Warnings 136

20.3 Running Upstart as a Non-Privileged User 136

20.4 Useful tools for Debugging with D-Bus 136

20.5 Debugging a Job 136

20.6 Debugging Another Instance of Upstart Running as root with PID 1 137

20.6.1 Method 1 (crazy) 137

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

20.6.2 Method 2 (saner) 137

20.7 Debugger Magic 137

20.7.1 NihList 138

20.7.2 NihHash 138

21 Known Issues 138

21.1 Restarting Jobs with Complex Conditions 138

21.1.1 Advice 138

21.2 Using expect with script sections 138

21.3 Bugs 139

22 Support 139

23 References 140

23.1 Manual Pages 140

23.2 Web Sites 140

23.3 Mailing List 140

24 Answers to Test 140

25 Footnotes 140

26 Colophon 140

27 Appendices 141

27.1 Ubuntu Well-Known Events () 141

28 Footer 144

1 Meta

1.1 Document Version
This is document edit 163.

See footer for further details.

1.2 Authors

Authors:
• James Hunt <james.hunt@canonical.com>

• Clint Byrum <clint.byrum@canonical.com>

1.3 Acknowledgements
The Authors are grateful to the following individuals who have provided valuable input to this document:

• Colin Watson (Canonical)

• Scott James Remnant (Canonical, Google), author of Upstart.

• James Page (Canonical)

• Joel Ebel (Google)

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

mailto:james.hunt@canonical.com
mailto:clint.byrum@canonical.com
http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

• Mark Russell (Canonical)

• Bradley Ayers

• Kenneth Porter

• Roberto Alsina (Canonical), reStructuredText Guru.

1.4 Purpose
The purpose of this document is multi-faceted. It is intended as:

• A gentle introduction to Upstart.

• A Cookbook of recipes and best-practises for solving common and not so common problems.

• An extended guide to the configuration syntax of Upstart.

It attempts to explain the intricacies of Upstart with worked examples and lots of details.

Note that the reference documentation for Upstart will always be the manual pages: this is merely a
supplement to them.

1.5 Suggestions and Errata
Bad documentation is often worse than no documentation. If you find a problem with this document,
however small...

• spelling error

• grammatical error

• factual error

• inconsistency

• lack of clarity

• ambiguous or misleading content

• missing information

• et cetera

... or if you'd like to see some particular feature covered please raise a bug report on the Upstart
Cookbook project website so that we can improve this work:

• https://bugs.launchpad.net/upstart-cookbook/+filebug

As an incentive you will be credited in the Acknowledgements section.

1.6 Coverage
There are essentially two major versions of Upstart covered by this document:

1.6.1 Upstream Upstart
This is the pure, or "vanilla" version which is designed to work on any Linux system:

• Homepage

http://launchpad.net/upstart

• Bug Reports

http://bugs.launchpad.net/upstart

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://upstart.ubuntu.com
http://upstart.ubuntu.com
https://launchpad.net/upstart-cookbook
https://bugs.launchpad.net/upstart-cookbook/+filebug
http://launchpad.net/upstart
http://bugs.launchpad.net/upstart
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

• Questions

https://answers.launchpad.net/upstart/+addquestion

1.6.2 Ubuntu Version of Upstart
The Ubuntu-packaged version 13.

This is a "debianised" version of Upstart (in other words, a version packaged for Debian and derivatives).
It includes a few minor changes specifically for running Upstart on an Ubuntu system.

• Homepage

http://launchpad.net/ubuntu/+source/upstart

• Bug Reports

http://bugs.launchpad.net/ubuntu/+source/upstart

• Questions

https://answers.launchpad.net/ubuntu/+source/upstart/+addquestion

1.6.3 Availability
Upstart is relied upon by millions of systems across a number of different Operating Systems including:

• Google's Chrome OS

• Google's Chromium OS

• Red Hat's RHEL 6 32

• Ubuntu

It is also available as an option for other systems such as:

• Debian

• Fedora

1.6.4 Ubuntu-Specific
This document is written with Ubuntu in mind, but will attempt to identify Ubuntu-specific behaviour where
appropriate by showing this icon: (displays as "U" on section headings).

1.7 Audience
This document is targeted at:

• Users interested in learning about Upstart.

• System Administrators looking to make the most of the capabilities of Upstart.

• Developers and Packagers who wish to package their application to work with Upstart.

1.8 Document Preparation
This document is written in reStructuredText, a textual markup language. The document was prepared
using the following tools:

• Vim editor.

• Emacs editor with Org-Mode for tables.

• Jave for ASCII graphics.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

https://answers.launchpad.net/upstart/+addquestion
http://www.ubuntu.com
http://www.debian.org
http://www.ubuntu.com
http://launchpad.net/ubuntu/+source/upstart
http://bugs.launchpad.net/ubuntu/+source/upstart
https://answers.launchpad.net/ubuntu/+source/upstart/+addquestion
http://www.redhat.com/rhel
http://www.ubuntu.com
http://www.debian.org
http://fedoraproject.org
http://www.ubuntu.com
http://www.ubuntu.com
http://upstart.ubuntu.com
http://upstart.ubuntu.com
http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://www.vim.org
http://www.gnu.org/software/emacs
http://www.orgmode.org/
http://www.jave.de/
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

1.9 Document Availability
The source for this document is available here:

• https://code.launchpad.net/~upstart-documenters/upstart-cookbook/trunk

The latest version of this document should always be available from:

• http://upstart.ubuntu.com/cookbook/

• http://upstart.ubuntu.com/cookbook/upstart_cookbook.pdf

1.10 Warning
This document aims to aid understanding of Upstart and identify some hopefully useful "canned" solutions
and advice to common problems and questions.

The authors have taken as much care as possible in the preparation of this document. However, you are
advised strongly to exercise extreme caution when changing critical system facilities such as the init
daemon. Most situations are recoverable and advice is provided in this document, but if your system
explodes in a ball of fire or becomes unusable as a result of a suggestion from this document, you alone
have the intellectual pleasure of fixing your systems.

2 Typographical Conventions

2.1 Commands and configuration stanzas
Throughout this document a fixed-width font such as this will be used to denote commands, brief
command output and configuration stanzas.

2.2 User Input and Command Output
An indented block will be used to denote user input and command output.

2.2.1 Non-Privileged User
Indented lines starting with a dollar character ('$') are used to denote the shell prompt (followed by
optional commands) for a non-privileged user. Command output is shown by indented lines not preceded
by the dollar character:

$ echo hello
hello

2.2.2 Super-User
Indented lines starting with a hash (or "pound") character ('#') are used to denote the shell prompt
(followed by optional commands) for the root user. Command output is shown by indented lines not
preceded by the hash character 10:

whoami
root

2.3 Configuration Examples
An indented block is also used to show examples of job configuration:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

https://code.launchpad.net/~upstart-documenters/upstart-cookbook/trunk
http://upstart.ubuntu.com/cookbook/
http://upstart.ubuntu.com/cookbook/upstart_cookbook.pdf
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

script
 # a config file
end script

3 Introduction

3.1 What is Upstart?
Quoting from http://upstart.ubuntu.com/,

Upstart is an event-based replacement for the /sbin/init daemon which handles starting of tasks
and services during boot, stopping them during shutdown and supervising them while the system is
running.

The "init" or "system initialisation" process on Unix and Linux systems has process ID (PID) "1". That is
to say, it is the first process to start when the system boots (ignoring the initrd/initramfs). As the quote
shows, Upstart is an "init" replacement for the traditional Unix "System V" "init" system. Upstart
provides the same facilities as the traditional "init" system, but surpasses it in many ways.

3.1.1 Reliability
Upstart is written using the NIH Utility Library ("libnih"). This is a very small, efficient and safe library of
generic routines. It is designed for applications that run early in the boot sequence ("plumbing"). Reliability
and safety is critically important for an init daemon since:

• it runs as the super-user.

• it is responsible for managing critical system services.

• if init exits for any reason, the kernel panics.

To help ensure reliability and avoid regressions, Upstart and the NIH Utility Library both come with
comprehensive test suites. See Unit Tests for further information.

3.1.2 Design History
Upstart was created due to fundamental limitations in existing systems. Those systems can be
categorized into two types:

• System V init system

• Dependency-based init systems

To understand why Upstart was written and why its revolutionary design was chosen, it is necessary to
consider these two classes of init system.

3.1.2.1 Critique of the System V init System

3.1.2.1.1 SysV Benefits

3.1.2.1.1.1 Simplicity

Creating service files is easy with SystemV init since they are simply shell scripts. To enable/disable a
service in a particular runlevel, you only need to create/remove a symbolic link in a particular directory or
set of directories.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://upstart.ubuntu.com/
http://launchpad.net/libnih
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

3.1.2.1.1.2 Guaranteed Ordering of Services

This is achieved by init running the scripts pointed to by the symbolic links in sequence. The relative order
in which init invokes these scripts is determined by a numeric element in the name: lower numbered
services run before higher numbered services.

3.1.2.1.2 SysV Limitations

3.1.2.1.2.1 Non-Optimal Performance

The traditional sequential boot system was appropriate for the time it was invented, but by modern
standards it is "slow" in the sense that it makes no use of parallelism.

It was designed to be simple and efficient for Administrators to manage. However, this model does not
make full use of modern system resources, particularly once it is recognised that multiple services can
often be run simultaneously.

A common "hack" used by Administrators is to circumvent the serialisation by running their service in the
background, such that some degree of parallelism is possible. The fact that this hack is required and is
common on such systems demonstrates clearly the flaw in that system.

3.1.2.1.2.2 Server-Centric

In the days of colossal Unix systems with hundreds of concurrent users, where reboots were rare, the
traditional SysV approach was perfect. If hardware needed replacing, a system shutdown was scheduled,
the shutdown performed, the new hardware was installed and the system was brought back on-line.

However, the world has now moved on. From an Ubuntu perspective, a significant proportion of users run
the desktop edition on portable devices where they may reboot multiple times a day.

3.1.2.1.2.3 Assumes Static Hardware at all Times

Modern Linux systems can deal with new hardware devices being added and removed dynamically
("hot-plug"). The traditional SysV init system itself is incapable of handling such a dynamically changing
system.

3.1.2.1.2.4 Every Service Does Heavy Lifting

Most service files are fairly formulaic. For example, they might:

• perform initial checks, such as:

• ensuring no other instance of a daemon is running.

• checking the existence of a directory or file.

• removing old cache files.

• ensure dependent daemons are running.

• spawn the main service.

The most difficult and time costly operation these services perform is that of handling dependent
daemons. The LSB specifies helper utilities that these services can make use of, but arguably each
service shouldn't need to be handling this activity themselves: the init system itself should do it on behalf
of the services it manages.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://www.linuxbase.org
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

3.1.2.2 Critique of Dependency-Based init Systems

3.1.2.2.1 Benefits of Dependency-based init

3.1.2.2.1.1 Recognises Services Require Other Services

The recognition that services often need to make use of other services is an important improvement over
SystemV init systems. It places a bigger responsibility on the init system itself and reduces the complexity
and work that needs to be performed by individual service files.

3.1.2.2.2 Limitations of Dependency-based init

3.1.2.2.2.1 Does Not Recognise Dynamic Nature of Linux

The main problem with dependency-based init systems is that they approach the problem from the "wrong
direction". Again, this is due to their not recognising the dynamic nature of modern Linux systems.

For example, if a dependency-based init system wished to start say MySQL, it would first start all the
dependent services that MySQL needed. This sounds perfectly reasonable.

However, consider how such a system would approach the problem of dealing with a user who plugs in an
external monitor. Maybe we'd like our system to display some sort of configuration dialogue so the user
can choose how they want to use their new monitor in combination with their existing laptop display. This
can only be "hacked" with a dependency-based init system since you do not know when the new screen
will be plugged. So, your choices are either:

• Do nothing.

Corresponds to an inability to handle this scenario.

• Have a daemon that hangs around polling for new hardware being plugged.

Wasteful and inefficient.

What you really want is a system that detects such asynchronous events and when the conditions are
right for a service to run, the service is started.

This can be summarised as:

• Upstart starts a service when its required conditions are met.

The service (job configuration file) only needs to specify the conditions that allow the service to
run, and the executable to run the service itself.

• Dependency-based init systems meet a service's dependencies before starting them.

Each service generally does this using a brute-force approach of forcing all the dependencies to
start.

Note that the init system itself is not doing the heavy-lifting: that is left up to each service itself (!)

This summary is worth considering carefully as the distinction between the two types of system is subtle
but important.

The other problem with dependency-based init systems is that they require a dependency-solver which is
often complex and not always optimal.

3.1.2.3 Upstart's Design: Why It Is Revolutionary

It was necessary to outline the limitations of the SysV and dependency-based init systems to appreciate
why Upstart is special...

Upstart is revolutionary as it recognises and was designed specifically for a dynamic system. It handles
asynchronicity by emitting events. This too is revolutionary.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://www.mysql.com/
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Upstart emits "events" which services can register an interest in. When an event -- or combination of
events -- is emitted that satisfies some service's requirements, Upstart will automatically start or stop that
service. If multiple jobs have the same "start on" condition, Upstart will start those jobs ''in parallel''. To be
manifest: Upstart handles starting the "dependent" services itself - this is not handled by the service file
itself as it is with dependency-based systems.

Further, Upstart is being guided by the ultimate arbiter of hardware devices: the kernel.

In essence, Upstart is an event engine: it creates events, handles the consequences of those events
being emitted and starts and stops processes as required. Like the best Unix software, it does this job
very well. It is efficient, fast, flexible and reliable. It makes use of "helper" daemons (such as the
upstart-udev-bridge and the upstart-socket-bridge) to inject new types of events into the system and react
to these events. This design is sensible and clean: the init system itself must not be compromised since if
it fails, the kernel panics. Therefore, any functionality which is not considered "core" functionality is farmed
out to other daemons.

See 31 for further details.

3.1.3 Performance
Upstart was designed with performance in mind. It makes heavy use of the NIH Utility Library which is
optimised for efficient early boot environments. Additionally, Upstart's design is lightweight, efficient and
elegant. At its heart it is a event-based messaging system that has the ability to control and monitor
processes. Upstart is designed to manage services running in parallel. It will only start services when the
conditions they have specified are met.

3.1.4 Server
Upstart is used by Ubuntu for the Ubuntu Desktop and for Ubuntu Server (and as a result of this, it is also
used in the Ubuntu Cloud). Why is Upstart also compelling in a server environment?

3.1.4.1 Boot Performance

Some say that boot performance is not important on servers, possibly since the time taken to bring RAID
arrays on-line is significantly longer than the time it takes to boot the operating system. However, nobody
seriously wants their system to take longer than necessary to boot.

Consider also the case for Cloud deployments, which of course run on servers. Here, boot speed is very
important as it affects the time taken to deploy a new server instance. The faster you can deploy new
services to handle an increasing workload the better the experience for your customers.

3.1.4.2 Failure Modes

It's a fact that systems and software are getting more complex. In the old days of Unix, runlevels
encompassed every major mode of operation you might want your system to handle. However,
expectations have changed. Nowadays, we expect systems to react to problems (and maybe even
"self-heal" the simple ones).

The landscape has changed and Upstart is fully able to accommodate such changes since its design is
clean, elegant and abstract. Crucially, Upstart is not tied to the rigid runlevel system. Indeed, Upstart has
no knowledge of runlevels internally, but it supports them trivially with events. And since events are so
abstract, they are highly flexible building blocks for higher-level constructs. Added to which, since
Upstart's events are dynamic, the system can be configured for a myriad of possible system behaviours
and failure modes and have it react accordingly.

4 Concepts and Terminology
The main concepts in Upstart are "events" and "jobs". Understanding the difference between the two is
crucial.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://launchpad.net/libnih
http://www.ubuntu.com/business/desktop/overview
http://www.ubuntu.com/business/server/overview
http://www.ubuntu.com/business/cloud/overview
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

4.1 Job
A "unit of work" - generally either a "Task" or a "Service". Each Job is defined in a Job configuration file.

4.1.1 Job Types

4.1.1.1 Task Job

A Task Job is one which runs a short-running process, that is, a program which might still take a long time
to run, but which has a definite lifetime and end state.

For example, deleting a file could be a Task Job since the command starts, deletes the file in question
(which might take some time if the file is huge) and then the delete command ends.

In this book Task Jobs are often referred to as tasks.

4.1.1.2 Service Job

A Service Job is a long-running (or daemon(3) process). It is the opposite of a Task Job since a Service
Job might never end of its own accord.

Examples of Service Jobs are entities such as databases, webservers or ftp servers.

4.1.1.3 Abstract Job

There is one other type of job which has no script sections or exec stanzas. Such abstract jobs can still
be started and stopped, but will have no corresponding child process (PID). In fact, starting such a job will
result in it "running" perpetually if not stopped by an Administrator. Abstract jobs exist only within Upstart
itself but can be very useful. See for example:

• Jobs that "Run Forever"

• Synchronisation

4.1.2 Job States
The table below shows all possible Job States and the legal transitions between them. States are exposed
to users via the status field in the output of the initctl status command.

Job State Transitions.
Current

State

Goal

start stop

waiting starting n/a

starting pre-start stopping

pre-start spawned stopping

spawned post-start stopping

post-start running stopping

running stopping pre-stop or stopping 11

pre-stop running stopping

stopping killed killed

killed post-stop post-stop

post-stop starting waiting

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man3/daemon.3.html
http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

For example, if the job is currently in state starting, and its goal is start, it will then move to the
pre-start state.

Note that jobs may change state so quickly that you may not be able to observe all the values above in
the initctl output. However, you will see the transitions if you raise the log-priority to debug or info.
See initctl log-priority for details.

Details of states:

• waiting : initial state.

• starting : job is about to start.

• pre-start : running pre-start section.

• spawned : about to run script or exec section.

• post-start : running post-start section.
• running : interim state set after post-start section processed denoting job is running (But it may

have no associated PID!)

• pre-stop : running pre-stop section.

• stopping : interim state set after pre-stop section processed.

• killed : job is about to be stopped.

• post-stop : running post-stop section.

4.1.2.1 Viewing State Transitions

To view state transitions:

1. Change the log-priority to debug

2. "tail -f" your system log file

3. start/stop/restart a job or emit an event.

4.2 Job Configuration File
A Job is defined in a Job Configuration File (or more simply a conf file) which is a plain text file containing
one or more stanzas. Job configuration files are named:

<name>.conf

Where "<name>" should reflect the application being run or the service being provided.

Job configuration files can exist in two types of location, depending on whether they are a System Job or a
User Job.

Note that it is common to refer to a Job configuration file as a "job", although technically a job is a running
instance of a Job configuration file.

4.2.1 System Job
All system jobs by default live in the following directory:

/etc/init/

This directory can be overriden by specifing the --confdir=<directory> option to the init daemon,
however this is a specialist option which users should not need to use.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

4.2.2 User Job
With the advent of Upstart 1.3, non-privileged users are able to create jobs by creating job configuration
files in the following directory:

$HOME/.init/

This feature is not currently enabled in Ubuntu (up to and including 11.10 ("Oneiric Ocelot")).

The syntax for such jobs is identical for "system jobs".

Note

Currently, a user job cannot be created with the same name as a system job: the system job will
take precedence.

Controlling user jobs is the same as for system jobs: use initctl, start, stop, et cetera.

Note

Stanzas which manipulate resources limits (such as limit, nice, and oom) may cause a job to fail
to start should the value provided to such a stanza attempt to exceed the maximum value the
users privilege level allows.

Note

User jobs cannot currently take advantage of job logging. If a user job does specify console log, it
is considered to have specified console none. Logging of user jobs is planned for the next release
of Upstart.

4.2.2.1 Enabling

To enable user jobs, the administrator must modify the D-Bus configuration file "Upstart.conf" to allow
non-root users access to all the Upstart D-Bus methods and properties. On an Ubuntu system the file to
modify is:

/etc/dbus-1/system.d/Upstart.conf

The Upstream Upstart 1.3 distribution already includes a "Upstart.conf" file containing the required
changes.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

4.2.3 Odd Jobs

4.2.3.1 Job with start on, but no stop on

A job does not necessarily need a stop on stanza. If it lacks one, any running instances can still be
stopped by an Administrator running either of:

• initctl stop <job>

• stop <job>

However, if such a job is not stopped, it may be stopped either by another job, or some other facility 28.
Worst case, if nothing else stops it, all processes will obviously be killed when the system is powered off.

4.2.3.2 Job with stop on, but no start on

If a job has no start on stanza, it can only be started manually by an Administrator running either of:

• initctl start <job>

• start <job>

If any job instances are running at system shutdown time, Upstart will stop them.

4.2.3.3 Job with no stop on or start on

Such a job can only be controlled by an Administrator. See Job with start on, but no stop on and Job with
stop on, but no start on.

4.2.3.4 Minimal Job Configuration

What is the minimum content of a job configuration file? Interestingly enough, to be valid a job
configuration file:

• must not be empty

• must be syntactically correct

• must contain at least one legal stanza

Therefore, some examples of minimal job configuration files are:

• Comments only:

this is an abstract job containing only a comment

• author stanza only:

author "foo"

• description stanza only:

description "this is an abstract job"

As shown, these are all example of Abstract Job configuration files.

4.3 Event
A notification is sent by Upstart to all interested parties (either jobs or other events). They can generally be
thought of as "signals", "methods", or "hooks" 21, depending on how they are emitted and/or consumed.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Events are emitted (created and then broadcast) to the entire Upstart system. Note that it is not possible
to stop any other job or event from seeing an event when it is emitted.

If there are no jobs which have registered an interest in an event in either their start on or stop on
conditions, the event has no effect on the system.

Events can be created by an administrator at any time using:

initctl emit <event>

Note that some events are "special". See the upstart-events(7) manual page for a list.

Note also that an event name with the same name as a job is allowed.

Jobs are often started or stopped as a result of other jobs starting or stopping. Upstart has a special set of
events that it emits to announce these job state transitions. You'll probably notice that these events have
the same names as some of the job states described in Job States, however it's important to appreciate
that these are not describing the same thing. Task states are not events, and events are not task states.
See Events, not States for details.

These events are as follows:

starting

This event is emitted by Upstart when a job has been scheduled to run and is about to start
executing.

started

This event is emitted by Upstart when a job is now running. Note that a job does not have to have an
associated program or script so "running" does not necessarily imply that any additional process is
executing.

stopping

This event is emitted by Upstart when a job is about to be stopped.

stopped

This event is emitted by Upstart when a job has completed (successfully or otherwise).

See Job Lifecycle for further details.

To help reinforce the difference, consider how Upstart itself starts: See the Startup Process.

1. It performs its internal initialization.

2. Upstart itself emits a single event called startup(7). This event triggers the rest of the system to
initialize. Note that there is no "startup" job (and hence no /etc/init/startup.conf file).

3. init(8) runs the mountall job (as defined in /etc/init/mountall.conf) since the startup(7) event
satisfies mountall(8)'s requirement: "start on startup".

4. The mountall(8) job in turn emits a number of events (including local-filesystems(7) and
all-swaps(7)). See upstart-events(7) for further details.

Upstart provides three different types of Events.

4.3.1 Event Types

4.3.1.1 Signals

A Signal Event is a non-blocking (or asynchronous) event. Emitting an event of this type returns
immediately, allowing the caller to continue. Quoting from 22:

The announcer of a signal cares not whether anybody cared about it, and doesn’t wait around to see
whether anything happened. As far as the announcer cares, it’s informational only.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man7/upstart-events.7.html
http://manpages.ubuntu.com/manpages/man7/startup.7.html
http://manpages.ubuntu.com/manpages/man8/init.8.html
http://manpages.ubuntu.com/manpages/man7/startup.7.html
http://manpages.ubuntu.com/manpages/man8/mountall.8.html
http://manpages.ubuntu.com/manpages/man8/mountall.8.html
http://manpages.ubuntu.com/manpages/man7/local-filesystems.7.html
http://manpages.ubuntu.com/manpages/man7/all-swaps.7.html
http://manpages.ubuntu.com/manpages/man7/upstart-events.7.html
http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Signal Events are created using the --no-wait option to the initctl emit command like this:

initctl emit --no-wait mysignal

The non-blocking behaviour directly affects the emitter by allowing it to continue processing without having
to wait for any jobs which make use of the event. Jobs which make use of the event (via start on or stop
on) are also affected, as they're unable to stop, delay, or in any other way "hold up" the operation of the
emitter.

4.3.1.2 Methods

A Method Event is a blocking (or synchronous) event which is usually coupled with a task. It acts like a
method or function call in programming languages in that the caller is requesting that some work be done.
The caller waits for the work to be done, and if problems were encountered, it expects to be informed of
this fact.

Emitting a Method Event is simple:

initctl emit mymethod

This is exactly like a Signal Event, except the event is being emitted synchronously such that the emitter
has to wait until the initctl command completes. Once the initctl command has completed, there
are two possible outcomes for the task that starts on Event mymethod:

• The task runs successfully.

• The task failed for some reason.

Assuming we have a job configuration file /etc/init/myapp.conf like this:

start on mymethod
task
exec /usr/bin/myapp $ACTION

You could start the myapp job and check if the "method" worked as follows:

initctl emit mymethod ACTION=do_something
[$? -ne 0] && { echo "ERROR: myapp failed"; exit 1; }

4.3.1.3 Hooks

A Hook Event is a blocking (or synchronous) event. Quoting from 23:

"A hook is somewhere between a signal and a method. It’s a notification that something changed on
the system, but unlike a signal, the emitter waits for it to complete before carrying on."

Hooks are therefore used to flag to all interested parties that something is about to happen.

The canonical examples of Hooks are the two job events starting(7) and stopping(7), emitted by Upstart to
indicate that a job is about to start and about to stop respectively.

4.3.2 Events, not States
Although Upstart does use states internally (and these are exposed via the list and status commands in
initctl(8)), events are the way that job configuration files specify the desired behaviour of jobs: starting(7),
started(7), stopping(7), stopped(7) are events, not states. These events are emitted "just prior" to the
particular transition occurring. For example, the starting(7) event is emitted just before the job associated
with this event is actually queued for start by Upstart.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man7/starting.7.html
http://manpages.ubuntu.com/manpages/man7/stopping.7.html
http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man8/initctl.8.html
http://manpages.ubuntu.com/manpages/man7/starting.7.html
http://manpages.ubuntu.com/manpages/man7/started.7.html
http://manpages.ubuntu.com/manpages/man7/stopping.7.html
http://manpages.ubuntu.com/manpages/man7/stopped.7.html
http://manpages.ubuntu.com/manpages/man7/starting.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

4.4 Job Lifecycle

4.4.1 Starting a Job

1. Initially the job is "at rest" with a goal of stop and a state of waiting (shown as stop/waiting
by the initctl list and initctl status commands).

2. The goal is changed from stop to start indicating the job is attempting to start.

3. The state is changed from waiting to starting.

4. The starting(7) event is emitted denoting the job is "about to start".

5. Any jobs whose start on (or stop on) condition would be satisfied by this job starting are started (or
stopped respectively).

6. The starting(7) event completes.

7. The state is changed from starting to pre-start.

8. If the pre-start stanza exists, the pre-start process is spawned.

9. If the pre-start process fails, the goal is changed from start to stop, and the stopping(7) and
stopped(7) events are emitted with appropriate variables set denoting the error.

10. Assuming the pre-start did not fail or did not call "stop", the main process is spawned.

11. The state is changed from pre-start to spawned.

12. Upstart then ascertains the final PID for the job which may be a descendent of the immediate child
process if expect fork or expect daemon has been specified.

13. The state is changed from spawned to post-start.

14. If the post-start stanza exists, the post-start process is spawned.

15. The state is changed from post-start to running.

16. The started(7) event is emitted.

For services, when this event completes the main process will now be fully running. If the job refers
to a task, it will now have completed (successfully or other■wise).

17. Any jobs whose start on (or stop on) condition would be satisfied by this job being started are started
(or stopped respectively).

4.4.2 Stopping a Job

1. Assuming the job is fully running, it will have a goal of start and a state of running (shown as
start/running by the initctl list and initctl status commands).

2. The goal is changed from start to stop indicating the job is attempting to stop.

3. The state is changed from running to pre-stop.

4. If the pre-stop stanza exists, the pre-stop process is spawned.

5. The state is changed from pre-stop to stopping.

6. The stopping(7) event is emitted.

The stopping event has a number of associated environment variables:

• JOB

The name of the job this event refers to.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man7/starting.7.html
http://manpages.ubuntu.com/manpages/man7/starting.7.html
http://manpages.ubuntu.com/manpages/man7/stopping.7.html
http://manpages.ubuntu.com/manpages/man7/stopped.7.html
http://manpages.ubuntu.com/manpages/man7/started.7.html
http://manpages.ubuntu.com/manpages/man7/stopping.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

• INSTANCE

The name of the instance of the job this event refers to. This will be empty for
single-instance jobs (those jobs that have not specified the instance stanza).

• RESULT

This variable will have the value "ok" if the job exited normally or "failed" if the job exited
due to failure. Note that Upstart's view of success and failure can be modified using the
normal exit stanza.

• PROCESS

The name of the script section that resulted in the failure. This variable is not set if
RESULT=ok. If set, the variable will have one of the following values:

• pre-start

• post-start
• main (denoting the script or exec stanza)

• pre-stop

• post-stop

• respawn (denoting the job attempted to exceed its respawn limit)

• EXIT_STATUS or EXIT_SIGNAL

Either EXIT_STATUS or EXIT_SIGNAL will be set, depending on whether the job exited
itself (EXIT_STATUS) or was stopped as a result of a signal (EXIT_SIGNAL).

If neither variable is set, the process in question failed to spawn (for example, because the
specified command to run was not found).

7. Any jobs whose start on (or stop on) condition would be satisfied by this job stopping are started (or
stopped respectively).

8. The main process is stopped:

• The signal specified by the kill signal stanza is sent to the process group of the main process.
(such that all processes belonging to the jobs main process are killed). By default this signal is
SIGTERM.

See signal(7) and init(5).

• Upstart waits for up to kill timeout seconds (default 5 seconds) for the process to end.

• If the process is still running after the timeout, a SIGKILL signal is sent to the process which
cannot be ignored and will forcibly stop the processes in the process group.

9. The state is changed from killed to post-stop.

10. If the post-stop stanza exists, the post-stop process is spawned.

11. The state is changed from post-stop to waiting.

12. The stopped(7) event is emitted.

When this event completes, the job is fully stopped.

13. Any jobs whose start on (or stop on) condition would be satisfied by this job being stopped are
started (or stopped respectively).

Note: this information is also available in upstart-events(7).

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man7/signal.7.html
http://manpages.ubuntu.com/manpages/man5/init.5.html
http://manpages.ubuntu.com/manpages/man7/stopped.7.html
http://manpages.ubuntu.com/manpages/man7/upstart-events.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

4.5 Ordering

4.5.1 Order in which Events are Emitted
As a general rule, you cannot rely upon the the order in which events will be emitted. Your system is
dynamic and Upstart responds to changes as-and-when they occur (for example hot-plug events).

That said, most systems which use Upstart provide a number of "well-known" events which you can rely
upon.

For example on Ubuntu, these are documented in the upstart-events(7) man page, which is included
within this document for convenience in appendix Ubuntu Well-Known Events (ubuntu-specific).

4.5.2 Order in Which Jobs Which start on the Same Event are Run
Assume you have three jobs like this:

• /etc/init/X.conf

start on event-A

• /etc/init/Y.conf

start on event-A

• /etc/init/Z.conf

start on event-A

Question: If event event-A is emitted, which job will run first?

Answer: It is not possible to say, and indeed you should not make any assumptions about the order in
which jobs with the same conditions run in.

4.5.3 Ordering of Stop/Start Operations

4.5.3.1 Single Job

Imagine a job configuration file /etc/init/odd.conf like this:

start on event-A
stop on event-A

script
 sleep 999
end script

Would Upstart be happy with this? Actually, yes it would! Upstart always handles stop on stanzas before
handling start on stanzas. This means that this strange job would first be stopped (if it's currently running),
then it would be started.

We can see what happens when we run this job more clearly when we increase the log priority to debug
(see Change the log-priority):

initctl log-priority debug

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://upstart.ubuntu.com
http://www.ubuntu.com
http://manpages.ubuntu.com/manpages/man7/upstart-events.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Now, we can watch the state transitions by viewing the system log.

4.5.3.1.1 If Job is Not Currently Running

status odd
odd stop/waiting
initctl emit event-A
status odd
odd start/running, process 9474

And here is an example from the system log (with annotations) showing what happened:

event_new: Pending event-A event # Upstart emitted the event.
Handling event-A event
event_pending_handle_jobs: New instance odd # Job instance created.
odd goal changed from stop to start # Since job not running,
odd state changed from waiting to starting # change goal to "start".
event_new: Pending starting event
Handling starting event
event_finished: Finished starting event
odd state changed from starting to pre-start
odd state changed from pre-start to spawned
odd main process (9474) # Start script section.
odd state changed from spawned to post-start
odd state changed from post-start to running # Job now fully started.
event_new: Pending started event
Handling started event
event_finished: Finished started event
event_finished: Finished event-A event

4.5.3.1.2 If Job is Currently Running

status odd
odd stop/waiting
start odd
odd start/running, process 11416 # Note this PID!
status odd
odd start/running, process 11416
initctl emit event-A
status odd
odd start/running, process 11428 # Look! It changed!

Here is an example from the system log showing what happened in more detail. First the entries relating
to starting the job:

odd goal changed from stop to start
odd state changed from waiting to starting
event_new: Pending starting event
Handling starting event
event_finished: Finished starting event
odd state changed from starting to pre-start
odd state changed from pre-start to spawned

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

odd main process (11416)
odd state changed from spawned to post-start
odd state changed from post-start to running
event_new: Pending started event
Handling started event
event_finished: Finished started event

Now, the event is emitted:

event_new: Pending event-A event
Handling event-A event
odd goal changed from start to stop # Job already running, so stop it.
odd state changed from running to pre-stop
odd state changed from pre-stop to stopping
event_new: Pending stopping event
event_pending_handle_jobs: New instance odd
odd goal changed from stop to start
Handling stopping event
event_finished: Finished stopping event
odd state changed from stopping to killed
Sending TERM signal to odd main process (11416) # Forcibly stop existing job process.
odd main process (11416) killed by TERM signal # Successfully stopped it.
odd state changed from killed to post-stop
odd state changed from post-stop to starting
event_new: Pending starting event
Handling starting event
event_finished: Finished starting event
odd state changed from starting to pre-start
odd state changed from pre-start to spawned
odd main process (11428) # New instance of job started with new PID.
odd state changed from spawned to post-start
odd state changed from post-start to running
event_new: Pending started event
Handling started event
event_finished: Finished started event
event_finished: Finished event-A event

4.5.3.2 Multiple Jobs

Upstart guarantees that jobs which stop on a particular event are processed before jobs that start on the
same event.

Consider two jobs like this:

• A.conf:

start on startup
stop on foo

• B.conf:

start on foo

Assuming that job "A" is already running, if the "foo" event is emitted, Upstart will always stop job "A"
before starting job "B".

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

4.6 Runlevels
A runlevel is a single-byte name for a particular system configuration. Runlevels for Debian and Ubuntu
systems are generally as follows 30:

• 0 : System halt.

• 1 : Single-User mode.

• 2 : Graphical multi-user plus networking (DEFAULT)

• 3 : Same as "2", but not used.

• 4 : Same as "2", but not used.

• 5 : Same as "2", but not used.

• 6 : System reboot.

There are also a few pseudo-runlevels:

• N : The previous runlevel cannot be determined.

• S : Alias for Single-User mode.

4.6.1 Display Runlevel
To display your current and previous runlevels separated by a space character, run the
/sbin/runlevel command. Note that if this command is unable to determine the system runlevel, it
may display simply "unknown":

$ runlevel
N 2

The output above shows that:

• there was no previous runlevel (the system was booted and went straight to the current runlevel).

• the current runlevel is "2".

4.6.2 Change Runlevel Immediately
To change runlevel immediately, use one of the commands below:

• reboot(8)

• shutdown(8)

• telinit(8)

4.6.3 Changing the Default Runlevel

4.6.3.1 Permanently

To change the default runlevel the system will boot into, modify the variable DEFAULT_RUNLEVEL in file
/etc/init/rc-sysinit.conf. For example, to make the system boot by default to single user mode,
set:

env DEFAULT_RUNLEVEL=1

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://www.debian.org
http://www.ubuntu.com
http://manpages.ubuntu.com/manpages/man8/reboot.8.html
http://manpages.ubuntu.com/manpages/man8/shutdown.8.html
http://manpages.ubuntu.com/manpages/man8/telinit.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

4.6.3.2 Single Boot

If you want to change the default runlevel for a single boot, rather than making the change permanent by
modify the rc-sysinit.conf file, simply append the variable to the kernel command line:

DEFAULT_RUNLEVEL=1

Traditionally, the default runlevel was encoded in file /etc/inittab. However, with Upstart, this file is
no longer used (it is supported by Upstart, but its use is deprecated).

5 System Phases
The information in this section relates to an Ubuntu system.

To obtain a better understanding of how jobs and events relate at startup and shutdown time, see
Visualising Jobs and Events.

5.1 Startup
At boot, after the initramfs system has been run (for setting up RAID, unlocking encrypted file system
volumes, et cetera), Upstart will be given control. The initramfs environment will exec(3) /sbin/init
(this is the main Upstart binary) and cause it to run as PID 1.

5.1.1 Startup Process
Note that in this section we assume the default runlevel is "2". See Changing the Default Runlevel for
further details.

1. Upstart performs its internal initialization.

2. Upstart itself emits a single event called startup(7).

This event triggers the rest of the system to initialize 29.

3. init(8) runs a small number of jobs which specify the startup(7) event in their start on condition.

The most notable of these is the mountall job which mounts your disks and filesystems.

4. The mountall(8) job in turn emits a number of events.

These include local-filesystems(7), virtual-filesystems(7) and all-swaps(7). See upstart-events(7) for
further details.

5. The virtual-filesystems(7) event causes the udev job to start.

6. The udev job causes the upstart-udev-bridge job to start.

7. The upstart-udev-bridge job will at some point emit the "net-device-up IFACE=lo" event
signifying the local network (for example, 127.0.0.0 for IPv4) is available.

8. After the last filesystem is mounted, mountall(8) will emit the filesytem event.

9. Since the start on condition for the rc-sysinit job is:

start on filesystem and net-device-up IFACE=lo

Upstart will then start the rc-sysinit job.

10. The rc-sysinit job calls the telinit command, passing it the runlevel to move to:

telinit 2

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man3/exec.3.html
http://manpages.ubuntu.com/manpages/man7/startup.7.html
http://manpages.ubuntu.com/manpages/man8/init.8.html
http://manpages.ubuntu.com/manpages/man7/startup.7.html
http://manpages.ubuntu.com/manpages/man8/mountall.8.html
http://manpages.ubuntu.com/manpages/man7/local-filesystems.7.html
http://manpages.ubuntu.com/manpages/man7/virtual-filesystems.7.html
http://manpages.ubuntu.com/manpages/man7/all-swaps.7.html
http://manpages.ubuntu.com/manpages/man7/upstart-events.7.html
http://manpages.ubuntu.com/manpages/man7/virtual-filesystems.7.html
http://manpages.ubuntu.com/manpages/man8/mountall.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

11. The telinit command emits the runlevel(7) event as:

runlevel RUNLEVEL=2 PREVLEVEL=N

Note that this is all the telinit command does – it runs no commands itself to change runlevel!

See Runlevels for further information on runlevels.

12. The runlevel(7) event causes many other Upstart jobs to start, including /etc/init/rc.conf
which starts the legacy SystemV init system.

5.2 Shutdown

5.2.1 Observations
There are some important points related to system shutdown:

• Upstart never shuts down itself

Upstart will "die" when the system is powered off, but if it ever exits, that is a bug.

• Upstart never stops a job with no stop on condition.

• Ubuntu employs both Upstart and SysV jobs.

Ubuntu currently employs a hybrid system where core services are handled by Upstart, but additional
services can be run in the legacy SystemV mode. This may seem odd, but consider that there are
thousands of packages available in Ubuntu via the Universe and Multiverse repositories and
hundreds of services. To avoid having to change every package to work with Upstart, Upstart allows
packages to utilize their existing SystemV (and thus Debian-compatible) scripts.

5.2.2 Shutdown Process
To initiate a shutdown, perform one of the following actions:

• Click "Shut Down..." (or equivalent) in your graphical environment (for example Gnome)

• Run the shutdown(8) command, for example:

shutdown -h now

The following steps will now be taken:

1. Assuming the current runlevel is "2", either of the actions above will cause Upstart to emit the
runlevel(7) event like this:

runlevel RUNLEVEL=0 PREVLEVEL=2

2. The job /etc/init/rc.conf will be run.

This job calls /etc/init.d/rc passing it the new runlevel ("0").

3. The SystemV system will then invoke the necessary scripts in /etc/rc0.d/ to stop SystemV
services.

4. One of the scripts run is /etc/init.d/sendsigs.

This script will kill any remaining processes not already stopped (including Upstart processes).

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man7/runlevel.7.html
http://manpages.ubuntu.com/manpages/man7/runlevel.7.html
http://manpages.ubuntu.com/manpages/man8/shutdown.8.html
http://manpages.ubuntu.com/manpages/man7/runlevel.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

5.3 Reboot
To initiate a reboot, perform one of the following actions:

• Click "Restart..." (or equivalent) in your graphical environment (for example Gnome)

• Run the shutdown(8) command specifying the "-r" option, for example:

shutdown -r now

• Run the reboot(8) command:

reboot

The following will steps will now be taken:

1. Assuming the current runlevel is "2", whichever command is run above will cause Upstart to emit the
runlevel(7) event like this:

runlevel RUNLEVEL=6 PREVLEVEL=2

2. The job /etc/init/rc.conf will be run.

This job calls /etc/init.d/rc passing it the new runlevel ("6").

3. The SystemV system will then invoke the necessary scripts in /etc/rc6.d/ to stop SystemV
services.

4. One of the scripts run is /etc/init.d/sendsigs.

This script will kill any remaining processes not already stopped (including Upstart processes).

5.4 Single-User Mode
When booting direct into single-user mode, the runlevel command will show:

runlevel
N S

See Runlevels.

5.5 Recovery Mode ()
Ubuntu provides a recovery mode in case your system experiences problems. This is handled by the
friendly-recovery package. If you select a "recovery mode" option on the Grub menu. This makes
the initramfs pass a flag to Upstart which ensures that the /etc/init/friendly-recovery.conf Upstart job is the
first job run after Upstart starts. As a result, this job has full control over the system and provides a friendly
menu that allows users to check disks with fsck(8), repair your package database and so on.

5.6 Failsafe Mode ()
This is a new phase introduced in Ubuntu 11.10 that borrows an idea from Google's Chrome OS. A new
job called failsafe has been introduced that checks to ensure the system has reached a particular state. If
the expected state is not attained, the job reboots the system automatically.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man8/shutdown.8.html
http://manpages.ubuntu.com/manpages/man8/reboot.8.html
http://manpages.ubuntu.com/manpages/man7/runlevel.7.html
http://www.ubuntu.com
http://manpages.ubuntu.com/manpages/man8/fsck.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

6 Configuration
This section lists a number of job configuration file stanzas, giving example usage for each. The reference
for your specific version of Upstart will be available in the init(5) man page. 14

6.1 Stanzas by Category

Configuration Stanzas by Category (detail in brackets show version of Upstart stanza added)

Category Stanzas Added in Version

Process Definition exec

pre-start

post-start

pre-stop

post-stop

script

Event Definition manual 0.6.7

start on

stop on

Job Environment env

export

Services, tasks and respawning normal exit

respawn

respawn limit

task

Instances instance

Documentation author

description

emits

version

usage 1.5

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man5/init.5.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Process environment console none

console log 1.4

console output

console owner

chdir

chroot

limit

nice

oom score

setgid 1.4

setuid 1.4

umask

Process Control expect fork

expect daemon

expect stop

kill signal 1.3

kill timeout

6.2 author
Syntax:

author <string>

Quoted name (and maybe contact details) of author of this Job Configuration File.

Example:

author "Scott James Remnant <scott@netsplit.com>"

6.3 console
For all versions of Upstart prior to v1.4, the default value for console was console none. As of Upstart
1.4, the default value is console log. If you are using Upstart 1.4 or later and wish to retain the old
default, boot specifying the --no-log command-line option. An alternative is to boot using the
--default-console <value> option which allows the default console value for jobs to be specified.
Using this option it is possible to set the default to none but still honour jobs that specify explicitly console
log.

6.3.1 console log
Only honoured for System Jobs: if specified for user jobs, Upstart will treat the job as if it had specified
console none.

Connects standard input to /dev/null. Standard output and standard error are connected to one end of
a pseudo-terminal such that any job output is automatically logged to a file in directory

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

/var/log/upstart/. This directory can be changed by specifying the --logdir <directory>
command-line option.

6.3.2 console none
Connects the job's standard input, standard output and standard error file descriptors to /dev/null.

6.3.3 console output
Connects the job's standard input, standard output and standard error file descriptors to the console
device.

6.3.3.1 Example of console output

console output

pre-start script

 # Perform whatever checks you like here (maybe checking
 # '/etc/default/foo' to see if the service is enabled # or not).
 #
 # if there are no problems detected, simply "exit 0", else do
 # something like this...

 # display an error message to stderr *on the console* and also write
 # the same message to the system log.
 logger -is -t "$UPSTART_JOB" "ERROR: foo!"

 # tell Upstart not to start the main process for the job.
 exit 1
end script

this service doesn't do much :-)
exec sleep 999

See pre-start.

6.3.4 console owner
Identical to console output except that additionally it makes the job the owner of the console device. This
means it will receive certain signals from the kernel when special key combinations such as Control-C are
pressed.

6.4 chdir
Syntax:

chdir <directory>

Runs the job's processes with a working directory in the specified directory instead of the root of the
filesystem.

Example:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

chdir /var/mydaemon

6.5 chroot
Syntax:

chroot <directory>

Runs the job's processes in a chroot(8) environment underneath the specified directory.

Note that the specified directory must have all the necessary system libraries for the process to be run,
often including /bin/sh.

Example:

chroot /srv/chroots/oneiric

6.6 description
Syntax:

description <string>

One line quoted description of Job Configuration File. For example:

description "OpenSSH server"

6.7 emits
Syntax:

emits <values>

Specifies the events the job configuration file generates (directly or indirectly via a child process). This
stanza can be specified multiple times for each event emitted. This stanza can also use the following shell
wildcard meta-characters to simplify the specification:

• asterisk ("*")

• question mark ("?")

• square brackets ("[" and "]")

For example, upstart-udev-bridge can emit a large number of events. Rather than having to specify every
possible event, since the form of the event names is consistent, a single emits stanza can be specified
to cover all possible events:

emits *-device-*

Further Examples:

emits foo-event bar-event wibble-event
emits hello

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man8/chroot.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

6.8 end script
This psuedo-stanza acts as a terminator for script sections:

• script.

• pre-start script.

• post-start script.

• pre-stop script.

• post-start script.

6.9 env
Syntax:

env KEY[=VALUE]

Allows an environment variable to be set which is accessible in all script sections.

Example:

env myvar="hello world"

script
 echo "myvar='$myvar'" > /run/script.log
end script

See Environment Variables.

6.10 exec
Syntax:

exec COMMAND [ARG]...

Stanza that allows the specification of a single-line command to run. Note that if this command-line
contains any shell meta-characters, it will be passed through a shell prior to being executed. This ensures
that shell redirection and variable expansion occur as expected.

Example:

exec /usr/bin/my-daemon --option foo -v

6.11 expect

Warning

This stanza is extremely important: read this section carefully!

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Upstart will keep track of the process ID that it thinks belongs to a job. If a job has specified the instance
stanza, Upstart will track the PIDs for each unique instance of that job.

If you do not specify the expect stanza, Upstart will track the life cycle of the first PID that it executes in
the exec or script stanzas. However, most Unix services will "daemonize", meaning that they will create a
new process (using fork(2)) which is a child of the initial process. Often services will "double fork" to
ensure they have no association whatsoever with the initial process. (Note that no services will fork more
than twice initially since there is no additional benefit in doing so).

In this case, Upstart must have a way to track it, so you can use expect fork, or expect daemon which
allows Upstart to use ptrace(2) to "count forks".

To allow Upstart to determine the final process ID for a job, it needs to know how many times that process
will call fork(2). Upstart itself cannot know the answer to this question since once a daemon is running, it
could then fork a number of "worker" processes which could themselves fork any number of times. Upstart
cannot be expected to know which PID is the "master" in this case, considering it does not know if worker
processes will be created at all, let alone how many times, or how many times the process will fork
initially. As such, it is necessary to tell Upstart which PID is the "master" or parent PID. This is achieved
using the expect stanza.

The syntax is simple, but you do need to know how many times your service forks.

Note that most daemons fork twice.

If your daemon has a "don't daemonize" or "run in the foreground" mode, then it's much simpler to use
that and not run with fork following. One issue with that though, is that Upstart will emit the started
JOB=yourjob event as soon as it has executed your daemon, which may be before it has had time to
listen for incoming connections or fully initialize.

A final point: the expect stanza only applies to exec and script stanzas: it has no effect on pre-start and
post-start.

It's important to note that the "expect" stanza is thus being used for two different but complementary
tasks:

• Identifying service readiness.

• PID tracking.

6.11.1 expect fork
Upstart will expect the process executed to call fork(2) exactly once.

Some daemons fork a new copy of themselves on SIGHUP, which means when the Upstart reload
command is used, Upstart will lose track of this daemon. In this case, expect fork cannot be used.
See Daemon Behaviour.

6.11.2 expect daemon
Upstart will expect the process executed to call fork(2) exactly twice.

6.11.3 expect stop
Specifies that the job's main process will raise the SIGSTOP signal to indicate that it is ready. init(8) will
wait for this signal before running the job's post-start script, or considering the job to be running.

6.11.4 How to Establish Fork Count
If the application you are attempting to create a Job Configuration File does not document how many
times it forks, you can run it with a tool such as strace(1) which will allow you to count the number of forks.
For example:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://manpages.ubuntu.com/manpages/man2/ptrace.2.html
http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://manpages.ubuntu.com/manpages/man8/init.8.html
http://manpages.ubuntu.com/manpages/man1/strace.1.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Trace all children of /usr/bin/myapp
$ sudo strace -o /tmp/strace.log -fFv /usr/bin/myapp --arg foo --hello wibble &

After allowing some "reasonable" time for the app to start, kill it and strace
$ sudo killall -9 strace

Display the number of forks
#
1 => specify "expect fork"
2 => specify "expect daemon"
#
$ sudo egrep "\<(fork|clone)\>\(" /tmp/strace.log | wc | awk '{print $1}'

6.11.5 Implications of Misspecifying expect
The table below summarizes the behaviour resulting for every combination of expect stanza and number
of fork(2) calls:

Expect Stanza Behaviour

Specification of Expect Stanza

Forks no expect expect fork expect daemon

0 Correct start hangs start hangs

1 Wrong pid tracked † Correct start hangs

2 Wrong pid tracked † Wrong pid tracked † Correct

Key:

'†' - No PID will be displayed.

6.11.6 Recovery on Misspecification of expect

6.11.6.1 When start hangs

The start command will "hang" if you have misspecified the expect stanza by telling Upstart to expect
more fork(2) calls than your application actually makes.

To resolve the situation:

1. Interrupt the start command by using "CONTROL+c" (or sending the process the SIGINT signal).

2. Run the initctl status command for your job. You will see something like:

myjob start/spawned, process 1234

You'll notice that the PID shown is actually correct since Upstart has tracked the initial PID.

3. Kill(1) the PID of your application.

4. Re-run the initctl status command for your job. You will see something like:

myjob stop/waiting

5. Correct the expect stanza specification in the job configuration file.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://manpages.ubuntu.com/manpages/man1/kill.1.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

6.11.6.2 When Wrong PID is Tracked

If you have misspecified the expect stanza by telling Upstart to expect fewer fork(2) calls than your
application actually makes, Upstart will be unable to manage it since it will be looking at the wrong PID.
The start command will start your job, but it will show unexpected output (the goal and state will be shown
as stop/waiting).

To resolve the situation:

1. Run the initctl status command for your job. You will see something like:

myjob stop/waiting

Notice that no PID is displayed.

2. Find your jobs PID using ps(1). (If you're struggling to find it, remember that the parent PID will
always be "1").

3. Kill(1) the PID of your application.

4. Correct the expect stanza specification in the job configuration file.

6.12 export
Export variables previously set with env to all events that result from this job. See for example Job
Lifecycle.

Note that no leading dollar sign ($) is specified.

Example:

env myvar="hello world"
export myvar

6.13 instance
Sometimes you want to run the same job, but with different arguments. The variable that defines the
unique instance of this job is defined with instance.

6.13.1 A Simple Instance Example
Let us start with a simple example which we will call "foo.conf":

instance $BAR

script
 . /etc/default/myapp-${BAR}

 echo "hello from instance $BAR"
 sleep 999
end script

The example above defines an instance job by specifying the instance stanza followed by the name of
a variable (note that you MUST specify the dollar sign ('$').

Note that the entire job is the instance job: providing the instance stanza allows Upstart to make each
running version of this job unique.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://manpages.ubuntu.com/manpages/man1/ps.1.html
http://manpages.ubuntu.com/manpages/man1/kill.1.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

The job first sources in an instance-specific configuration file the displays a message. Note again that
we're now using that instance variable $BAR.

So, let's start an instance of this job:

$ sudo start foo
start: Unknown parameter: BAR

Oops! We forgot to specify the particular value for the BAR variable which makes each instance unique.
Lets try again:

$ sudo start foo BAR=bar
foo (bar) start/running, process 1234

So, we now have one instance running. Let's start another:

$ sudo start foo BAR=bar
start: Job is already running: foo (bar)

Oops! We tried to run another instance with the same instance name (well, the same value of the BAR
variable technically). Lets try again:

$ sudo start foo BAR=baz
foo (baz) start/running, process 1235

Okay. We should now have two instance running, but let us confirm that:

$ initctl list | grep ^foo
foo (bar) start/running, process 1234
foo (baz) start/running, process 1235

Good - Upstart is running two instances as expected. Notice the instance name in brackets after the job
name in the initctl output above.

We will start one more instance:

$ sudo start foo BAR="hello world"
$ initctl list | grep ^foo
foo (bar) start/running, process 1234
foo (baz) start/running, process 1235
foo (hello world) start/running, process 1236

Let's try to stop the instances:

$ sudo stop foo
stop: Unknown parameter: BAR

That fails as Upstart needs to know which instance to stop and we didn't specify an instance value for the
BAR instance variable. Rather than stopping each instance in turn, let's script it so that we can stop then
all in one go:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

$ initctl list | grep "^foo " | cut -d\(-f2 | cut -d\) -f1 | while read i
do
 sudo stop foo BAR="$i"
done
foo stop/waiting
foo stop/waiting
foo stop/waiting
$

All unique instances of the foo job are now stopped.

6.13.2 Another Instance Example
Lets say that once memcached is up and running, we want to start a queue worker for each directory in
/var/lib/queues:

queue-workers

start on started memcached

task

script
 for dir in `ls /var/lib/queues` ; do
 start queue-worker QUEUE=$dir
 done
end script

And now:

queue-worker

stop on stopping memcached

respawn

instance $QUEUE

exec /usr/local/bin/queue-worker $QUEUE

In this way, Upstart will keep them all running with the specified arguments, and stop them if memcached
is ever stopped.

The instance stanza is designed to make a running job unique.

Notes:

• the stanza isn't restricted to a single value. You can do silly things like the following if you wish:

instance ${myvar1}hello${myvar2}-foo/\wibble${var3}{$JOB}

See Multiple Running Job Instances Without PID for another crazy real-life example.

• You must include at least one variable and it must have a leading dollar sign ($):

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

GOOD (value can be changed by specifying different values
for the variable called 'foo')
instance $foo

BAD (value will always be the string literal "foo")
instance foo

• If you attempt to start a job with the instance stanza, but forget to provide the required variables,
you will get an error since Upstart cannot then guarantee uniqueness. For example, if you have a job
configuration file foo.conf such as this:

instance $bar

script
 sleep 999
end script

Attempting to start it without specifying a value for foo will fail:

start foo
start: Unknown parameter: bar

Let's try again:

start foo bar=1
foo (1) start/running, process 30003

And now let's start another instance:

start foo bar="hello 1,2,3"
foo (hello 1,2,3) start/running, process 30008

Finally, let's see the current state of our two job instances:

$ initctl list|grep ^foo
foo (1) start/running, process 30003
foo (hello 1,2,3) start/running, process 30008

6.13.3 Starting an Instance Job Without Specifying an Instance Value
Note that if you have a job which makes use of instance but which may need to be run manually by an
administrator, it is possible to "cheat" and allow them to start the job without specifying an explicit instance
value:

/etc/init/trickery.conf
start on foo

instance $UPSTART_EVENTS
env UPSTART_EVENTS=

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Now, an Administrator can start this job as follows:

start trickery

And this will work even if there is already a running instance of the trickery job (assuming the existing
instance was started automatically).

This bit of trickery relies upon the fact that Upstart will set the $UPSTART_EVENTS environment variable
before starting this job as a result of its start on condition becoming true. In this case, Upstart would
therefore set UPSTART_EVENTS='foo'.

However, since the job sets a null default value for this variable, when an Administrator starts the job,
UPSTART_EVENTS will be set to a null value. This empty value is enough to make that instance unique
(since there are no other instances with a null instance value!)

See Environment Variables for details of $UPSTART_EVENTS.

6.14 kill signal
Specifies the stopping signal, SIGTERM by default, a job's main process will receive when stopping the
running job.

Example:

kill signal INT

Note that if you are running an older version of Upstart without this feature, and you have an application
which breaks with the normal conventions for shutdown signal, you can simulate it to some degree by
using start-stop-daemon(8) with the --signal option:

start on some-event

exec start-stop-daemon --signal SIGQUIT --start --exec /usr/bin/foo

6.15 kill timeout
The number of seconds Upstart will wait before killing a process. The default is 5 seconds.

Example:

kill timeout 20

6.16 limit
Provides the ability to specify resource limits for a job.

For example, to allow a job to open any number of files, specify:

limit nofile unlimited unlimited

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Note

If a user job specifies this stanza, it may fail to start should it specify a value greater than the users
privilege level allows.

For further details on the available limits see init(5) and getrlimit(2).

6.17 manual
Added in Upstart v0.6.7

This stanza will tell Upstart to ignore the start on / stop on stanzas. It is useful for keeping the logic and
capability of a job on the system while not having it automatically start at boot-up.

Example:

manual

6.18 nice
Change the jobs scheduling priority from the default. See nice(1).

Example:

run with lowest priority
nice 19

6.19 normal exit
Used to change Upstart's idea of what a "normal" exit status is. Conventionally, processes exit with status
"0" (zero) to denote success and non-zero to denote failure. If your application can exit with exit status
"13" and you want Upstart to consider this as an normal (successful) exit, then you can specify:

normal exit 0 13

You can even specify signals. For example, to consider exit codes "0", "13" as success and also to
consider the program to have completed successfully if it exits on signal "SIGUSR1" and "SIGWINCH",
specify:

normal exit 0 13 SIGUSR1 SIGWINCH

6.20 oom score
Linux has an "Out of Memory" killer facility. This is a feature of the kernel that will detect if a process is
consuming increasingly more memory. Once "triggered", the kernel automatically takes action by killing
the rogue process to avoid it impacting the system adversely.

Normally the OOM killer regards all processes equally, this stanza advises the kernel to treat this job
differently.

The "adjustment" value provided to this stanza may be an integer value from -999 (very unlikely to be
killed by the OOM killer) up to 1000 (very likely to be killed by the OOM killer). It may also be the special

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man5/init.5.html
http://manpages.ubuntu.com/manpages/man2/getrlimit.2.html
http://manpages.ubuntu.com/manpages/man1/nice.1.html
http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

value never to have the job ignored by the OOM killer entirely (potentially dangerous unless you really
trust the application in all possible system scenarios).

Example:

this application is a "resource hog"
oom score 1000

expect daemon
respawn
exec /usr/bin/leaky-app

6.21 post-start
Syntax:

post-start exec|script

Script or process to run after the main process has been spawned, but before the started(7) event has
been emitted.

Use this stanza when a delay (or some arbitrary condition) must be satisfied before an executed job is
considered "started". An example is MySQL. After executing it, it may need to perform recovery
operations before accepting network traffic. Rather than start dependent services, you can have a
post-start like this:

post-start script
 while ! mysqladmin ping localhost ; do sleep 1 ; done
end script

6.22 post-stop
Syntax:

post-stop exec|script

There are times where the cleanup done in pre-start is not enough. Ultimately, the cleanup should be
done both pre-start and post-stop, to ensure the service starts with a consistent environment, and does
not leave behind anything that it shouldn't.

exec /some/directory/script

If it is possible, you'll want to run your daemon with a simple exec line. Something like this:

exec /usr/bin/mysqld

If you need to do some scripting before starting the daemon, script works fine here. Here is one example
of using a script stanza that may be non-obvious:

statd - NSM status monitor

description "NSM status monitor"
author "Steve Langasek <steve.langasek@canonical.com>"

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man7/started.7.html
http://www.mysql.com/
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

start on (started portmap or mounting TYPE=nfs)
stop on stopping portmap

expect fork
respawn

env DEFAULTFILE=/etc/default/nfs-common

pre-start script
 if [-f "$DEFAULTFILE"]; then
 . "$DEFAULTFILE"
 fi

 ["x$NEED_STATD" != xno] || { stop; exit 0; }

 start portmap || true
 status portmap | grep -q start/running
 exec sm-notify
end script

script
 if [-f "$DEFAULTFILE"]; then
 . "$DEFAULTFILE"
 fi

 if ["x$NEED_STATD" != xno]; then
 exec rpc.statd -L $STATDOPTS
 fi
end script

Because this job is marked respawn, an exit of 0 is "ok" and will not force a respawn (only exiting with a
non-0 exit or being killed by an unexpected signal causes a respawn), this script stanza is used to start
the optional daemon rpc.statd based on the defaults file. If NEED_STATD=no is in
/etc/default/nfs-common, this job will run this snippet of script, and then the script will exit with 0 as
its return code. Upstart will not respawn it, but just gracefully see that it has stopped on its own, and return
to stopped status. If, however, rpc.statd had been run, it would stay in the start/running state
and be tracked normally.

6.23 pre-start
Syntax:

pre-start exec|script

Use this stanza to prepare the environment for the job. Clearing out cache/tmp dirs is a good idea, but any
heavy logic is discouraged, as Upstart job files should read like configuration files, not so much like
complicated software.

pre-start script
 [-d "/var/cache/squid"] || squid -k
end script

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Another possibility is to cancel the start of the job for some reason. One good reason is that it's clear from
the system configuration that a service is not needed:

pre-start script
 if ! grep -q 'parent=foo' /etc/bar.conf ; then
 stop ; exit 0
 fi
end script

Note that the "stop" command did not receive any arguments. This is a shortcut available to jobs where
the "stop" command will look at the current environment and determine that you mean to stop the current
job.

6.23.1 pre-start example ()
On Ubuntu, the common pre-start idiom is to use /etc/default/myapp, so the example would
become:

pre-start script

 # stop job from continuing if no config file found for daemon
 [! -f /etc/default/myapp] && { stop; exit 0; }

 # source the config file
 . /etc/default/myapp

 # stop job from continuing if admin has not enabled service in
 # config file.
 [-z "$ENABLED"] && { stop; exit 0; }

end script

This is safe since the job will not start (technically it won't progress beyond the pre-start stage) if:

• the config file does not exist.

• the config file has not been modified to enable the service.

Note that the example above assumes your applications configuration file is shell-compatible (in other
words it contains name="value" entries). If this is not the case, just use grep(1) or similar:

enabled=$(grep ENABLED=1 $CONFIG)
[-z "$enabled"] && exit 0

Or something like this:

if ! grep -q DISABLED=false /etc/default/myapp; then
 stop ; exit 0
fi

See Example of console output for another of example where you can display an error message if the job
detects it should not be started.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://www.ubuntu.com
http://manpages.ubuntu.com/manpages/man1/grep.1.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

6.24 pre-stop
Syntax:

pre-stop exec|script

The pre-stop stanza will be executed before the job's stopping(7) event is emitted and before the
main process is killed.

Stopping a job involves sending SIGTERM to it. If there is anything that needs to be done before
SIGTERM, do it here. Arguably, services should handle SIGTERM very gracefully, so this shouldn't be
necessary. However, if the service takes more than kill timeout seconds (default, 5 seconds) then it will be
sent SIGKILL, so if there is anything critical, like a flush to disk, and raising kill timeout is not an option,
pre-stop is not a bad place to do it. 16

You can also use this stanza to cancel the stop, in a similar fashion to the way one can cancel the start in
the pre-start.

6.25 respawn

Note

If you are creating a new Job Configuration File, do not specify the respawn stanza until you are
fully satisfied you have specifed the expect stanza correctly. If you do, you will find the behaviour
potentially very confusing.

Without this stanza, a job that exits quietly transitions into the stop/waiting state, no matter how it
exited.

With this stanza, whenever the main script/exec exits, without the goal of the job having been changed to
stop, the job will be started again. This includes running pre-start, post-start and post-stop. Note that
pre-stop will not be run.

There are a number of reasons why you may or may not want to use this. For most traditional network
services this makes good sense. If the tracked process exits for some reason that wasn't the
administrator's intent, you probably want to start it back up again.

Likewise, for tasks, (see below), respawning means that you want that task to be retried until it exits with
zero (0) as its exit code.

One situation where it may seem like respawn should be avoided, is when a daemon does not respond
well to SIGTERM for stopping it. You may believe that you need to send the service its shutdown
command without Upstart being involved, and therefore, you don't want to use respawn because Upstart
will keep trying to start your service back up when you told it to shutdown.

However, the appropriate way to handle that situation is a pre-stop which runs this shutdown command.
Since the job's goal will already be 'stop' when a pre-stop is run, you can shutdown the process through
any means, and the process won't be re-spawned (even with the respawn stanza).

6.26 respawn limit
Yes, this is different to a plain respawn: specifying respawn limit does not imply respawn.

Syntax:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man7/stopping.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

respawn limit COUNT INTERVAL

Example:

respawn the job up to 10 times within a 5 second period.
If the job exceeds these values, it will be stopped and
marked as failed.
respawn
respawn limit 10 5

Respawning is subject to a limit. If the job is respawned more than COUNT times in INTERVAL seconds,
it will be considered to be having deeper problems and will be stopped. Default COUNT is 10. Default
INTERVAL is 5 seconds.

Note that this only applies to automatic respawns and not the restart(8) command.

6.27 script
Allows the specification of a multi-line block of shell code to be executed. Block is termined by end script.

6.28 setgid
Added in Upstart v1.4

Syntax:

setgid <groupname>

Changes to the group <groupname> before running the job's process.

Warning

Note that all processes (pre-start, post-stop, et cetera) will be run with the group specified.

If this stanza is unspecified, the primary group of the user specified in the setuid block is used. If both
stanzas are unspecified, the job will run with its group ID set to 0 in the case of system jobs, and as the
primary group of the user in the case of User Jobs.

Example:

setgid apache

6.29 setuid
Added in Upstart v1.4

Syntax:

setuid <username>

Changes to the user <username> before running the job's process.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man8/restart.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Warning

Note that all processes (pre-start, post-stop, et cetera) will be run as the user specified.

If this stanza is unspecified, the job will run as root in the case of system jobs, and as the user in the case
of User Jobs.

Note that System jobs using the setuid stanza are still system jobs, and can not be controlled by an
unprivileged user, even if the setuid stanza specifies that user.

6.30 start on
This stanza defines the set of Events that will cause the Job to be automatically started.

Syntax:

start on EVENT [[KEY=]VALUE]... [and|or...]

Each event EVENT is given by its name. Multiple events are permitted using the operators "and" and "or"
and complex expressions may be performed with parentheses (within which line breaks are permitted).

You may also match on the environment variables contained within the event by specifying the KEY and
expected VALUE. If you know the order in which the variables are given to the event you may omit the
KEY.

VALUE may contain wildcard matches and globs as permitted by fnmatch(3) and may expand the value of
any variable defined with the env stanza.

Negation is permitted by using "!=" between the KEY and VALUE.

Note that if the job is already running and is not an instance job, if the start on condition becomes true
(again), no further action will be taken.

Note that the start on stanza expects a token to follow on the same line. Thus:

ERROR: invalid
start on
 foo or bar

OK
start on foo or bar

If no environment variables are specified via KEY to restrict the match, the condition will match all
instances of the specified event.

See Really understanding start on and stop on for further details.

6.30.1 Normal start
If you are just writing an upstart job that needs to start the service after the basic facilities are up, either of
these will work:

start on (local-filesystems and net-device-up IFACE!=lo)

or:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man3/fnmatch.3.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

start on runlevel [2345]

The difference in whether to use the more generic 'runlevel' or the more explicit local-filesystems(7) and
net-device-up events should be guided by your job's behaviour. If your service will come up without a
valid network interface (for instance, it binds to 0.0.0.0, or uses setsockopt(2) SO_FREEBIND), then the
runlevel event is preferable, as your service will start a bit earlier and start in parallel with other
services.

However if your service requires that a non-loopback interface is configured for some reason (i.e., it will
not start without broadcasting capabilities), then explicitly saying "once a non loopback device has come
up" can help.

In addition, services may be aggregated around an abstract job, such as network-services:

start on started network-services

The network-services job is a generic job that most network services should follow in releases where it is
available. 15 This allows the system administrator and/or the distribution maintainers to change the
general startup of services that don't need any special case start on criteria.

We use the started(7) event so that anything that must be started before all network services can do
"start on starting network-services".

6.30.2 Start depends on another service

start on started other-service

6.30.3 Start must precede another service

start on starting other-service

Example: your web app needs memcached to be started before apache:

start on starting apache2
stop on stopped apache2
respawn

exec /usr/sbin/memcached

6.31 stop on
This stanza defines the set of Events that will cause the Job to be automatically stopped if it is already
running.

Syntax:

stop on EVENT [[KEY=]VALUE]... [and|or...]

Like the stop on stanza, start on expects a token to follow on the same line:

ERROR: invalid
stop on

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man7/local-filesystems.7.html
http://manpages.ubuntu.com/manpages/man2/setsockopt.2.html
http://manpages.ubuntu.com/manpages/man7/started.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

 foo or bar

OK
stop on foo or bar

See start on for further syntax details.

6.31.1 Normal shutdown

stop on runlevel [016]

Or if a generic job is available such as network-services 15

stop on stopping network-services

6.31.2 Stop before depended-upon service

stop on stopping other-service

Note that this also will stop when other-service is restarted, so you will generally want to couple this
with the start on condition:

start on started other-service

6.31.3 Stop after dependent service

stop on stopped other-service

6.32 task
In concept, a task is just a short lived job. In practice, this is accomplished by changing how the transition
from a goal of "stop" to "start" is handled.

Without the 'task' keyword, the events that cause the job to start will be unblocked as soon as the job is
started. This means the job has emitted a starting(7) event, run its pre-start, begun its script/exec, and
post-start, and emitted its started(7) event.

With task, the events that lead to this job starting will be blocked until the job has completely transitioned
back to stopped. This means that the job has run up to the previously mentioned started(7) event, and has
also completed its post-stop, and emitted its stopped(7) event.

Typically, task is for something that you just want to run and finish completely when a certain event
happens.

pre-warm-memcache

start on started memcached

task

exec /path/to/pre-warm-memcached

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man7/starting.7.html
http://manpages.ubuntu.com/manpages/man7/started.7.html
http://manpages.ubuntu.com/manpages/man7/started.7.html
http://manpages.ubuntu.com/manpages/man7/stopped.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

So you can have another job that starts your background queue worker once the local memcached is
pre-warmed:

queue-worker

start on stopped pre-warm-memcache
stop on stopping memcached

respawn

exec /usr/local/bin/queue-worker

The key concept demonstrated above is that we "start on stopped pre-warm-memcache". This
means that we don't start until the task has completed. If we were to use started instead of stopped,
we would start our queue worker as soon as /path/to/pre-warm-memcached had been started
running.

We could also accomplish this without mentioning the pre-warm in the queue-worker job by doing this:

queue-worker

start on started memcached
stop on stopping memcached

respawn

exec /usr/local/bin/queue-worker

pre-warm-memcache

start on starting queue-worker
task
exec /path/to/pre-warm-memcache

If we did not use "task" in the above example, queue-worker would be allowed to start as soon as we
executed /path/to/pre-warm-memcache, which means it might potentially start before the cache was
warmed.

6.33 umask
Syntax:

umask <value>

Set the file mode creation mask for the process. <value>" should be an octal value for the mask. See
umask(2) for more details.

Example:

umask 0002

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man2/umask.2.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

6.34 usage
Brief message explaining how to start the job in question. Most useful for instance jobs which require
environment variable parameters to be specified before they can be started.

Syntax:

usage <string>

Example:

instance $DB
usage "DB - name of database instance"

If a job specifies the usage stanza, attempting to start the job without specifying the correct variables will
display the usage statement. Additionally, the usage can be queried using initctl usage.

6.35 version
Syntax:

version <string>

This stanza may contain version information about the job, such as revision control or package version
number. It is not used or interpreted by init(8) in any way.

Example:

version "1.0.2a-beta4"

7 Command-Line Options
The table below lists the command-line options accepted by the Upstart init daemon.

Warning

Under normal conditions, you should not need to specify any command-line options to Upstart. A
number of these options were added specifically for testing Upstart itself and if used without due
care can stop your system from booting (for example specifying --no-startup-event).
Therefore you should be extremely careful specifying any command-line options to Upstart unless
you understand the implications of doing so.

Command-line Options

Option Name Description
Added in
Version

--confdir=DIR Specify alternate configuration directory (default:
/etc/init/)

1.3

--debug Enable Informational and debug messages 0.1.0

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man8/init.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

--default-console=VALUESpecify default value for jobs not specifying console
(default: none (Upstart < 1.4), else log)

1.4

--help Show usage statement for init 0.1.0

--logdir=DIR Specify alternate log directory (default:
/var/log/upstart/)

1.4

--no-log Disable job logging (all job output is discarded) 1.4

--no-sessions Disable user sessions 1.3

--no-startup-event Disable emitting an event at startup 1.3

-q , --quiet Reduce output to errors only 0.1.0

--sessions Use D-Bus session bus rather than D-Bus system bus 1.3

--startup-event=NAME Specify an alternative initial event (default: startup
event)

1.3

-v , --verbose Increase output to include informational messages 0.1.0

--version Display version information 0.1.0

Notes:

• An alternative to --debug and --verbose is to modify the message level at runtime by using
initctl log-priority.

8 Explanations

8.1 Really understanding start on and stop on
(Note: This section focuses on start on, but the information also applies to stop on unless explicitly
specified).

The start on stanza needs careful contemplation. Consider this example:

start on started mysql

The syntax above is actually a short-hand way of writing:

start on started JOB=mysql

Remember that started(7) is an event which Upstart emits automatically when the mysql job has started
to run. The whole start on stanza can be summarized as:

start on <event> [<vars_to_match_event_on>]

Where <vars_to_match_event_on> is optional, but if specified comprises one or more variables.

A slight variation of the above:

start on started JOB=mydb DBNAME=foobar

This example shows that the fictitious job above would only be started when the mydb database server
brings the foobar database on-line. Correspondingly, file /etc/init/mydb.conf would need to
specify "export DBNAME" and be started like this:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man7/started.7.html
http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

start mydb DBNAME=foobar

Looking at a slightly more complex real-life example:

/etc/init/alsa-mixer-save.conf
start on starting rc RUNLEVEL=[06]

This job says,

"Run when the rc job emits the starting(7) event, but only if the

environment variable RUNLEVEL equals either 0 (halt) or 6 (reboot)".

If we again add in the implicit variable it becomes clearer:

/etc/init/alsa-mixer-save.conf
start on starting JOB=rc RUNLEVEL=[06]

But where does the RUNLEVEL environment variable come from? Well, variables are exported in a job
configuration file to related jobs. Thus, the answer is The rc Job.

If you look at this job configuration file, you will see, as deduced:

export RUNLEVEL

8.1.1 The rc Job
The rc job configuration file is well worth considering:

/etc/init/rc.conf
start on runlevel [0123456]
stop on runlevel [!$RUNLEVEL]

export RUNLEVEL
export PREVLEVEL

console output
env INIT_VERBOSE

task

exec /etc/init.d/rc $RUNLEVEL

It says in essence,

"Run the SysV init script as /etc/init.d/rc $RUNLEVEL when telinit(8) emits the runlevel(7)
event for any runlevel".

However, note the stop on condition:

stop on runlevel [!$RUNLEVEL]

This requires some explanation. The manual page for runlevel(7) explains that the runlevel event
specifies two variables in the following order:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man7/starting.7.html
http://manpages.ubuntu.com/manpages/man8/telinit.8.html
http://manpages.ubuntu.com/manpages/man7/runlevel.7.html
http://manpages.ubuntu.com/manpages/man7/runlevel.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

• RUNLEVEL

The new "goal" runlevel the system is changing to.

• PREVLEVEL

The previous system runlevel (which may be set to an empty value).

Thus, the stop on condition is saying:

"Stop the rc job when the runlevel event is emitted and the RUNLEVEL variable matches
'[!$RUNLEVEL]'.

This admittedly does initially appear nonsensical. The way to read the statement above though is:

"Stop the rc job when the runlevel event is emitted and the RUNLEVEL variable is not set to the
current value of the RUNLEVEL variable."

So, if the runlevel is currently "2" (full graphical multi-user under Ubuntu), the RUNLEVEL variable will be
set to RUNLEVEL=2. The condition will thus evaluate to:

stop on runlevel [!2]

This is just a safety measure. What it is saying is:

• if the rc job (which is a short-running Task) is still running when the system changes to a different
runlevel (a runlevel other than "2" here), Upstart will stop it.

• If it is not running when the system changes to a different runlevel, no action will be taken to stop the
job (since it has already stopped).

However, note that when the system moves to a new runlevel, Upstart will then immediately re-run the job
at the new runlevel since the start on condition specifies that this job should be started in every runlevel.

Since this job has specified the runlevel event, it automatically gets access to the variables set by this
event (RUNLEVEL and PREVLEVEL). However, note that these two variables are also exported. The
reason for this is to allow other jobs which start on or stop on the rc job to make use of these variables
(which were set by the runlevel event).

See runlevel(7) for further details.

8.2 Environment Variables
Upstart allows you to set environment variables which will be accessible to the jobs whose job
configuration files they are defined in. Environment variables are set using the env keyword.

For example:

/etc/init/env.conf
env TESTING=123

script
 # prints "TESTING='123'" to system log
 logger -t $0 "TESTING='$TESTING'"
end script

Further, we can pass environment variables defined in events to jobs using the env stanza and the export
stanza. Assume we have two job configuration files, A.conf and B.conf:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://www.ubuntu.com
http://upstart.ubuntu.com
http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man7/runlevel.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

/etc/init/A.conf
start on wibble
export foo

/etc/init/B.conf
start on A
script
 logger "value of foo is '$foo'"
end script

If we now run the following command, both jobs A and B will run, causing B to write "value of foo
is 'bar'" to the system log:

initctl emit wibble foo=bar

Note that a variables value can always be overridden by specifying a new value on the command-line. For
example:

start on wibble
env var=hello

script
 logger "value of var is '$var'"
end script

When we emit the required event...:

initctl emit wibble var=world

... the system log will have recorded:

value of var is 'world'

Note that a Job Configuration File does not have access to a user's environment variables, not even the
superuser. This is not possible since all job processes created are children of init which does not have
a user's environment.

However, using the technique above, it is possible to inject a variable from a user's environment into a job
indirectly:

initctl emit wibble foo=bar USER=$USER

As another example of environment variables, consider this job configuration file 16:

env var=bar
export var

pre-start script
 logger "pre-start: before: var=$var"

 var=pre-start
 export var

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

 logger "pre-start: after: var=$var"
end script

post-start script
 logger "post-start: before: var=$var"

 var=post-start
 export var

 logger "post-start: after: var=$var"
end script

script
 logger "script: before: var=$var"

 var=main
 export var

 logger "script: after: var=$var"
end script

post-stop script
 logger "post-stop: before: var=$var"

 var=post-stop
 export var

 logger "post-stop: after: var=$var"
end script

This will generate output in your system log as follows (the timestamp and hostname have been removed,
and the output formatted to make it clearer):

logger: pre-start: before: var=bar
logger: pre-start: after: var=pre-start

logger: post-start: before: var=bar
logger: post-start: after: var=post-start

logger: script: before: var=bar
logger: script: after: var=main

logger: post-stop: before: var=bar
logger: post-stop: after: var=post-stop

As shown, every script section receives the value of $var as bar, but if any script section changes the
value, it only affects that particular script sections copy of the variable. To summarize:

A script section cannot modify the value of a variable defined in a job configuration file for other script
sections.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

8.2.1 Restrictions
Environment variables do not expand in start on or stop on conditions:

env FOO=bar
start on $FOO

This will start the job in question when the "$FOO" event is emitted, not when the event "bar" is emitted:

job above *NOT* started
initctl emit bar

job above started!
initctl emit '$FOO'

Similarly, the following will not work:

start on starting $FOO
start on starting JOB=$FOO

8.2.2 Standard Environment Variables
The table below shows all variables set by Upstart itself. Note that variables prefixed by "UPSTART_" are
variables set within a jobs environment, whereas the remainder are set within an events environment (see
the following table).

Upstart Environment Variables.

Variable Brief Description Details

EXIT_SIGNAL Signal causing job to
exit

String such as "HUP" or "TERM", or numeric for unknown
signals

EXIT_STATUS Exit code of job

INSTANCE Instance name of
$JOB

Variable set but with no value if instance stanza not specified

JOB Name of job

PROCESS Name of Job
process type

"main", "pre-start", "post-start", "pre-stop",
"post-stop" or "respawn"

RESULT Whether job was
successful

"ok" or "failed"

UPSTART_EVENTSEvents that caused
job to start

Space-separated. Event environment not provided

UPSTART_FDS File descriptor Number of the file descriptor corresponding to the listening
socket-event(7) socket

UPSTART_INSTANCEInstance name of
$UPSTART_JOB

UPSTART_JOB Name of current job

UPSTART_STOP_EVENTSEvents that caused
job to stop

Space-separated. Event environment not provided

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man7/socket-event.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

The following table lists the variables from the table above which are set when job events are emitted, and
which are thus available from within a jobs environment.

Environment Variables by Event.

Event Variables Set in Event Environment

starting(7)
• INSTANCE

• JOB

started(7)
• INSTANCE

• JOB

stopping(7)
• INSTANCE

• JOB

• RESULT

• PROCESS *

• EXIT_STATUS †

• EXIT_SIGNAL †

stopped(7)
• INSTANCE

• JOB

• RESULT

• PROCESS *

• EXIT_STATUS †

• EXIT_SIGNAL †

Notes that some variables (those marked with '*' and '†') are only set when the job fails:

• PROCESS will always be set.

• Either EXIT_STATUS or EXIT_SIGNAL will be set.

Note carefully the distinction between JOB and UPSTART_JOB. If a job "bar.conf" specifies a start on
condition of:

start on starting foo

and does not specify the instance stanza, when job "foo" starts, the environment of the "bar" job will
contain:

JOB=foo
UPSTART_JOB=bar
UPSTART_EVENTS=starting
INSTANCE=

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man7/starting.7.html
http://manpages.ubuntu.com/manpages/man7/started.7.html
http://manpages.ubuntu.com/manpages/man7/stopping.7.html
http://manpages.ubuntu.com/manpages/man7/stopped.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

8.3 Job with Multiple Duplicate Stanzas
The way in which Upstart parses the job configuration files means that "the last entry wins". That is to say,
every job configuration file must be syntactically correct, but if you had a file such as:

start on event-A
start on starting job-B
start on event-C or starting job-D

This job will have a start on condition of:

start on event-C or starting job-D

...since that is the last start on condition specified.

For start on, stop on and emits stanzas, you can confirm Upstart's decision, you can use the initctl
show-config command like this:

initctl show-config myjob

For the example above, the output would be:

start on event-C or starting job-D

8.4 Job Specifying Same Condition in start on on stop on
See Ordering of Stop/Start Operations.

9 Features

9.1 D-Bus Service Activation
As of D-Bus version 1.4.1-0ubuntu2 (in Ubuntu), you can have Upstart start a D-Bus service rather than
D-Bus. This is useful because it is then possible to create Upstart jobs that start or stop when D-Bus
services start.

See Run a Job When a User Logs in for an example.

10 Tools
Upstart provides a number of additional tools to:

• help manage your system

• create Upstart events from other sources

10.1 Utilities

10.1.1 reload
Symbolically linked to initctl, causing the following to be run:

initctl reload <job>

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://dbus.freedesktop.org
http://upstart.ubuntu.com
http://dbus.freedesktop.org
http://dbus.freedesktop.org
http://upstart.ubuntu.com
http://dbus.freedesktop.org
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

This will send a running job the SIGHUP signal. By convention, daemons receiving this signal reload their
configuration or in some way re-initialize themselves (keeping the same PID).

10.1.2 restart
Symbolically linked to initctl, causing the following to be run:

initctl restart <job>

Stops and then starts a job.

10.1.3 runlevel
See Runlevels.

10.1.4 start
Symbolically linked to initctl, causing the following to be run:

initctl start <job>

Starts a job.

10.1.4.1 Attempting to Start an Already Running Job

If you try to start a job that is already running and which does not specify the instance stanza, you will get
the following error:

start myjob
start: Job is already running: myjob

10.1.4.2 Attempting to Start a Job that requires an Instance Variable

If you try to start a job that specifies the instance stanza, you will need to specify the appropriate variable.
If you do not, you will get an error. For example, assuming myjob.conf specified instance $foo:

start myjob
start: Unknown parameter: foo

To resolve this, specify some value for the variable in question:

start myjob foo="hello, world"

10.1.5 stop
Symbolically linked to initctl, causing the following to be run:

initctl stop <job>

Stops a job.

10.1.5.1 Attempting to Stop an Already Stopped Job

If you try to stop a job that is not running, you will get the following error:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

stop myjob
stop: unknown instance

10.1.5.2 Attempting to Stop a Job that requires an Instance Variable

If you try to stop a job that specifies the instance stanza without specifying the particular instance you wish
to stop, you will get an error:

stop myjob
stop: Unknown parameter: foo

To resolve this, specify the value for the variable in question:

stop myjob foo=...

Where "..." must be replaced by a legitimate value for one of the instances as specified in the output of
"initctl status myjob".

10.1.6 initctl
This is the primary command used by users and Administrators to interact with Upstart.

• Run initctl help to see the available commands.

• Run initctl --help to see the overall options available.

• Run initctl <command> --help to see options for the specified command.

Commands to manipulate jobs:

• reload

• restart

• start

• stop

10.1.6.1 initctl Commands Summary

Summary of initctl commands

Command Description
Added in
Version

initctl check-config Check for unreachable jobs/event conditions 1.3

initctl emit Emit an event 0.3.0

initctl help Display list of commands 0.3.0

initctl list List known jobs 0.2.0

initctl log-priority Change the minimum priority of log messages displayed by
the init daemon

0.3.8

initctl notify-disk-writeable Inform Upstart that disk is now writeable 1.5

initctl reload Send HUP signal to job 0.6.5

initctl reload-configuration Reload the configuration 0.6.0

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

initctl restart Restart job 0.6.0

initctl show-config Show emits, start on and stop on details for job(s) 1.3

initctl start Start job 0.1.0

initctl status Query status of job 0.1.0

initctl stop Stop job 0.1.0

initctl usage Show job usage message if available 1.5

initctl version Request the version of the init daemon 0.3.8

10.1.6.2 initctl check-config

The initctl check-config command can be used to check that the events and jobs a job
configuration file references are "known" to the system. This is important, since if a System Administrator
were to inadvertently force the removal of a package, or inadvertently delete a critical job configuration
file, the system may no longer boot. Usage is simple:

$ # search all job configuration files for "unreachable" conditions
$ initctl check-config

$ # search specified job configuration file for unreachable conditions
$ initctl check-config <job>

Some job configuration files -- such as plymouth.conf -- have complex start on conditions which look
for any of a number of jobs. As long as one valid set of events can be satisfied, check-config will be
happy. However, to see if it found any missing jobs or events, specify the --warn option. Note that the
first invocation returns no output, denoting that no problems have been found:

$ initctl check-config plymouth
$ initctl check-config --warn plymouth
plymouth
 start on: unknown job uxlaunch
 start on: unknown job lightdm
 start on: unknown job lxdm
 start on: unknown job xdm
 start on: unknown job kdm
$

Note that this is not an error condition since although check-config cannot satisfy any of these jobs, it
can satisfy the overall configuration for plymouth (by the gdm job - see plymouth.conf on Ubuntu).

Note that the check-config command relies on the emits stanza to be correctly specified for each job
configuration file that emits an event (see init(5)). See also 26.

10.1.6.3 initctl emit

Generates an arbitrary event.

Example:

initctl emit hello-world

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man5/init.5.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Important

If you attempt to emit an event and it blocks (appears to hang), this is because there are other jobs
which have a start on or stop on condition which contains this event. See Event Types for further
details.

10.1.6.4 initctl help

Displays a list of initctl commands.

10.1.6.5 initctl list

The list command simply aggregates the status of all job instances. See initctl status.

10.1.6.6 initctl log-priority

To change the syslog(3) priority with which Upstart logs messages to the system log, you can change the
log priority at any time using log-priority command as follows:

initctl log-priority <priority>

For example:

: same as "--verbose"
initctl log-priority info

: same as "--debug"
initctl log-priority debug

Note that you will need to check the configuration for your system logging daemon (generally syslog or
rsyslogd(8)) to establish where it logs the output.

the output of these options is handled by your systems look at the particular daemons configuration to
know where to find the output.

For a standard Ubuntu Maverick (10.10) system, the output will be in file /var/log/daemon.log, whilst
on newer Ubuntu systems such as Ubuntu Natty (11.04), the output will be in file /var/log/syslog.

10.1.6.7 initctl notify-disk-writeable

Command that is used to notify Upstart that the log disk is writeable 7.

This is an indication to Upstart that it can flush the log of job output for jobs that ended before the log disk
became writeable. If logging is enabled, this command must be called once the disks become writeable.

10.1.6.8 initctl reload

Causes the SIGHUP signal to be sent to the main job process since this signal is commonly used to
inform an application to re-initialize itself. Note that the jobs associated Job Configuration File is not
re-read.

10.1.6.9 initctl reload-configuration

Force the init daemon to reload its configuration files.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man3/syslog.3.html
http://manpages.ubuntu.com/manpages/man8/rsyslogd.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

It is generally not necessary to call this command since the init daemon watches its configuration
directories with inotify(7) and automatically reloads in cases of changes.

Note that no jobs will be started by this command.

10.1.6.10 initctl restart

Cause the associated job to be killed and respawned. Note that this does not cause the job to re-read its
Job Configuration File: to force this, stop the job and then start it.

10.1.6.11 initctl show-config

The initctl show-config command can be used to display details of how Upstart has parsed one or
more job configuration files. The command displays the start on, stop on and emits stanzas. This might
seem rather pointless, but it is extremely useful since:

• The command will fully-bracket all start on and stop on conditions.

This shows how Upstart has parsed complex conditions. For example, if job myjob specified a start
on condition:

start on starting a or b and stopping c or d

The command would return:

myjob:
 start on (((starting a or b) and stopping c) or d)

• The command can produce machine parseable output showing the types of entities by specifying the
"--enumerate" option.

For example, the job above would be displayed as:

myjob
 start on starting (job: a, env:)
 start on b (job:, env:)
 start on stopping (job: c, env:)
 start on d (job:, env:)

Thus,

• a is a job (with triggering event starting(7)).
• b is an event.

• c is a job (with triggering event stopping(7)).

• d is a event.

• The command shows the environment for the events.

Assuming a (ridiculous) start on condition of:

start on event-a foo=bar a=b c=22 d="hello world" or stopped job-a e=123 f=blah or hello world=2a or starting foo foo=foo

Then:

$ initctl show-config --enumerate myjob
myjob

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man7/inotify.7.html
http://manpages.ubuntu.com/manpages/man7/starting.7.html
http://manpages.ubuntu.com/manpages/man7/stopping.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

 start on event-a (job:, env: foo=bar a=b c=22 d=hello world)
 start on stopped (job: job-a, env: e=123 f=blah)
 start on hello (job:, env: world=2a)
 start on starting (job: foo, env: foo=foo)

As shown, this makes the condition (slightly!) easier to understand:

• event-a is an event with 4 environment variables:

• foo=bar

• a=b

• c=22

• d=hello world

• job-a is a job with triggering event stopped(7) and 2 environment variables:

• e=123

• f=blah

• hello is an event with 1 environment variable:

• world=2a

• foo is a job with triggering event starting(7) and 1 environment variable:

• foo=foo
See also 25.

10.1.6.12 initctl start

Start the specified job or job instance.

10.1.6.13 initctl status

The status(8) command shows the status of all running instances of a particular job.

The format of the output can be summarized as follows:

<job> [(<instance>)]<goal>/<status>[, process <PID>]
 [<section> process <PID>]

Considering each field:

• <job> is the name of the job

Essentially, this is the name of the job configuration file, less the path and without the ".conf"
extension. Thus, /etc/init/myjob.conf would display as "myjob".

• <instance> is the job instance.

See instance and Determining How to Stop a Job with Multiple Running Instances.

• <goal>

Every job has a goal of either start or stop where the goal is the target the job is aiming for. It
may not achieve this target, but the goal shows the "direction" the job is heading in: it is either trying
to be started, or be stopped.

• When a Task Job starts, its goal will be start and once the task in question has completed,
Upstart will change its goal to stop.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man7/stopped.7.html
http://manpages.ubuntu.com/manpages/man7/starting.7.html
http://manpages.ubuntu.com/manpages/man8/status.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

• When a Service Job starts, its goal will be start and will remain so until either the jobs stop
on condition becomes true, or an Administrator manually stops the job using stop.

• <status>

The job instances status. See Job States.

• <PID> is the process ID of the running process corresponding to <job>.

See ps(1).

• <section> is a script or exec section (such as pre-stop).

Lets look at some examples...

10.1.6.13.1 Single Job Instance Running without PID

Here is the summarised syntax:

<job> <goal>/<status>

Example:

ufw start/running

You may be forgiven for thinking this rather curious specimen is an Abstract Job. Although you cannot
determine the fact from the output above, this job is not an abstract job. If you look at its job configuration
file /etc/init/ufw.conf, you'll see the following:

description "Uncomplicated firewall"

Make sure we start before an interface receives traffic
start on (starting network-interface
 or starting network-manager
 or starting networking)

stop on runlevel [!023456]

console output

pre-start exec /lib/ufw/ufw-init start quiet
post-stop exec /lib/ufw/ufw-init stop

Notice the last two lines above. The firewall job configuration file has a pre-start section and a post-stop
section, but no script or exec section. So, once Upstart has run the pre-start command and the job is
"running", it won't actually have a PID (since the pre-start command will have finished and there is no
further command to run until the job stops).

10.1.6.13.2 Single Job Instance Running Job with PID

A single instance of a running job can be summarized like this:

<job> <goal>/<status>, process <PID>

This is possibly the "most common case" of jobs you will see. For example:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man1/ps.1.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

cups start/running, process 1733

Where:

• <job> is "cups" (/etc/init/cups.conf).

• <goal> is "start"

• <status> is "running"

• <process> is "1733" (as shown by ps(1)).

10.1.6.13.3 Single Job Instance Running with Multiple PIDs

This can be summarized as:

<job> <goal>/<status>, process <PID>
 <section> process <PID>

For example:

ureadahead stop/pre-stop, process 227
 pre-stop process 5579

What is going on here? Picking this apart we have:

• ureadahead is the job (/etc/init/ureadahead.conf).

• stop is the goal (job is trying to stop).

• pre-stop is the job status (it is running the pre-stop section as PID 5579).

• the script or exec stanza is also running under PID 227. See pre-stop for further details.

10.1.6.13.4 Multiple Running Job Instances Without PID

Summary:

<job> (<instance>) <goal>/<status> (<instance>)
<job> (<instance>) <goal>/<status> (<instance>)

A job with multiple instances might look a little strange initially. Here is an example:

network-interface (lo) start/running
network-interface (eth0) start/running

Where:

• network-interface is the job (/etc/init/network-interface.conf).

• job instances are:

• lo

• eth0

• start is the goal (job instances are currently running).

• running is the job status (it is running).

A slightly more complex example:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man1/ps.1.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

network-interface-security (network-manager) start/running
network-interface-security (network-interface/eth0) start/running
network-interface-security (network-interface/lo) start/running
network-interface-security (networking) start/running

Where:

• network-interface-security is the job
(/etc/init/network-interface-security.conf).

• job instances are:

• network-manager

• network-interface/eth0

• network-interface/lo

• networking

• start is the goal (job instances are currently running).

• running is the job status (it is running).

Let's look at the main elements of the corresponding job configuration file:

start on (starting network-interface
 or starting network-manager
 or starting networking)

instance JOB{INTERFACE:+/}${INTERFACE:-}

pre-start script
 # ...
end script

Again, this job has no script or exec section, but it does have a pre-start script section. Also, note the
interesting instance stanza. This explains the rather odd-looking instance names listed above.

10.1.6.13.5 Multiple Running Job Instances With PIDs

Summary:

<job> (<instance>) <goal>/<status> (<instance>), process <PID>

For example:

foo (1) start/running, process 30003
foo (hello 1,2,3) start/running, process 30008

Where:

• foo is the job (/etc/init/foo.conf).

• start is the goal (it is not trying to stop).

• running is the job status (it is running).

• instances are:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

• 1 (PID 30003)

• hello 1,2,3 (PID 30008)

10.1.6.13.6 Multiple Running Job Instances With Multiple PIDs

Summary:

<job> (<instance>) <goal>/<status> (<instance>), process <PID>
 <section> process <PID>

For example:

myjob (foo) stop/pre-stop, process 31677
 pre-stop process 31684
myjob (bar) stop/pre-stop, process 31679
 pre-stop process 31687
myjob (bzr) stop/pre-stop, process 31681
 pre-stop process 31690

Where:

• myjob is the job (/etc/init/myjob.conf).

• stop is the goal (job is trying to stop).

• pre-stop is the job status (it is running the pre-stop section for each instance).

• instances are:

• foo (PID 31677, with pre-stop PID 31684)

• bar (PID 31679, with pre-stop PID 31687)

• baz (PID 31681, with pre-stop PID 31690)
It is instructive to see how we got to the output above. Here is the job configuration file:

instance $foo

exec sleep 999

pre-stop script
 sleep 999
end script

We then started three instances like this:

for i in foo bar baz; do start -n myjob foo=$i; done

Note we used the "-n" option to start to ensure we didn't have to wait for each instance to complete
before starting the next.

Now all three instances are running:

initctl list|grep -A 1 ^inst
myjob start/running (foo), process 31677
myjob start/running (bar), process 31679

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

myjob start/running (baz), process 31681

To trigger the pre-stop, we need to stop the instances:

for i in foo bar baz; do stop -n myjob foo=$i; done
myjob (foo) stop/pre-stop, process 31677
 pre-stop process 31684
myjob (bar) stop/pre-stop, process 31679
 pre-stop process 31687
myjob (baz) stop/pre-stop, process 31681
 pre-stop process 31690

Now, running initctl will show the output at the start of this section.

10.1.6.13.7 Stopped Job

Summary:

<job> <goal>/<status>

A job that is not running (has no instances):

rc stop/waiting

Where:

• rc is the job (/etc/init/rc.conf).

• stop is the goal (it is not trying to start).

• waiting is the job status (it is not running).

10.1.6.14 initctl stop

Stop the specified job or job instance.

10.1.6.15 initctl usage

This command allows the usage for a job to be queried:

$ initctl usage <job>

Note that if a job is specified which does not use the usage stanza, no usage will be displayed.

10.1.6.16 initctl version

Display the version of the init daemon. To display the version of initctl itself, run:

initctl --version

10.1.7 init-checkconf
The init-checkconf script performs checks on a job configuration file prior to installing it in
/etc/init/. The script must be run as a non-root user.

To ensure that you haven't misused the Upstart syntax, use the init-checkconf command:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

$ init-checkconf myjob.conf

See init-checkconf(8) for further details.

10.1.8 mountall ()
NOTE: mountall(8) is an Ubuntu-specific extension.

The mountall daemon is the program that mounts your filesystems during boot on an Ubuntu system. It
does this by parsing both /etc/fstab and its own fstab file /lib/init/fstab, and mounting the
filesystems it finds listed. Additionally, it handles running fsck(8).

See fstab(5).

10.1.8.1 Mountall events

Mountall also emits a number of useful events. For every filesystem it determines needs to be mounted, it
will emit up to 2 events:

• mounting

• mounted

Additional to the couplet above, mountall also emits the following "well-known" events. The sections
below provide details.

The mountall daemon is unusual in emitting such a number of events. However, it does this to provide
as much flexibility as possible since making disks and filesystem available is such an important part of the
boot process (and a lot of other jobs need to be notified when certain mounts become available).

10.1.8.1.1 mounting

Emitted when a particular filesystem is about to be mounted.

See mounting(7).

10.1.8.1.2 mounted

Emitted by when a particular filesystem has been mounted successfully.

Note that if a filesystem failed to mount, no corresponding mounted event will be emitted.

See mounted(7).

10.1.8.1.3 all-swaps

Emitted when all swap devices are mounted.

See all-swaps(7).

10.1.8.1.4 filesystem

Emitted after mountall (ubuntu-specific) has mounted (or at least attempted to mount) all filesystems.

See filesystem(7).

10.1.8.1.5 virtual-filesystems

Emitted after the last virtual filesystem has been mounted.

See virtual-filesystems(7).

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man8/init-checkconf.8.html
http://manpages.ubuntu.com/manpages/man8/mountall.8.html
http://manpages.ubuntu.com/manpages/man8/fsck.8.html
http://manpages.ubuntu.com/manpages/man5/fstab.html
http://manpages.ubuntu.com/manpages/man7/mounting.7.html
http://manpages.ubuntu.com/manpages/man7/mounted.7.html
http://manpages.ubuntu.com/manpages/man7/all-swaps.7.html
http://manpages.ubuntu.com/manpages/man7/filesystem.html
http://manpages.ubuntu.com/manpages/man7/virtual-filesystems.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

10.1.8.1.6 local-filesystems

Emitted after the last local filesystem has been mounted.

See local-filesystems(7).

10.1.8.1.7 remote-filesystems

Emitted after the last remote filesystem has been mounted.

See remote-filesystems(7).

10.1.8.2 Mountall Event Summary

+--+---------------------+
mounting MOUNTPOINT=/virtual-1	mounting TYPE=swap
mounted MOUNTPOINT=/virtual-1	mounted TYPE=swap
:	all-swaps
mounting MOUNTPOINT=/virtual-n	
mounted MOUNTPOINT=/virtual-n	
virtual-filesystems	
+-----------------------------+------------------------------+	
mounting MOUNTPOINT=/local-1	mounting MOUNTPOINT=/remote-1
mounted MOUNTPOINT=/local-1	mounted MOUNTPOINT=/remote-1
:	:
mounting MOUNTPOINT=/local-n	mounting MOUNTPOINT=/remote-n
mounted MOUNTPOINT=/local-n	mounted MOUNTPOINT=/remote-n
local-filesystems	remote-filesystems
+-----------------------------+------------------------------+---------------------+	
filesystem	
+--+

The diagram above shows the different event flows when mountall runs. Note in particular that columns
should be considered as independent "threads" of execution (can happen at any time and independently),
and rows are sequential: rows lower down the chart occur at at later time than those higher up the chart.

Notes on mountall event emission:

• swap partitions are processed at any time.

• virtual filesystems are processed at any time.

• virtual filesystems are processed before local or remote filesystems (regardless of their ordering
in /etc/fstab).

• local and remote filesystems are mounted at any time after the last virtual filesystem has been
mounted.

See mounting(7) and mounted(7). For a concise summary of all available events generated by mountall,
see upstart-events(7).

10.1.8.3 mountall Examples

The examples which follow were generated using the following job configuration file
/etc/init/get_mountall.conf:

start on (local-filesystems
 or (mounting
 or (mounted
 or (virtual-filesystems

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man7/local-filesystems.7.html
http://manpages.ubuntu.com/manpages/man7/remote-filesystems.7.html
http://manpages.ubuntu.com/manpages/man7/mounting.7.html
http://manpages.ubuntu.com/manpages/man7/mounted.7.html
http://manpages.ubuntu.com/manpages/man7/upstart-events.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

 or (remote-filesystems
 or (all-swaps or filesystem))))))

script
 echo "\n`env`" >> /dev/.initramfs/mountall.log
end script

Script output:

MOUNTPOINT=/proc
UPSTART_INSTANCE=
UPSTART_JOB=get_mountall
TERM=linux
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTIONS=nodev,noexec,nosuid
TYPE=proc
UPSTART_EVENTS=mounted
PWD=/
DEVICE=proc

MOUNTPOINT=/sys/fs/fuse/connections
UPSTART_INSTANCE=
UPSTART_JOB=get_mountall
TERM=linux
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTIONS=optional
TYPE=fusectl
UPSTART_EVENTS=mounted
PWD=/
DEVICE=fusectl

MOUNTPOINT=/dev/pts
UPSTART_INSTANCE=
UPSTART_JOB=get_mountall
TERM=linux
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTIONS=noexec,nosuid,gid=tty,mode=0620
TYPE=devpts
UPSTART_EVENTS=mounted
PWD=/
DEVICE=none

MOUNTPOINT=/sys/kernel/debug
UPSTART_INSTANCE=
UPSTART_JOB=get_mountall
TERM=linux
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTIONS=optional
TYPE=debugfs
UPSTART_EVENTS=mounted
PWD=/
DEVICE=none

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

MOUNTPOINT=/sys/kernel/security
UPSTART_INSTANCE=
UPSTART_JOB=get_mountall
TERM=linux
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTIONS=optional
TYPE=securityfs
UPSTART_EVENTS=mounting
PWD=/
DEVICE=none

MOUNTPOINT=/sys/kernel/security
UPSTART_INSTANCE=
UPSTART_JOB=get_mountall
TERM=linux
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTIONS=optional
TYPE=securityfs
UPSTART_EVENTS=mounted
PWD=/
DEVICE=none

MOUNTPOINT=/dev/shm
UPSTART_INSTANCE=
UPSTART_JOB=get_mountall
TERM=linux
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTIONS=nosuid,nodev
TYPE=tmpfs
UPSTART_EVENTS=mounting
PWD=/
DEVICE=none

MOUNTPOINT=/dev/shm
UPSTART_INSTANCE=
UPSTART_JOB=get_mountall
TERM=linux
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTIONS=nosuid,nodev
TYPE=tmpfs
UPSTART_EVENTS=mounted
PWD=/
DEVICE=none

MOUNTPOINT=/var/run
UPSTART_INSTANCE=
UPSTART_JOB=get_mountall
TERM=linux
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTIONS=mode=0755,nosuid,showthrough
TYPE=tmpfs
UPSTART_EVENTS=mounting
PWD=/
DEVICE=none

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

MOUNTPOINT=/var/run
UPSTART_INSTANCE=
UPSTART_JOB=get_mountall
TERM=linux
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTIONS=mode=0755,nosuid,showthrough
TYPE=tmpfs
UPSTART_EVENTS=mounted
PWD=/
DEVICE=none

MOUNTPOINT=/var/lock
UPSTART_INSTANCE=
UPSTART_JOB=get_mountall
TERM=linux
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTIONS=nodev,noexec,nosuid,showthrough
TYPE=tmpfs
UPSTART_EVENTS=mounting
PWD=/
DEVICE=none

MOUNTPOINT=/var/lock
UPSTART_INSTANCE=
UPSTART_JOB=get_mountall
TERM=linux
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTIONS=nodev,noexec,nosuid,showthrough
TYPE=tmpfs
UPSTART_EVENTS=mounted
PWD=/
DEVICE=none

MOUNTPOINT=/lib/init/rw
UPSTART_INSTANCE=
UPSTART_JOB=get_mountall
TERM=linux
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTIONS=mode=0755,nosuid,optional
TYPE=tmpfs
UPSTART_EVENTS=mounted
PWD=/
DEVICE=none

UPSTART_INSTANCE=
UPSTART_JOB=get_mountall
TERM=linux
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
UPSTART_EVENTS=virtual-filesystems
PWD=/

UPSTART_INSTANCE=
UPSTART_JOB=get_mountall

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

TERM=linux
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
UPSTART_EVENTS=remote-filesystems
PWD=/

MOUNTPOINT=none
UPSTART_INSTANCE=
UPSTART_JOB=get_mountall
TERM=linux
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTIONS=sw
TYPE=swap
UPSTART_EVENTS=mounting
PWD=/
DEVICE=/dev/disk/by-uuid/b67802dc-35f9-4153-9957-ef04c7af6a1f

MOUNTPOINT=none
UPSTART_INSTANCE=
UPSTART_JOB=get_mountall
TERM=linux
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTIONS=sw
TYPE=swap
UPSTART_EVENTS=mounted
PWD=/
DEVICE=/dev/disk/by-uuid/b67802dc-35f9-4153-9957-ef04c7af6a1f

UPSTART_INSTANCE=
UPSTART_JOB=get_mountall
TERM=linux
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
UPSTART_EVENTS=all-swaps
PWD=/

MOUNTPOINT=/
UPSTART_INSTANCE=
UPSTART_JOB=get_mountall
TERM=linux
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTIONS=errors=remount-ro
TYPE=ext4
UPSTART_EVENTS=mounting
PWD=/
DEVICE=/dev/disk/by-uuid/b68c4bc0-6342-411c-878a-a576b3a255b3

MOUNTPOINT=/
UPSTART_INSTANCE=
UPSTART_JOB=get_mountall
TERM=linux
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTIONS=errors=remount-ro
TYPE=ext4
UPSTART_EVENTS=mounted
PWD=/

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

DEVICE=/dev/disk/by-uuid/b68c4bc0-6342-411c-878a-a576b3a255b3

MOUNTPOINT=/tmp
UPSTART_INSTANCE=
UPSTART_JOB=get_mountall
TERM=linux
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTIONS=defaults
TYPE=none
UPSTART_EVENTS=mounting
PWD=/
DEVICE=none

MOUNTPOINT=/tmp
UPSTART_INSTANCE=
UPSTART_JOB=get_mountall
TERM=linux
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
OPTIONS=defaults
TYPE=none
UPSTART_EVENTS=mounted
PWD=/
DEVICE=none

UPSTART_INSTANCE=
UPSTART_JOB=get_mountall
TERM=linux
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
UPSTART_EVENTS=local-filesystems
PWD=/

UPSTART_INSTANCE=
UPSTART_JOB=get_mountall
TERM=linux
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
UPSTART_EVENTS=filesystem
PWD=/

10.2 Bridges
Bridges react to events from some other (non-Upstart) source and create corresponding Upstart events.

10.2.1 plymouth-upstart-bridge ()
The plymouth-upstart-bridge is an Ubuntu-specific facility to allow Plymouth to display Upstart
state changes on the boot splash screen.

See the Plymouth Ubuntu wiki page for more information on Plymouth.

10.2.2 upstart-socket-bridge
The Upstart socket bridge is an out-of-process application that "listens" for jobs that announce they
"start on socket". The bridge arranges for the jobs in question to be started automatically at the point
the first client connection is made on the socket specified in their start on condition. See socket-event(7).

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://www.ubuntu.com
http://www.freedesktop.org/wiki/Software/Plymouth
http://upstart.ubuntu.com
https://wiki.ubuntu.com/Plymouth
http://manpages.ubuntu.com/manpages/man7/socket-event.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

This is a useful "lazy" facility in that it allows for applications which are expensive to load to be started "on
demand" rather than simply at some point on every boot: if you have no customers to your web site one
day, there is probably no point in starting your database server. The downside to using the bridge being
that the first client connection will probably be slower than subsequent connections to allow the application
time to start.

10.2.3 upstart-udev-bridge
The Upstart udev(7) bridge creates Upstart events from udev events. As documented in
upstart-udev-bridge(8), Upstart will create events named:

<subsystem>-device-<action>

Where:

• <subsystem> is the udev subsystem.

• <action> is the udev action.

Upstart maps the three actions below to new names, but any other actions are left unmolested:

• add becomes added

• change becomes changed

• deleted becomes removed

To see a list of possible Upstart events for your system:

for subsystem in /sys/class/*
do
 for action in added changed removed
 do
 echo "${subsystem}-device-${action}"
 done
done

Alternatively, you could parse the following:

udevadm info --export-db

To monitor udev events:

$ udevadm monitor --environment

And now for some examples...

If a job job-A specified a start on condition of:

start on (graphics-device-added or drm-device-added)

To see what sort of information is available to this job, we can add the usual debugging information:

start on (graphics-device-added or drm-device-added)
script
 echo "`env`" > /dev/.initramfs/job-A.log

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man7/udev.7.html
http://manpages.ubuntu.com/manpages/man8/upstart-udev-bridge.html
http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

end script

Here is an example of the log:

DEV_LOG=3
DEVNAME=/dev/fb0
UPSTART_INSTANCE=
ACTION=add
SEQNUM=1176
MAJOR=29
KERNEL=fb0
DEVPATH=/devices/platform/efifb.0/graphics/fb0
UPSTART_JOB=job-A
TERM=linux
SUBSYSTEM=graphics
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
MINOR=0
UPSTART_EVENTS=graphics-device-added
PWD=/
PRIMARY_DEVICE_FOR_DISPLAY=1

Another example specifying a start on containing net-device-added:

ID_BUS=pci
UDEV_LOG=3
UPSTART_INSTANCE=
ID_VENDOR_FROM_DATABASE=Realtek Semiconductor Co., Ltd.
ACTION=add
SEQNUM=1171
MATCHADDR=52:54:00:12:34:56
IFINDEX=2
KERNEL=eth0
DEVPATH=/devices/pci0000:00/0000:00:03.0/net/eth0
UPSTART_JOB=job-A
TERM=linux
SUBSYSTEM=net
ID_MODEL_ID=0x8139
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
ID_MM_CANDIDATE=1
ID_MODEL_FROM_DATABASE=RTL-8139/8139C/8139C+
UPSTART_EVENTS=net-device-added
INTERFACE=eth0
PWD=/
MATCHIFTYPE=1
ID_VENDOR_ID=0x10ec

Plugging in a USB webcam will generate an input-device-added event:

DEV_LOG=3
DEVNAME=/dev/input/event12
UPSTART_INSTANCE=
ACTION=add

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

SEQNUM=2689
XKBLAYOUT=gb
MAJOR=13
ID_INPUT=1
KERNEL=event12
DEVPATH=/devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2/input/input33/event12
UPSTART_JOB=test_camera
TERM=linux
DEVLINKS=/dev/char/13:76 /dev/input/by-path/pci-0000:00:1d.0-event
SUBSYSTEM=input
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
MINOR=76
DISPLAY=:0.0
ID_INPUT_KEY=1
ID_PATH=pci-0000:00:1d.0
UPSTART_EVENTS=input-device-added
PWD=/

Note: you may get additional events if it also includes a microphone or other sensors.

Plugging in a USB headset (headphones plus a microphone) will probably generate three events:

• sound-device-added (for the headphones):

UPSTART_INSTANCE=
ACTION=add
SEQNUM=2637
KERNEL=card2
DEVPATH=/devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2/2-1.2:1.0/sound/card2
UPSTART_JOB=test_sound
TERM=linux
SUBSYSTEM=sound
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
UPSTART_EVENTS=sound-device-added
PWD=/

• usb-device-added (also for the headphones):

UDEV_LOG=3
DEVNAME=/dev/bus/usb/002/027
UPSTART_INSTANCE=
ACTION=add
SEQNUM=2635
BUSNUM=002
MAJOR=189
KERNEL=2-1.2
DEVPATH=/devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2
UPSTART_JOB=test_usb
ID_MODEL_ENC=Logitech\x20USB\x20Headset
ID_USB_INTERFACES=:010100:010200:030000:
ID_MODEL=Logitech_USB_Headset
TERM=linux
DEVLINKS=/dev/char/189:154
ID_SERIAL=Logitech_Logitech_USB_Headset
SUBSYSTEM=usb

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

UPOWER_VENDOR=Logitech, Inc.
ID_MODEL_ID=0a0b
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
MINOR=154
TYPE=0/0/0
UPSTART_EVENTS=usb-device-added
ID_VENDOR_ENC=Logitech
DEVNUM=027
PRODUCT=46d/a0b/1013
PWD=/
ID_VENDOR=Logitech
DEVTYPE=usb_device
ID_VENDOR_ID=046d
ID_REVISION=1013

• input-device-added (for the microphone):

UDEV_LOG=3
UPSTART_INSTANCE=
ACTION=add
PHYS="usb-0000:00:1d.0-1.2/input3"
SEQNUM=2645
EV==13
KERNEL=input31
DEVPATH=/devices/pci0000:00/0000:00:1d.0/usb2/2-1/2-1.2/2-1.2:1.3/input/input31
UPSTART_JOB=test_input
MSC==10
NAME="Logitech Logitech USB Headset"
TERM=linux
SUBSYSTEM=input
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
MODALIAS=input:b0003v046Dp0A0Be0100-e0,1,4,k72,73,ram4,lsfw
KEY==c0000 0 0 0
UPSTART_EVENTS=input-device-added
PRODUCT=3/46d/a0b/100
PWD=/

10.2.3.1 Careful Use of udev Events

You need to be careful when using the upstart-udev-bridge since certain devices are NOT ready at
the point the kernel generates the original udev event: in these circumstances, all the kernel is saying is "I
have this device", not "I have this device and it is ready to use".

The problem is that the kernel does not know when the device is ready and neither can Upstart know this.
The kernel is simply signalling that the device has either:

• become available (once the upstart-udev-bridge emits the "*-device-added" event).

• changed state somehow (once the upstart-udev-bridge emits the one or more
"*-device-changed" events).

So, for example, just because you have received a "usb-device-added" event for your USB modem
does not guarantee that the modem is operational.

Unfortunately, every device acts differently, so you really do need specialist knowledge of the device in
question.

However, a general rule of thumb is that a device is ready once Upstart has emitted a "changed" event
for the device which also includes a "ID_" variable in that events environment. This is of particular
importance for "block" devices and "sound" devices.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

11 Cookbook and Best Practises

11.1 List All Jobs
To list all jobs on the system along with their states, run:

$ initctl list

See initctl.

11.2 List All Jobs With No stop on Condition

list all jobs (stopped and running instances), and compact down
to actual job names.
initctl list | awk '{print $1}' | sort -u | while read job
do
 # identify jobs with no "stop on"
 initctl show-config -e $job | grep -q "^ stop on" || echo "$job"
done

11.3 List All Events That Jobs Are Interested In On Your System
Here is another example of how initctl show-config can be useful:

initctl show-config -e | egrep -i "(start|stop) on" | awk '{print $3}' | sort -u

11.4 Create an Event
To create, or "emit" an event, use initctl(8) specifying the emit command.

For example, to emit the hello event, you would run:

initctl emit hello

This event will be "broadcast" to all Upstart jobs.

If you are creating a job configuration file for a new application, you probably do not need to do this
though, since Upstart emits events on behalf of a job whenever the job changes state.

A simple configuration file like that shown below may suffice for your application:

/etc/init/myapp.conf
description "run my app under Upstart"
task
exec /path/to/myapp

11.5 Create an Event Alias
Say you have an event, but want to create a different name for it, you can simulate a new name by
creating a new job which:

• has a start on that matches the event you want to "rename"

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man8/initctl.8.html
http://upstart.ubuntu.com
http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

• is a task

• emits the new name for the event

For example, if you wanted to create an alias for a particular flavour of the runlevel event called
"shutdown" which would be emitted when the system was shutdown, you could create a job configuration
file called /etc/init/shutdown.conf containing:

start on runlevel RUNLEVEL=0
task
exec initctl emit shutdown

Note that this isn't a true alias since:

• there are now two events which will be generated when the system is shutting down:

• runlevel RUNLEVEL=0

• shutdown

• the two events will be delivered by Upstart at slightly different times (shutdown will be emitted just
fractionally before runlevel RUNLEVEL=0).

However, the overall result might suffice for your purposes such that you could create a job configuration
file like the following which will run (and complete) just before your system changes to runlevel 0 (in other
words halts):

start on shutdown
task
exec backup_my_machine.sh

11.5.1 Change the Type of an Event
Note that along with creating a new name for an event, you could make your alias be a different type of
event. See Event Types for further details.

11.6 Synchronisation
Upstart is very careful to ensure when a condition becomes true that it starts all relevant jobs in sequence
(see Order in Which Jobs Which start on the Same Event are Run). However, although Upstart has
started them one after another they might still be running at the same time. For example, assume the
following:

• /etc/init/X.conf

start on event-A
script
 echo "`date`: $UPSTART_JOB started" >> /tmp/test.log
 sleep 2
 echo "`date`: $UPSTART_JOB stopped" >> /tmp/test.log
end script

• /etc/init/Y.conf

start on event-A

script

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

 echo "`date`: $UPSTART_JOB started" >> /tmp/test.log
 sleep 2
 echo "`date`: $UPSTART_JOB stopped" >> /tmp/test.log
end script

• /etc/init/Z.conf

start on event-A

script
 echo "`date`: $UPSTART_JOB started" >> /tmp/test.log
 sleep 2
 echo "`date`: $UPSTART_JOB stopped" >> /tmp/test.log
end script

Running the following will cause all the jobs above to run in some order:

initctl emit event-A

Here is sample output of /tmp/test.log:

Thu Mar 31 10:20:44 BST 2011: Y started
Thu Mar 31 10:20:44 BST 2011: X started
Thu Mar 31 10:20:44 BST 2011: Z started
Thu Mar 31 10:20:46 BST 2011: Y stopped
Thu Mar 31 10:20:46 BST 2011: Z stopped
Thu Mar 31 10:20:46 BST 2011: X stopped

There are a few points to note about this output:

• All jobs start "around the same time" but are started sequentially.

• The order the jobs are initiated by Upstart cannot be predicted.

• All three jobs are running concurrently.

It is possible with a bit of thought to create a simple framework for synchronisation. Take the following job
configuration file /etc/init/synchronise.conf:

manual

This one-line Abstract Job configuration file is extremely interesting in that:

• Since it includes the manual keyword, a job created from it can only be started manually.

• Only a single instance of a job created from this configuration can exist (since no instance stanza
has been specified).

What this means is that we can use a job based on this configuration as a simple synchronisation device.

The astute reader may observe that synchronise has similar semantics to a POSIX pthread condition
variable.

Now we have our synchronisation primitive, how do we use it? Here is an example which we'll call
/etc/init/test_synchronise.conf:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

start on stopped synchronise

allow multiple instances
instance $N

this is not a service
task

pre-start script
 # "lock"
 start synchronise || true
end script

script
 # do something here, knowing that you have exclusive access
 # to some resource that you are using the "synchronise"
 # job to protect.
 echo "`date`: $UPSTART_JOB ($N) started" >> /tmp/test.log
 sleep 2
 echo "`date`: $UPSTART_JOB ($N) stopped" >> /tmp/test.log
end script

post-stop script
 # "unlock"
 stop synchronise || true
end script

For example, to run 3 instances of this job, run:

for n in $(seq 3)
do
 start test_synchronise N=$n
done

Here is sample output of /tmp/test.log:

Thu Mar 31 10:32:20 BST 2011: test_synchronise (1) started
Thu Mar 31 10:32:22 BST 2011: test_synchronise (1) stopped
Thu Mar 31 10:32:22 BST 2011: test_synchronise (2) started
Thu Mar 31 10:32:24 BST 2011: test_synchronise (2) stopped
Thu Mar 31 10:32:25 BST 2011: test_synchronise (3) started
Thu Mar 31 10:32:27 BST 2011: test_synchronise (3) stopped

The main observation here:

• Each instance of the job started and stopped before any other instance ran.

Like condition variables, this technique require collaboration from all parties. Note that you cannot know
the order in which each instance of the test_synchronise job will run.

Note too that it is not necessary to use instances here. All that is required is that your chosen set of jobs
all collaborate in their handling of the "lock". Instances make this simple since you can spawn any number
of jobs from a single "template" job configuration file.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

11.7 Determine if Job was Started by an Event or by "start"
A job that specifies a start on condition can be started in two ways:

• by Upstart itself when the start on condition becomes true.

• by running, "start <job>".

Interestingly, it is possible for a job to establish how it was started by considering the UPSTART_EVENTS
variable:

• If the UPSTART_EVENTS variable is set in the job environment, the job was started by an event.

• If the UPSTART_EVENTS variable is not set in the job environment, the job was started by the
start command.

Note that this technique does not allow you to determine definitively if the job was started manually by an
Administrator since it is possible that if the UPSTART_EVENTS variable is not set that the job was started
by another job calling start inside a script section.

11.8 Stop a Job from Running if A pre-start Condition Fails
If you wish a job to not be run if a pre-start condition fails:

pre-start script
 # main process will not be run if /some/file does not exist
 test -f /some/file || { stop ; exit 0; }
end script

script
 # main process is run here
end script

11.9 Run a Job Only When an Event Variable Matches Some
Value
By default, Upstart will run your job if the start on condition matches the events listed:

start on event-A

But if event-A provides a number of environment variables, you can restrict your job to starting only
when one or more of these variables matches some value. For example:

start on event-A FOO=hello BAR=wibble

Now, Upstart will only run your job if all of the following are true:

• the event-A is emitted

• the value of the $FOO variable in event-A's environment is "hello".

• the value of the $BAR variable in event-A's environment is "wibble".

11.10 Run a Job when an Event Variable Does Not Match Some
Value
Upstart supports negation of environment variable values such that you can say:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://upstart.ubuntu.com
http://upstart.ubuntu.com
http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

start on event-A FOO=hello BAR!=wibble

Now, Upstart will only run your job if all of the following are true:

• the event-A is emitted

• the value of the $FOO variable in event-A's environment is "hello".

• the value of the $BAR variable in event-A's environment is not "wibble".

11.11 Run a Job as Soon as Possible After Boot
(Note: we ignore the initramfs in this section).

To start a job as early as possible, simply "start on" the startup event. This is the first event Upstart
emits and all other events and jobs follow from this:

start on startup

11.12 Run a Job When a User Logs in Graphically ()
Assuming a graphical login, this can be achieved using a start on condition of:

start on desktop-session-start

This requires the display manager emit the event in question. See the upstart-events(7) man page on an
Ubuntu system for the 2 events a Display Manager is expected to emit. If your Display Manager does not
emit these event, check its documentation to see if it allows scripts to be called at appropriate points and
then you can easily conform to the reference implementations behaviour:

A user has logged in
/sbin/initctl -q emit desktop-session-start \
 DISPLAY_MANAGER=some_name USER=$USER

Display Manager has initialized and displayed a login screen
(if appropriate)
/sbin/initctl -q emit login-session-start \
 DISPLAY_MANAGER=some_name

11.13 Run a Job When a User Logs in
This makes use of D-Bus Service Activation.

1. Add "UpstartJob=true" to file
"/usr/share/dbus-1/system-services/org.freedesktop.ConsoleKit.service".

2. Create a job configuration file corresponding to the D-Bus service, say
/etc/init/user-login.conf 12:

start on dbus-activation org.freedesktop.ConsoleKit
exec /usr/sbin/console-kit-daemon --no-daemon

3. Ensure that the D-Bus daemon ("dbus-daemon") is started with the --activation=upstart
option (see /etc/init/dbus.conf).

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man7/upstart-events.7.html
http://dbus.freedesktop.org
http://dbus.freedesktop.org
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Now, when a user logs in, D-Bus will emit the dbus-activation event, specifying the D-Bus service
started. You can now create other jobs that start on user-login.

11.13.1 Environment
Below is an example of the environment such an Upstart D-Bus job runs in:

UPSTART_INSTANCE=
DBUS_STARTER_BUS_TYPE=system
UPSTART_JOB=user-login
TERM=linux
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
SERVICE=org.freedesktop.ConsoleKit
DBUS_SYSTEM_BUS_ADDRESS=unix:path=/var/run/dbus/system_bus_socket,guid=e86f5a01fbb7f5f1c22131090000000a
UPSTART_EVENTS=dbus-activation
PWD=/
DBUS_STARTER_ADDRESS=unix:path=/var/run/dbus/system_bus_socket,guid=e86f5a01fbb7f5f1c22131090000000a

11.14 Run a Job For All of a Number of Conditions
If you have a job configuration file like this:

start on (event-A or (event-B or event-C))

script
 echo "`date`: ran in environment: `env`" >> /tmp/myjob.log
end script

Upstart will run this job when any of the following events is emitted:

• event-A

• event-B

• event-C

You cannot know the order in which the events will arrive in, but the specified start on condition has told
Upstart that any of them will suffice for your purposes. So, if event-B is emitted first, Upstart will run the
job and only consider re-running the job if and when the job has finished running. If event-B is emitted
and the job is running and then (before the job finishes running) event-A is emitted, the job will not be
re-run.

However, what if you wanted to run the script for all the events? If you know that all of these events will be
emitted at some point, you could change the start on to be:

start on (event-A and (event-B and event-C))

Here, the job will only run at the time when the last of the three events is received.

Is it possible to run this job for each event as soon as each event arrives? Yes it is:

start on (event-A or (event-B or event-C))

instance $UPSTART_EVENTS

script
 echo "`date`: ran in environment: `env`" >> /tmp/myjob.log
end script

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://dbus.freedesktop.org
http://dbus.freedesktop.org
http://dbus.freedesktop.org
http://upstart.ubuntu.com
http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

By adding the instance keyword, you ensure that whenever any of the events listed in your start on
condition is emitted, an instance of the job will be run. Therefore, if all three events are emitted very close
together in time, three jobs instances will now be run.

See the Instance section for further details.

11.15 Run a Job Before Another Job
If you wish to run a particular job before some other job, simply make your jobs start on condition
specify the starting(7) event. Since the starting(7) event is emitted just before the job in question starts,
this provides the behaviour you want since your job will be run first.

For example, assuming your job is called job-B and you want it to start before job-A, in
/etc/init/job-B.conf you would specify:

start on starting job-A

11.16 Run a Job After Another Job
If you have a job you wish to run after job "job-A", your start on condition would need to make use of
the stopped(7) event like this:

start on stopped job-A

11.17 Run a Job Once After Some Other Job Ends
Imagine a job configuration file myjob.conf such as the following which might result in a job which is
restarted a number of times:

start on event-A

script
 # do something
end script

Is it possible to run a job only once after job myjob ends? Yes if you create a job configuration file
myjob-sync.conf such as:

start on stopped myjob and event-B

script
 # do something
end script

Now, when event-A is emitted, job myjob will start and if and when job myjob finishes and event
event-B is emitted, job myjob-sync will be run.

However, crucially, even if job myjob is restarted, the myjob-sync job will not be restarted.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man7/starting.7.html
http://manpages.ubuntu.com/manpages/man7/starting.7.html
http://manpages.ubuntu.com/manpages/man7/stopped.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

11.18 Run a Job Before Another Job and Stop it After that Job
Stops
If you have a job you wish to be running before job "job-A" starts, but which you want to stop as soon as
job-A stops:

start on starting job-A
stop on stopped job-A

11.19 Run a Job Only If Another Job Succeeds
To have a job start only when job-A succeeds, use the $RESULT variable from the stopped(7) event
like this:

start on stopped job-A RESULT=ok

11.20 Run a Job Only If Another Job Fails
To have a job start only when job-A fails, use the $RESULT variable from the stopped(7) event like this:

start on stopped job-A RESULT=failed

Note that you could also specify this condition as:

start on stopped job-A RESULT!=ok

11.21 Run a Job Only If One Job Succeeds and Another Fails
This would be a strange scenario to want, but it is quite easy to specify. Assuming we want a job to start
only if job-A succeeds and if job-B fails:

start on stopped job-A RESULT=ok and stopped job-B RESULT=failed

11.22 Run a Job If Another Job Exits with a particular Exit Code
Imagine you have a database server process that exits with a particular exit code (say 7) to denote that it
needs some sort of cleanup process to be run before it can be re-started. To handle this you could create
/etc/init/mydb-cleanup.conf with a start on condition like this:

start on stopped mydb EXIT_STATUS=7

script
 # handle cleanup...

 # assuming the cleanup was successful, restart the server
 start mydb
end script

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man7/stopped.7.html
http://manpages.ubuntu.com/manpages/man7/stopped.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

11.23 Detect if Any Job Fails
To "monitor" all jobs for failures, you could either create a job that checks specifically for a single job
failure (see Run a Job If Another Job Exits with a particular Exit Code), but you could just as easily detect
if any job has failed as follows:

start on stopped RESULT=failed

Since this start on condition does not specify the Job to match against, it will match all jobs. You can then
perform condition processing:

script
 if [-n "$EXIT_STATUS"];
 then
 str="with exit status $EXIT_STATUS"
 else
 str="due to signal $EXIT_SIGNAL"
 fi

 logger "Upstart Job $JOB (instance '$INSTANCE', process $PROCESS) failed $str"

 case "$JOB" in
 myjob1)
 ;;

 myjob2)
 ;;

 etc)
 ;;
 esac

end script

Note that $PROCESS above is not the PID, it is the name of the job process type (such as main or
pre-start). See stopped(7) for further details.

11.24 Use Details of a Failed Job from Another Job
Although you cannot see the exact environment another job ran in, you can access some details. For
example, if your job specified /etc/init/job-B.conf as:

start on stopped job-A RESULT=fail

script
 exec 1>>/tmp/log.file
 echo "Environment of job $JOB was:"
 env
 echo
end script

The file /tmp/log.file might contain something like this:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man7/stopped.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

UPSTART_INSTANCE=
EXIT_STATUS=7
INSTANCE=
UPSTART_JOB=B
TERM=linux
PATH=/usr/local/sbin:/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin
PROCESS=main
UPSTART_EVENTS=stopped
PWD=/
RESULT=failed
JOB=A

Here, job-B can see that:

• job-A exited in its "main" process. This is a special name for the script section. All other script
sections are named as expected. For example, if the pre-start section had failed, the PROCESS
variable would be set to pre-start, and if in post-stop, the variable would have been set to
post-stop.

• job-A exited with exit code 7.

• job-A only had 1 instance (since the INSTANCE variable is set to the null value.

• job-A ran in the root ("/") directory.

• UPSTART_JOB is the name of the job running the script (ie job-B).

• JOB is the name of the job that we are starting on (here job-A).

• UPSTART_EVENTS is a list of the events that caused UPSTART_JOB (ie job-B) to start. Here, the
event is starting(7) showing that job-B started as a result of job-A being sent the stopped(7)
event.

11.25 Stop a Job when Another Job Starts
If we wish job-A to stop when job-B starts, specify the following in /etc/init/job-A.conf:

stop on starting job-B

11.25.1 Simple Mutual Exclusion
It is possible to create two jobs which will be "toggled" such that when job-A is running, job-B will be
stopped and vice versa. This provides a simple mutually exclusive environment. Here is the job
configuration file for job-A:

/etc/init/job-A.conf
start on stopped job-B

script
 # do something when job-B is stopped
end script

And job-B:

/etc/init/job-B.conf
start on stopped job-A

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man7/starting.7.html
http://manpages.ubuntu.com/manpages/man7/stopped.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

script
 # do something when job-A is stopped
end script

Finally, start one of the jobs:

start job-A

Now:

• when job-A is running, job-B will be stopped.

• when job-B is running, job-A will be stopped.

Note though that attempting to have more than two jobs using such a scheme will not work. However, you
can use the technique described in the Synchronisation section to achieve the same goal.

11.26 Run a Job Periodically
This cannot currently be handled by Upstart directly. However, the "Temporal Events" feature is being
worked on now will address this.

Until Temporal Events are available you should either use cron(8), or something like:

/etc/init/timer.conf

instance $JOB_TO_RUN

script
 for var in SLEEP JOB_TO_RUN
 do
 eval val=\${$var}
 if [-z "$val"]
 then
 logger -t $0 "ERROR: variable $var not specified"
 exit 1
 fi
 done

 eval _sleep=\${SLEEP}
 eval _job=\${JOB_TO_RUN}

 while [1]
 do
 stop $_job || true
 sleep $_sleep
 start $_job || true
 done
end script

Note well the contents of the while loop. We ensure that the commands that might fail are converted
into expressions guaranteed to pass. If we did not do this, timer.conf would fail, which would be
undesirable. Note too the use of instance to allow more than one instance of the timer job to be
running at any one time.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man8/cron.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

11.27 Restart a job on a Particular Event
To restart a job when a particular event is emitted requires two jobs. First the main job:

start on something

exec /sbin/some-command

Then a helper job to perform the restart:

start on my-special-event

exec restart main-job

Now, when the my-special-event event is emitted, the main job will be restarted.

11.28 Migration from System V initialization scripts
With SysV init scripts, the Administrator decides the order that jobs are started in by assigning numeric
values to each service. Such a system is simple, but non-optimal since:

• The SysV init system runs each job sequentially.

This disallows running jobs in parallel, to make full use of system resources. Due to the limited
nature of the SysV system, many SysV services put services that take a long time to start into the
background to give the illusion that the boot is progressing quickly. However, this makes it difficult for
Administrators to know if a required service is running by the time their later service starts.

• The Administrator cannot know the best order to run jobs in.

Since the only meta information encoded for services is a numeric value used purely for ordering
jobs, the system cannot optimize the services since it knows nothing about the requirements for each
job.

In summary, the SysV init system is designed to be easy for the Administrator to use, not easy for the
system to optimize.

In order to migrate a service from SysV to Upstart, it is necessary to change your mindset somewhat.
Rather than trying to decide which two services to "slot" your service between, you need to consider the
conditions that your service needs before it can legitimately be started.

So, if you wished to add a new service that traditionally started before cron(8) or atd(8) you do not need to
change the configuration files cron.conf or atd.conf. You can "insert" your new service by specifying
a simple:

/etc/init/my-service.conf
start on (starting cron or starting atd)

In English, this says,

"start the "my-service" service just before either the cron or the atd services start".

Whether crond or atd actually start first is not a concern for my-service: Upstart ensures that the
my-service service will be started before either of them. Even if cron normally starts before atd but
for some reason one day atd starts first, Upstart will ensure that my-service will be started before atd.

Note therefore that introducing a new service should not generally require existing job configuration files to
be updated.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man8/cron.8.html
http://manpages.ubuntu.com/manpages/man8/atd.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

11.29 How to Establish a Jobs start on and stop on
Conditions
How do you establish what values you should specify for a jobs start on and stop on conditions?

11.29.1 Determining the start on Condition ()
So you have created a Job Configuration File for your Service Job. You have checked the expect stanza
is correct and you've even enabled respawn.

But how do you determine the correct "start on" condition? Actually, this is almost a trick question since
there are potentially many "correct" answers; it depends on the application and how sensitive it is to the
environment it runs in. There are many potential start on conditions - it is your job to determine the
most efficient and effective one. This section attempts to give some advice and guidelines on chosing a
suitable condition, and explaining how to test your choice for correctness. However, note that each job
requires a specific and possibly unique set of conditions to run.

11.29.1.1 Standard Idioms

If your application isn't particularly needy, you may be able to use one of the standard idioms below:

• To start your job as soon as possible:

See Run a Job as Soon as Possible After Boot.

• To start your job "as late as possible":

See Run a Job When a User Logs in Graphically (ubuntu-specific).

• If you want the job to start "around the time" (actually just after) the equivalent System-V job would
run, specify:

start on stopped rc

• If you want your job to start after all filesystems are mounted, specify:

start on filesystem

• If you want your job to start when all network devices are active, specify:

start on stopped networking

Note that as of Ubuntu Oneiric, you could also say:

start on static-network-up

• If you want your job to start when a runlevel begins, specify:

start on runlevel [2345]

This is used by a lot of standard jobs and is a good starting place.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

11.29.1.2 More Exotic start on Conditions

If your job more precise control over when your job starts, read carefully the upstart-events(7) manual
page which summarizes all the "well-known" events you can rely upon on an Ubuntu system. These
events provide a set of "hook points" which your job can make use of to simplify the job of specifying the
start on condition.

The main question to ask yourself is, "what are the exact requirements for the job?". To help answer that
question consider the following questions:

• Does your application live in a standard local directory?

• Does the application write any files to disk? (data files, log files, lock files, named sockets?) If so,
which partition(s) does it need to write to?

• Does the application read any files from disk? If so, which partitions do they live in? /etc?
/var?

• Do you want the application to start as early as possible, or as late as possible?

• Does the application need to start before or after a service which might not be installed?

• If the application needs access to a disk (it probably will), which partitions or mounts does it
need? /etc? /var? /mnt/remote-system? Can it wait until all local partitions are mounted?
Or does it need to wait for a particular remote filesystem to be mounted?

• Should a particular set of services already be running when your job starts?

• Should a particular set of services not be running when your job starts?

• What runlevel (or runlevels) should your job run in?

• Does your application require a network?

• Does it need a local network (127.0.0.1?)

• Does it need IPv6?

• Does it require a bridge network interface?

• Should your service only start when a client network connection is initiated? If so, use the
socket event (emitted by the upstart-socket-bridge). See the socket-event(7) man page for
details.

• Does your job require the services of some other system server?

• Does your job access files over the network?

• Does your application provide a D-Bus service which you want to start when some sequence of
Upstart events are emitted?

If so, use the D-Bus service activation facility.

This list can be summarized as:

What are the precise conditions your job needs before it can be started successfully?

And yes, you really do need to be able to answer all the questions above before you can know that you
have chosen the correct start on condition. This might sound daunting, but consider:

• Upstart needs to know this information to allow your application to run at the correct point.

• By devoting some time to understanding your applications requirements, you will allow the
system to run as efficiently as possible.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man7/upstart-events.7.html
http://www.ubuntu.com
http://manpages.ubuntu.com/manpages/man7/socket-event.7.html
http://dbus.freedesktop.org
http://dbus.freedesktop.org
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

11.29.1.2.1 udev conditions

To identify a start on condition making use of udev events, first you need to know which udev subsystem
is appropriate. See upstart-udev-bridge for details.

Having identified the subsystem, follow the steps below:

1. Create a job that displays all udev variables set for a particular udev subsystem.

In the example below, we're consider at the tty subsystem, so modify to taste:

start on tty-device-added
exec env

2. Boot your system and look at the relevant log file for the job.

For example look at /var/log/upstart/myjob.log to see which udev variables are set for your
chosen udev subsystem.

If your version of Upstart does not have job logging, you'll need to redirect the output of env
somewhere - refer to section See the Environment a Job Runs In.

3. Refine your start on condition accordingly.

For example, you might change it to be something like:

start on tty-device-added DEVNAME=*ttyS1

to start the job when the /dev/ttS1 serial device becomes available.

11.29.2 Determining the stop on Condition ()
Recall from the Shutdown section that if no stop on condition is stopped, your job will be killed at some
(random) point at system shutdown. If you need your job to stop at a pariticular point in the shutdown
sequence, you must specify a suitable stop on condition.

Shut down is not as event rich as startup. A common idiom is to specify your stop on as:

stop on runlevel [016]

This ensures the job will be stopped on shutdown, when switching to single-user mode and on reboot.

The next most common is to stop your job either before or after some other job stops:

• To stop a job just before a particular job has started to stop:

stop your job "just before" job 'some-job' ends
stop on stopping some-job

See also Run a Job Before Another Job.

• To stop a job immediately after a particular job has stopped:

stop your job "just after" job 'some-job' has ended
stop on stopped some-job

See also Run a Job After Another Job.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Other questions relating to other stanzas:

• What should happen if your job fails to start?

• What should happen if your job fails after some period of time?

• Do you want Upstart to restart the job if it exits? If so, use the respawn stanza.

• Does your job use non-standard exit codes to denote success and failure? If so, use the normal
exit stanza.

• Is your job a daemon? If so, how many times does it call fork(2)?

11.29.3 Final Words of Advice
If your start on or stop on conditions are becoming complex (referencing more than 2 or maybe 3 events),
you should consider your strategy carefully since there is probably an easier way to achieve your goal by
specifying some more appropriate event. See the upstart-events(7) manual page for ideas.

Also, review the conditions from standard job configuration files on your system. However, it is inadvisable
to make use of conditions you do not fully understand.

11.30 Guarantee that a job will only run once
If you have a job which must only be run once, but which depends on multiple conditions, the naive
approach won't necessarily work:

task
start on (A or B)

If event 'A' is emitted, the task will run. But assuming the task has completed and event 'B' is then emitted,
the task will run again.

11.30.1 Method 1
A better approach is as follows:

1. Create separate job configuration files for each condition you want your job to start on:

/etc/init/got-A.conf
job that will "run forever" when event A is emitted
start on A

/etc/init/got-B.conf
job that will "run forever" when event B is emitted
start on B

2. Create a job which starts on either of the got-A or got-B jobs starting:

/etc/init/only-run-once.conf
start on (starting got-A or starting got-B)

Now, job "only-run-once" will start only once since jobs "got-A" and "got-B" can only be started once
themselves since:

• they do not specify the instance stanza to allow multiple instances of the jobs.

• if either job starts, that job will run forever.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://manpages.ubuntu.com/manpages/man7/upstart-events.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

• none of the jobs have a stop on stanza.

11.30.2 Method 2
Change your start on condition to include the startup event:

task
start on startup and (A or B)

11.31 Stop a Job That is About to Start
Upstart will start a job when its "start on" condition becomes true.

Although somewhat unusual, it is quite possible to stop a job from starting when Upstart tries to start it:

start on starting job-A

script
 stop $JOB
end script

11.32 Stop a Job That is About to Start From Within That Job
You can in fact stop a job that Upstart has decided it needs to start from within that job:

pre-start script
 stop
end script

This is actually just an alias for:

pre-start script
 stop $UPSTART_JOB
end script

Of course, you could set the pre-start using the Override Files facility.

11.33 Stop a Job from Running if its Configuration file has not
been Created/Modified
Use a pre-start stanza to check for required application conditions. If these are not met, call:

stop
exit 0

This will cause the job to stop successfully before the main script or exec stanza (which would run your
application/daemon) is started.

In particular, see the Ubuntu-specific example

11.34 Stop a Job When Some Other Job is about to Start
Here, we create /etc/init/job-C.conf which will stop job-B when job-A is about to start:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

start on starting job-A

script
 stop job-B
end script

11.35 Start a Job when a Particular Filesystem is About to be
Mounted
Here, we start a job when the /apps mountpoint is mounted read-only as an NFS-v4 filesystem:

start on mounting TYPE=nfs4 MOUNTPOINT=/apps OPTION=ro

Here's another example:

start on mounted MOUNTPOINT=/var/run TYPE=tmpfs

Another example where a job would be started when any non-virtual filesystem is mounted:

start on mounted DEVICE=[/UL]*

The use of the $DEVICE variable is interesting. It is used here to specify succinctly any device that:

• is a real device (starts with "/" (to denote a normal "/dev/..." mount)).

• is a device specified by its filesystem:

• label (starts with "L" (to denote a "LABEL=" mount)).

• UUID (starts with "U" (to denote a "UUID=" mount)).
Another example where a job is started when a non-root filesystem is mounted:

start on mounting MOUNTPOINT!=/ TYPE!=swap

11.36 Start a Job when a Device is Hot-Plugged
Hot-plug kernel events create udev(7) events under Linux and Upstart events are created from udev
events by the upstart-udev-bridge(8).

Added to this the ifup and ifdown commands are run at boot when network devices are available for
use.

11.36.1 To start a job when eth0 is added to the system
Note that the device is not yet be available for use):

start on net-device-added INTERFACE=eth0

See upstart-udev-bridge for more examples.

On an Ubuntu system, you can see which devices have been added by udev (which the
upstart-udev-bridge is using) with this snippet:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man7/udev.7.html
http://manpages.ubuntu.com/manpages/man8/upstart-udev-bridge.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

$ awk 'BEGIN {RS=""; ORS="\n\n"}; /ACTION=add/ && /SUBSYSTEM=net/ { print; }' \
 /var/log/udev | grep ^INTERFACE= | cut -d= -f2 | sort -u
eth0
lo
wlan0
$

11.36.2 To start a job when eth0 is available
Here, the device is available for use:

start on net-device-up IFACE=eth0

Notes:

• It does not matter whether the eth0 interface has been configured statically, or if it is handled via
DHCP, this event will always be emitted.

See upstart-events(7) and file /var/log/udev for further details.

• The "net-device-up" event sets the "IFACE" variable whereas the net-device-added event sets
the "INTERFACE" variable!

11.37 Stopping a Job if it Runs for Too Long
To stop a running job after a certain period of time, create a generic job configuration file like this:

/etc/init/timeout.conf
stop on stopping JOB=$JOB_TO_WAIT_FOR
kill timeout 1
manual

export JOB_TO_WAIT_FOR
export TIMEOUT

script
 sleep $TIMEOUT
 initctl stop $JOB_TO_WAIT_FOR
end script

Now, you can control a job using a timeout:

start myjob
start timeout JOB_TO_WAIT_FOR=myjob TIMEOUT=5

This will start job myjob running and then wait for 5 seconds. If job "myjob" is still running after this
period of time, the job will be stopped using the initctl(8) command. Note the stop on stanza which will
cause the timeout job not to run if the job being waited for has already started to stop.

11.38 Run a Job When a File or Directory is Created/Deleted
If you need to start a Job only when a certain file is created, you could create a generic job configuration
file such as the following:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man7/upstart-events.7.html
http://manpages.ubuntu.com/manpages/man8/initctl.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

/etc/init/wait_for_file.conf
instance FILE_PATH
export FILE_PATH

script
 while [! -e "$FILE_PATH"]
 do
 sleep 1
 done

 initctl emit file FILE_PATH="$FILE_PATH"
end script

Having done this, you can now make use of it. To have another job start if say file /var/run/foo.dat
gets created, you first need to create a job configuration file stating this:

/etc/init/myapp.conf
start on file FILE_PATH=/var/run/foo.dat

script
 # ...
end script

Lastly, kick of the process by starting an instance of wait_for_file:

start wait_for_file FILE_PATH=/var/run/foo.dat

Now, when file /var/run/foo.dat is created, the following will happen:

1. The myapp job will emit the file event, passing the path of the file which you just specified in that
events environment.

2. Upstart will see that the start on condition for the myapp job configuration file is satisfied.

3. Upstart will create a myapp job, and start it.

You can modify this strategy slightly to run a job when a file is:

• modified

• deleted

• contains certain content

• et cetera

See test(1), or your shells documentation for available file tests.

Note that this is very simplistic. A better approach would be to use inotify(7).

11.39 Run a Job Each Time a Condition is True
This is the default way Upstart works when you have defined a task:

/etc/init/myjob.conf
task
exec /some/program

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://upstart.ubuntu.com
http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man1/test.1.html
http://manpages.ubuntu.com/manpages/man7/inotify.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

start on (A or B)

Job "myjob" will run every time either event 'A' or event 'B' are emitted. However, there is a corner
condition: if event 'A' has been emitted and the task is currently running when event 'B' is emitted, job
"myjob" will not be run. To avoid this situation, use instances:

/etc/init/myjob2.conf
task
instance $SOME_VARIABLE
exec /some/program
start on (A or B)

Now, as long variable $SOME_VARIABLE is defined with a unique value each time either event 'A' or 'B' is
emitted, Upstart will run job "myjob2" multiple times.

11.40 Run a Job When a Particular Runlevel is Entered and Left
To run a job when a particular runlevel is entered and also run it when that same runlevel is left, you could
specify:

start on runlevel RUNLEVEL=5 or runlevel PREVLEVEL=5

See runlevel(7) and the Runlevels section for more details.

11.41 Pass State From a Script Section to its Job Configuration
File
Assume you have a job configuration file like this:

script
 # ...
end script

exec /bin/some-program $ARG

How can you get the script section to set $ARG and have the job configuration file use that value in the
"exec" stanza? This isn't as easy as you might imagine for the simple reason that Upstart runs the
script section in a new process. As such, by the time Upstart gets to the exec stanza the process
spawned to handle the script section has now ended. This implies they cannot communicate directly.

A way to achieve the required goal is as follows:

set a variable which is the name of a file this job will use
to pass information between script sections.
env ARG_FILE="/var/myapp/myapp.dat"

make the variable accessible to all script sections (ie sub-shells)
export ARG

pre-start script
 # decide upon arguments and write them to
 # $ARG_FILE, which is available in this sub-shell.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man7/runlevel.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

end script

script
 # read back the contents of the arguments file
 # and pass the values to the program to run.
 ARGS="$(cat $ARG_FILE)"
 exec /bin/some-program $ARGS
end script

11.42 Pass State From Job Configuration File to a Script Section
To pass a value from a job configuration file to one of its script sections, simply use the env stanza:

env CONF_FILE=/etc/myapp/myapp.cfg

script
 exec /bin/myapp -c $CONF_FILE
end script

This example is a little pointless, but the following slightly modified example is much more useful:

start on an-event
export CONF_FILE

script
 exec /bin/myapp -c $CONF_FILE
end script

By dropping the use of the env stanza we can now pass the value in via an event:

initctl emit an-event CONF_FILE=/etc/myapp/myapp.cfg

This is potentially much more useful since the value passed into myapp.conf can be varied without
having to modify the job configuration file.

11.43 Run a Job as a Different User

11.43.1 Running a User Job
See User Job.

11.43.2 Changing User
Some daemons start running as the super-user and then internally arrange to drop their privilege level to
some other (less privileged) user. However, some daemons do not need to do this: they never need root
privileges so can be invoked as a non-root user.

How do you run a "system job" but have it run as a non-root user then? As of Upstart 1.4, Upstart has the
ability to run a System Job as a specified user using the setuid and setgid stanzas.

However, if you are not using Upstart 1.4, it is easy to accomplish the required goal. There are a couple of
methods you can use. The recommended method for Debian and Ubuntu systems is to use the helper
utility start-stop-daemon(8) like this:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

exec start-stop-daemon --start -c myuser --exec command

The advantage of using start-stop-daemon(8) is that it simply changes the user and group the command is
run as. This also has an advantage over su(1) in that su(1) must fork to be able to hold its PAM session
open, and so is harder for upstart to track, whereas start-stop-daemon(8) will simply exec the given
command after changing the uid/gid.

Another potential issue to be aware of is that start-stop-daemon does not impose PAM ("Pluggable
Authentication Module") limits to the process it starts. Such limits can be set using the appropriate Upstart
stanzas, you just cannot specify the limits via PAMs limits.conf(5).

Of course, you may want PAM restrictions in place, in which case you should either use su(1) or sudo(8),
both of which are linked to the PAM libraries.

The general advice is NOT to use su(1) or sudo(8) though since PAM restrictions really not appropriate for
system services. For example, PAM will make a wtmp(5) entry every time su(1) or sudo(8) are called and
those records are not appropriate for system services.

If you want to use su(1) or sudo(8), the examples below show you how.

Using su(1):

exec su -s /bin/sh -c command $user

Note that although you could simplify the above to the following, it is not recommended since if user
"$user" is a system account with a shell specified as /bin/false, the job will not run the specified
command: it will fail due to /bin/false returning "1":

exec su -c command $user

The job will silently fail if user "$user" is a system account with a shell specified as /bin/false.

To avoid the fork(2) caused by the shell being spawned, you could instead specify:

exec su -s /bin/sh -c 'exec "$0" "$@"' $user -- /path/to/command --arg1=foo -b wibble

This technique is particularly useful if your job is a Service Job that makes use of expect.

A basic example using sudo(8):

exec sudo -u $user command

11.44 Disabling a Job from Automatically Starting
With Upstart 0.6.7, to stop Upstart automatically starting a job, you can either:

• Rename the job configuration file such that it does not end with ".conf".

• Edit the job configuration file and comment out the "start on" stanza using a leading '#'.

To re-enable the job, just undo the change.

11.44.1 Override Files
With Upstart 1.3, you can make use of override files and the manual stanza to achieve the same result in
a simpler manner 27:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man1/su.1.html
http://manpages.ubuntu.com/manpages/man1/su.1.html
http://www.kernel.org/pub/linux/libs/pam/
http://manpages.ubuntu.com/manpages/man5/limits.conf.5.html
http://manpages.ubuntu.com/manpages/man1/su.1.html
http://manpages.ubuntu.com/manpages/man8/sudo.8.html
http://manpages.ubuntu.com/manpages/man1/su.1.html
http://manpages.ubuntu.com/manpages/man8/sudo.8.html
http://manpages.ubuntu.com/manpages/man5/wtmp.5.html
http://manpages.ubuntu.com/manpages/man1/su.1.html
http://manpages.ubuntu.com/manpages/man8/sudo.8.html
http://manpages.ubuntu.com/manpages/man1/su.1.html
http://manpages.ubuntu.com/manpages/man8/sudo.8.html
http://manpages.ubuntu.com/manpages/man1/su.1.html
http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://manpages.ubuntu.com/manpages/man8/sudo.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

echo "manual" >> /etc/init/myjob.override

Note that you could achieve the same effect by doing this:

echo "manual" >> /etc/init/myjob.conf

However, using the override facility means you can leave the original job configuration file untouched.

To revert to the original behaviour, either delete or rename the override file (or remove the manual
stanza from your ".conf" file).

11.45 Jobs that "Run Forever"
To create a job that runs continuously from the time it is manually started(7) until the time it is manually
stopped(7), create a job configuration file without any process definition (exec and script) or event
definition (start on for example) stanzas:

/etc/init/runforever.conf
description "job that runs until stopped manually"

This job can only be started by the administrator running:

start runforever

The status of this job will now be "start/running" until the administrator subsequently runs:

stop runforever

These "Abstract Job" types have other uses as covered in other parts of this document. See for example
Synchronisation.

11.46 Run a Java Application
Running a Java application is no different to any other, but Java suffers from the inability to switch users
without extra helper classes.

If your Java daemon needs to run as a different user and you are running Upstart 1.4, you can use the
setuid and setgid stanzas.

However, if you are using an older version, you will have to use a facility such as su(1). Also, you may
wish to define some variables to simplify the invocation:

env ROOT_DIR=/apps/myapp
env HTTP_PORT=8080
env USER=java_user
env JAVA_HOME=/usr/lib/jvm/java-6-openjdk
env JVM_OPTIONS="-Xms64m -Xmx256m"
env APP_OPTIONS="--httpPort=$HTTP_PORT"
env LOGFILE=/var/log/myapp.log

script
 exec su -c "$JAVA_HOME/bin/java $JVM_OPTIONS \
 -jar $ROOT_DIR/myjar.jar $APP_OPTIONS > $LOGFILE 2>&1" $USER

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man7/started.7.html
http://manpages.ubuntu.com/manpages/man7/stopped.7.html
http://manpages.ubuntu.com/manpages/man1/su.1.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

end script

You should read the Changing User section section before using this technique though.

11.46.1 Alternative Method
Here is how you might run a Java application which calls fork(2) some number of times:

exec start-stop-daemon --start --exec $JAVA_HOME/bin/java \
 -- $JAVA_OPTS -jar $SOMEWHERE/file.war

Again, you should read the Changing User section section before using this technique.

11.47 Ensure a Directory Exists Before Starting a Job
This is a good use of the pre-start stanza:

env DIR=/var/run/myapp
env USER=myuser
env GROUP=mygroup
env PERMS=0755

pre-start script
 mkdir $DIR || true
 chmod $PERMS $DIR || true
 chown $USER:$GROUP DIR || true
end script

11.48 Run a GUI Application
To have Upstart start a GUI application, you first need to ensure that the user who will be running it has
access to the X display. This is achieved using the xhost command.

Once the user has access, the method is the same as usual:

env DISPLAY=:0.0
exec xclock -update 1

11.49 Run an Application through GNU Screen
If you want Upstart to create a GNU Screen (or Byobu) session to run your application in, this is equally
simple:

exec su myuser -c "screen -D -m -S MYAPP java -jar MyApp.jar"

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

11.50 Run Upstart in a chroot Environment

11.50.1 chroot Workaround for Older Versions of Upstart
Older versions of Upstart jobs cannot be started in a chroot(2) environment 17 because Upstart acts as a
service supervisor, and processes within the chroot are unable to communicate with the Upstart running
outside of the chroot. This will cause some packages that have been converted to use Upstart jobs
instead of init scripts to fail to upgrade within a chroot.

Users are advised to configure their chroots with /sbin/initctl pointing to /bin/true, with the
following commands run within the chroot:

dpkg-divert --local --rename --add /sbin/initctl
ln -s /bin/true /sbin/initctl

11.50.2 chroots in Ubuntu Natty
The version of Upstart in Ubuntu Natty now has full chroot(2) support. This means that if initctl is run as
user root from within a chroot the Upstart init daemon (outside the chroot) will honour requests from
within the chroot to manipulate jobs within the chroot.

What all this means is that you no longer need to use dpkg-divert and can control chroot jobs from
within the chroot environment exactly as you would control jobs outside a chroot environment. There are a
number of caveats and notes to consider though:

• Within the chroot, only jobs within the chroot are visible

• Within the chroot, only jobs within the chroot can be manipulated.

• It is only possible to view and control such chroot jobs from within the chroot.

That is to say, the "outer" system cannot manipulate jobs within the chroot.

• Due to the design of this feature, Upstart will not be able to detect changes to job configuration files
within the chroot until a process within the chroot has either manipulated a job, or listed one or more
jobs.

• Chroot support can be disabled at boot by passing the "--no-sessions" option on the Grub kernel
command-line.

See Add --verbose or --debug to the kernel command-line for details of how to add values to the grub
kernel command-line.

If chroots are disabled, running Upstart commands within a chroot will affect jobs outside the chroot
only.

• If a job is run in a chroot environment (such as provided by schroot(1)), exiting the chroot will kill the
job.

11.51 Record all Jobs and Events which Emit an Event
For example, if you want to record all jobs which emit a started event:

/etc/init/debug.conf
start on started
script
 exec 1>>/tmp/log.file
 echo "$0:$$:`date`:got called. Environment of job $JOB was:"
 env

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man2/chroot.2.html
http://manpages.ubuntu.com/manpages/man2/chroot.2.html
http://manpages.ubuntu.com/manpages/man1/schroot.1.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

 echo
end script

You could also log details of all jobs (except the debug job itself) which are affected by the main events:

/etc/init/debug.conf
start on (starting JOB!=debug \
 or started JOB!=debug \
 or stopping JOB!=debug \
 or stopped JOB!=debug)
script
 exec 1>>/tmp/log.file
 echo -n "$UPSTART_JOB/$UPSTART_INSTANCE ($0):$$:`date`:"
 echo "Job $JOB/$INSTANCE $UPSTART_EVENTS. Environment was:"
 env
 echo
end script

Note that the $UPSTART_JOB and $UPSTART_INSTANCE environment variables refer to the debug job
itself, whereas $JOB and $INSTANCE refer to the job which the debug job is triggered by.

11.52 Integrating your New Application with Upstart
Integrating your application into Upstart is actually very simple. However, you need to remember that
Upstart is NOT "System V" (aka "SysV"), so you need to think in a different way.

With SysV you slot your service script between other service scripts by specifying a startup number. The
SysV init system then runs each script in numerical order. This is very simple to understand and use, but
highly inefficient in practical terms since it means the boot cannot be parallelised and thus cannot be
optimized.

11.53 Block Another Job Until Yours has Started
It is common that a particular piece of software, when installed, will need to be started before another. The
logical conclusion is to use the 'starting' event of the other job:

start on starting foo

This will indeed, block foo from starting until our job has started.

But what if we have multiple events that we need to delay:

start on starting foo or starting network-services

This would seem to make sense. However, if we have a time-line like this:

starting foo
starting our job
starting network-services
started network-services

Network-services will actually NOT be blocked. This is because upstart only blocks an event if that event
causes change in the goal of the service. So, we need to make sure upstart waits every time. This can be

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

done by using a "wait job":

myjob-wait
start on starting foo or starting network-services
stop on started myjob or stopped myjob
instance $JOB
normal exit 2
task
script
 status myjob | grep -q 'start/running' && exit 0
 start myjob || :
 sleep 3600
end script

This is a bit of a hack to get around the lack of state awareness in Upstart. Eventually this should be built
in to upstart. The job above will create an instance for each JOB that causes it to start. It will try and check
to see if it's already running, and if so, let the blocked job go with exit 0. If it's not running, it will set the ball
in motion for it to start. By doing this, we make it very likely that the stopped or started event for myjob will
be emitted (the only thing that will prevent this, is a script line in 'myjob' that runs 'stop'). Because we know
we will get one of those start or stopped events, we can just sleep for an hour waiting for upstart to kill us
when the event happens.

11.54 Controlling Upstart using D-Bus
Upstart contains its own D-Bus server which means that initctl and any other D-Bus application can
control Upstart. The examples below use dbus-send, but any of the D-Bus bindings could be used.

11.54.1 Query Version of Upstart
To emulate initctl version, run:

$ dbus-send --system --print-reply --dest=com.ubuntu.Upstart /com/ubuntu/Upstart org.freedesktop.DBus.Properties.Get string:com.ubuntu.Upstart0_6 string:version

Note: this is querying the version of /sbin/init, not the version of initctl. For the latter, see initctl
version.

11.54.2 Query Log Priority
To emulate initctl log_priority and show the current log priority, run:
$ dbus-send --system --print-reply --dest=com.ubuntu.Upstart /com/ubuntu/Upstart org.freedesktop.DBus.Properties.Get string:com.ubuntu.Upstart0_6 string:log_priority

11.54.3 Set Log Priority
To emulate initctl log_priority <value> and set a new log priority, run:
$ priority=debug
$ sudo dbus-send --system --print-reply --dest=com.ubuntu.Upstart /com/ubuntu/Upstart org.freedesktop.DBus.Properties.Set string:com.ubuntu.Upstart0_6 string:log_priority variant:string:$priority

11.54.4 List all Jobs via D-Bus
To emulate initctl list, run:

$ dbus-send --system --print-reply --dest=com.ubuntu.Upstart /com/ubuntu/Upstart com.ubuntu.Upstart0_6.GetAllJobs

11.54.5 Get Status of Job via D-Bus
To emulate initctl status myjob, run:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://upstart.ubuntu.com
http://dbus.freedesktop.org
http://upstart.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

$ job=myjob
$ dbus-send --system --print-reply --dest=com.ubuntu.Upstart /com/ubuntu/Upstart/jobs/${job}/_ org.freedesktop.DBus.Properties.GetAll string:''

Note that this will return information on all running job instances of myjob.

11.54.6 Get Jobs start on and stop on Conditions via D-Bus
To show a jobs start on condition:
$ job=cron
$ for condition in start_on stop_on
> do
> dbus-send --system --print-reply --dest=com.ubuntu.Upstart /com/ubuntu/Upstart/jobs/$job org.freedesktop.DBus.Properties.Get string:com.ubuntu.Upstart0_6.Job string:$condition
> done

If you have a job with a start on condition like this:

start on (starting foo A=B or (stopping bar C=D and (stopped baz E=F G=H I=J or foo)))

... a dbus-send(1) query like the one above for start on will return an "array of arrays of strings":

method return sender=:1.629 -> dest=:1.630 reply_serial=2
 variant array [
 array [
 string "starting"
 string "foo"
 string "A=B"
]
 array [
 string "stopping"
 string "bar"
 string "C=D"
]
 array [
 string "stopped"
 string "baz"
 string "E=F"
 string "G=H"
 string "I=J"
]
 array [
 string "foo"
]
 array [
 string "/OR"
]
 array [
 string "/AND"
]
 array [
 string "/OR"
]
]

This will require a little massaging. Every inner array entry represents one of the following:

• an Event

• an operator ("and" or "or")

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man1/dbus-send.1.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

For event arrays, the first element is the event name and subsequent elements represent the events
environment variables.

Note too that the entire start on expression has been encoded using Reverse Polish Notation (RPN) since
this is a convenient format to represent the condition (particularly when you consider that they are
represented internally as trees).

Normally, you don't need to get involved with RPN since initctl show-config converts the RPN back into
the original form as specified in the Job Configuration file.

11.54.7 To Start a Job via D-Bus
To emulate initctl start myjob, run:

job=myjob
dbus-send --system --print-reply --dest=com.ubuntu.Upstart /com/ubuntu/Upstart/jobs/${job} com.ubuntu.Upstart0_6.Job.Start array:string: boolean:true

Note that you must be root to manipulate system jobs.

11.54.8 To Stop a Job via D-Bus
To emulate initctl stop myjob, run:

job=myjob
dbus-send --system --print-reply --dest=com.ubuntu.Upstart /com/ubuntu/Upstart/jobs/${job} com.ubuntu.Upstart0_6.Job.Stop array:string: boolean:true

Note that you must be root to manipulate system jobs.

11.54.9 To Restart a Job via D-Bus
To emulate initctl restart myjob, run:

job=myjob
dbus-send --system --print-reply --dest=com.ubuntu.Upstart /com/ubuntu/Upstart/jobs/${job} com.ubuntu.Upstart0_6.Job.Restart array:string: boolean:true

Note that you must be root to manipulate system jobs.

11.55 Establish Blocking Job
Image you have just run the following command and it has "blocked" (appeared to hang):

initctl emit event-A

The reason for the block is that the event-A event changes the goal of "some job", and until the goal
has changed, the initctl command will block.

But which job is being slow to change goal? It is now possible to hone in on the problem using initctl
show-config in a script such as this:

#!/bin/sh
find_blocked_job.sh

[$# -ne 1] && { echo "ERROR: usage: $0 <event>"; exit 1; }
event="$1"

obtain a list of jobs (removing instances)
initctl list | awk '{print $1}' | sort -u | while read job
do
 initctl show-config -e "$job" |\

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

 egrep "(start|stop) on \<event\>" >/dev/null 2>&1
 [$? -eq 0] && echo $job
done

This will return a list of jobs, one per line. One of these will be the culprit. Having identified the problematic
job, you can debug using techniques from the Debugging section.

11.56 Determine if a Job is Disabled
To determine if a job has been disabled from starting automatically:

$ job=foo
$ initctl show-config $job | grep -q "^ start on" && echo enabled || echo disabled

11.57 Visualising Jobs and Events
Use the initctl2dot(8) facility. See 25 for further details and examples.

11.58 Sourcing Files
You need to take care when "sourcing" a script or configuration file into a script section for a number of
reasons. Suppose we have the following:

script
. /etc/default/myapp.cfg
. /etc/myapp/myapp.cfg
echo hello > /tmp/myapp.log
end script

Assume that file /etc/myapp/myapp.cfg does NOT exist.

11.58.1 Develop Scripts Using /bin/sh
Firstly, if you developed this script using the bash(1) shell, before you put it into a job configuration file), all
would be well. However, as noted, Upstart runs all jobs with /bin/sh -e. What you will find is that if you
run the script above under /bin/sh, in all likelihood the file will never be created since regardless of
whether you specify "-e" or not, the dash(1) shell (which /bin/sh is linked to on Ubuntu systems) has
different semantics when it comes to sourcing compared with /bin/bash.

Therefore, to avoid surprises later on:

• Always develop your scripts using "/bin/sh -e".

• Always code defensively.

For example, it would be better to write the script above as:

script
 [-f /etc/default/myapp.cfg] && . /etc/default/myapp.cfg
 [-f /etc/myapp/myapp.cfg] && . /etc/myapp/myapp.cfg
 echo hello > /tmp/myapp.log
end script

Or maybe even like this to minimise mistakes:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man8/initctl2dot.8.html
http://manpages.ubuntu.com/manpages/man1/bash.1.html
http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man1/dash.1.html
http://www.ubuntu.com
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

script
 files="\
 /etc/default/myapp.cfg
 /etc/myapp/myapp.cfg
 "

 for file in $files
 do
 [-f "$file"] && . "$file"
 done
 echo hello > /tmp/myapp.log
end script

11.58.2 ureadahead
Most modern Linux systems attempt to optimise the boot experience by pre-loading files early on in the
boot sequence. This allows hard disks can minimise expensive (slow) seek operations.

On Ubuntu, this job is accomplished using ureadahead(8), which was designed with both spinning hard
disk and SSD drives in mind. However, if your job configuration files start reading files from all over the
disk, you will be potentially slowing down the boot as the disk is then forced to seek across the filesystem,
looking for your files.

The general advice is therefore to put your configuration variables inside the job configuration file itself
where possible.

11.59 Determining How to Stop a Job with Multiple Running
Instances
As explained in the initctl status section, a job that has multiple running instances will show the specific
(unique) instance value within brackets:

$ initctl list | grep ^network-interface-security
network-interface-security (network-manager) start/running
network-interface-security (network-interface/eth0) start/running
network-interface-security (network-interface/lo) start/running
network-interface-security (networking) start/running

In the example output above there are four instances of the network-interface-security job
running with the unique instances values of:

• "network-manager"

• "network-interface/eth0"

• "network-interface/lo"

• "networking"

So how do we stop one of these jobs? Lets try to work this out without looking at initctl(8) manual page:

stop network-interface-security network-interface/eth0
stop: Env must be KEY=VALUE pairs

That clearly doesn't work. The problem is that we have provided the value to the instance variable, but we
haven't named the instance variable that the given value corresponds to. But how do we establish the

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://www.ubuntu.com
http://manpages.ubuntu.com/manpages/man8/ureadahead.8.html
http://manpages.ubuntu.com/manpages/man8/initctl.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

instance variable name?

There are 2 options:

• look at the corresponding Job Configuration File.

/etc/init/network-interface-security.conf in this example.

• Use a trick to get Upstart to tell you the name:

$ status network-interface-security
status: Unknown parameter: JOB

This shows us the name of the instance variable is "JOB".

We are now in a position to stop a particular instance of this job:

stop network-interface-security JOB=network-interface/eth0
network-interface-security stop/waiting

The job instance has now been stopped. To prove it:

status network-interface-security JOB=network-interface/eth0
status: Unknown instance: network-interface/eth0
initctl list | grep ^network-interface-security | grep network-interface/eth0
#

11.60 Logging Boot and Shutdown Times
If you want to create a log of when your system starts and stops, you could do something like this:

start on filesystem or runlevel [06]

env log=/var/log/boot-times.log

script
 action=$(echo "$UPSTART_EVENTS" | grep -q filesystem && echo boot || echo shutdown)
 echo "`date`: $action" >> $log
end script

Note that you do not need to specify a stop on condition: you want this job to start both "around" the time
of system startup (when the disks are writeable, hence the use of the fileysystem event) and
shutdown.

If you want a more accurate method, you would need to have a job start on startup. The slight issue here
is that when Upstart emits that first event, there is no guarantee of writeable disks. However, this can be
overcome using a bit of thought...

First, create a "record-boot-time.conf" job configuration file to record the time of the "boot" (initial
Upstart event):

start on startup

exec initctl emit boot-time TIME=$(date '+%s')

This job emits an event containing a variable specifying the time in seconds since the Epoch.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Now, create a second "log-boot-time.conf" job configuration file to actually log the boot time:

start on boot-time and filesystem

log=/var/log/boot-times.log

script
 echo "system booted at $TIME" >>$log
end script

Since the "log-boot-time" job specifies the "booted" event emitted by the "record-boot-time" job,
Upstart will retain knowledge of this event until it is able to run the second job. The "record-boot-time"
job can then simply make use of the "TIME" variable set by the first job.

11.61 Running an Alternative Job on a tty
Here's a silly example of how to run a custom job on a particular tty. It asks the user to guess a random
number. If after 3 attempts they fail to guess the correct number, the job ends. However, if they guess
successfully, the are allowed to login. This won't win any scripting competitions, but you get the idea.

WARNING - DO NOT USE THIS ON A REAL SYSTEM unless you want to get hacked, or fired or both!:

Get the user to guess the number. If they get it right, let them
login.

start on runlevel [23]
stop on runlevel [!23]

env tty=tty9

XXX: Ensure job is connected to the terminal device
console output

script
 # XXX: Ensure all standard streams are connected to the console
 exec 0</dev/$tty >/dev/$tty 2>&1
 clear
 trap '' INT TERM HUP
 RANDOM=$(dd if=/dev/urandom count=1 2>/dev/null|cksum|cut -f1 -d' ')
 answer=$(((RANDOM % 100) + 1))
 attempt=0
 max=3
 got=0

 while [$attempt -lt $max]
 do
 attempt=$((attempt+1))
 echo -n "Guess the number (1-100, attempt $attempt of $max): "
 read guess
 if ["$guess" -eq "$answer"]
 then
 got=1
 break
 else

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

 echo "Wrong"
 fi
 done

 ["$got" = 0] && stop

 exec /sbin/getty -8 38400 $tty
end script

The important lines are:

console output

... and:

exec 0</dev/$tty >/dev/$tty 2>&1

11.62 Creating a SystemV Service that Communicates with
Upstart
There are occasions when you want to have a SystemV service start an Upstart job. However, you must
take care as shown in the example below...

Image we create a SysV service as /etc/init.d/myservice. This service needs another service to
be running but that other service is actually an Upstart job (/etc/init/myjob.conf).

The Upstart job specifies a start on condition of:

start on filesystem and static-network-up and myservice-server-running

So, job myjob will only start once all three of the events specified are emitted and the
myservice-server-running event is being emitted by /etc/init.d/myservice like this:

initctl emit myservice-server-running

This all looks perfectly reasonable and in fact it is... generally.

However, consider what would happen if the package containing /etc/init.d/myservice happened
to attempt to restart that service having installed it (to make sure it is running immediately after
installation)...

1. /etc/init.d/myservice is run.

2. /etc/init.d/myservice calls "initctl emit myservice-server-running".

3. Upstart emits the myservice-server-running event.

Nothing magical here yet. Or is there? Since job myjob will only be started when all three of the events
specified in its start on condition are true, this job cannot yet be started. Why? Because the filesystem
and static-network-up events have already been emitted early in the boot (see Ubuntu Well-Known
Events (ubuntu-specific)).

What this means is that the job myjob will never start post boot if those two events it cares about have
already been emitted. Any yet, the SysV job and the Upstart event combinations are perfectly valid on
boot. Note too that because those two events will not be re-emitted, the initctl emit will block (appear to

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

hang) since Upstart is waiting for those two events to be emitted.

The solution to this is very simple: make the SysV job only emit the event in question on boot:

Only emit the event 'on boot' to ensure the SysV service
does not "hang" (block) due to events the ``myjob`` job requires
never being re-emitted post-boot. We do this by checking for one of
Upstarts standard environment variables which will only be run when
the Upstart SysV compatibility system is running the SysV service in
question.
[-n "$UPSTART_JOB"] && initctl emit myservice-server-running

A slightly different method is to emit a signal by running initctl with the --no-wait option like this:

[-n "$UPSTART_JOB"] && initctl emit --no-wait myservice-server-running

See Signals and Standard Environment Variables.

12 Test Your Knowledge

12.1 Questions about start on
Consider the following start on condition:

start on startup or starting stopped or stopping started

Questions (answers provided in footnote links):

Question: Is this a legal condition?

Answer: 1

Question: What standard Upstart tool could you use to help explain the expression?

Answer: 2

Question: Explain the condition.

Answer: 3

Question: How many times could this job be run assuming all other jobs on the system run
exactly once?

Answer: 4

12.2 General Questions
What is wrong with the following job configuration file?:

start on startup

script
 echo hello > /tmp/foo.log
end script

Answer: 5

Whas is wrong with the following job configuration file?:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

start on runlevel [2345]

env CONFIG=/etc/default/myapp

expect fork
respawn

script
 enabled=$(grep ENABLED=1 $CONFIG)
 [-z "$enabled"] && exit 0
 /usr/bin/myapp
end script

Answer: 6

13 Common Problems

13.1 Cannot Start a Job
If you have just created or modified a job configuration file such as /etc/init/myjob.conf, but
start gives the following error when you attempt to start it:

start: Unknown job: myjob

The likelihood is that the file contains a syntax error. The easiest way to establish if this is true is by
running the init-checkconf command.

If you are wondering why the original error couldn't be more helpful, it is important to remember that the
job control commands (start, stop and restart) and initctl communicate with Upstart over
D-Bus. The problem here is that Upstart rejected the invalid myjob.conf, so attempting to control that
job over D-Bus is nonsensical - the job does not exist.

13.2 Cannot stop a job
If start is hanging or seems to be behaving oddly, the chances are you have misspecified the expect
stanza. See expect and How to Establish Fork Count.

13.3 Strange Error When Running start/stop/restart or
initctl emit
If you attempt to run a job command, or emit an event and you get a D-Bus error like this:
$ start myjob
start: Rejected send message, 1 matched rules; type="method_call", sender=":1.58" (uid=1000 pid=5696 comm="start) interface="com.ubuntu.Upstart0_6.Job" member="Start" error name="(unset)" requested_reply=0 destination="com.ubuntu.Upstart" (uid=0 pid=1 comm="/sbin/init"))

The problem is caused by not running the command as root. To resolve it, either "su -" to root or use
a facility such as sudo(8):

start myjob
myjob start/running, process 1234

The reason for the very cryptic error is that the job control commands (start, stop and restart) and
initctl communicate with Upstart over D-Bus.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://dbus.freedesktop.org
http://dbus.freedesktop.org
http://dbus.freedesktop.org
http://manpages.ubuntu.com/manpages/man8/sudo.8.html
http://dbus.freedesktop.org
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

13.4 The initctl command shows "the wrong PID"
The likelihood is that you have mis-specified the type of application you are running in the job
configuration file. Since Upstart traces or follows fork(2) calls, it needs to know how many forks to expect.
If your application forks once, specify the following in the job configuration file:

expect fork

However, if your application forks twice (which all daemon processes should do), specify:

expect daemon

See also Alternative Method.

13.5 Symbolic Links don't work in /etc/init
Upstart does not monitor files which are symbolic links since it needs to be able to guarantee behaviour
and if a link is broken or cannot be followed (it might refer to a filesystem that hasn't yet been mounted for
example), behaviour would be unexpected, and thus undesirable. As such, all system job configuration
files must live in or below /etc/init (although user jobs can live in other locations).

13.6 Sometimes status shows PID, but other times does not
You may have noticed that when you start certain jobs manually using start, sometimes the output will
show the PID of the process associated with that job. However, other times, no PID is shown. Why?

This behaviour is observed when the job runs to completion very quickly. If your system has minimal load
the job will start and finish before the initctl status command has a chance to query its PID from Upstart.
Whereas if your system is busy you may well see a PID displayed since Upstart was able to return the
PID details to status before the job finished.

The behaviour is similar to the following shell code:

(sleep 0.01 &) ; ps -fU $USER | grep sleep | grep -v grep

It is unlikely that you will get any output from this command (since the sleep 0.01 command will run to
completion before the grep(1) calls get a chance filter the ps(1) output. However, change the time for that
subshell to run, and you will see the PID:

(sleep 5 &) ; ps -fU $USER | grep sleep | grep -v grep

See initctl status.

14 Testing
Before embarking on rewriting your systems job configuration files, think very, very carefully.

We would advise strongly that before you make your production server unbootable that you consider the
following advice:

1. Version control any job configuration files you intend to change.

You could employ the version stanza to help in this regard.

2. Test your changes in a Virtual Machine.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://upstart.ubuntu.com
http://manpages.ubuntu.com/manpages/man1/grep.1.html
http://manpages.ubuntu.com/manpages/man1/ps.1.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

3. Test your changes on a number of non-critical systems.

4. Backup all your job configuration files to both:

• An alternate location on the local system

(Allowing them to be recovered quickly if required).

• At least one other suitable alternate backup location.

15 Daemon Behaviour
Upstart manages the running of jobs. Most of these jobs are so-called "daemons", or programs that:

• run detached from a terminal device.

• require no user input.

• generate no output to the standard output streams "stdout" and "stderr".

To manage such daemons, Upstart expects a daemon to adhere to the following rules:

• The daemon should advertise if it forks once, or if it double-forks.

This allows the Administrator to establish the correct value for the important expect stanza.

• The daemon should not install a SIGCHLD handler of its own.

This is a problem when the job incorrectly specifies expect fork for a daemon (that should have been
specified as expect daemon) since Upstart waits for a single fork but the daemon double forks
however Upstart never gets notification of the first process exiting since a SIGCHLD signal is never
generated for that process.

This leads to a "stuck job (see Implications of Misspecifying expect).

this could stop Upstart from determining when the process has finished if the expect stanza is
mis-specified as expect fork.

• The daemon should ensure that when it completes the second fork that it is fully initialized, since
Upstart uses the fork count to determine service readiness (see expect).

• When sent a SIGHUP signal, Upstart will expect the daemon to:

• do whatever is necessary to re-initialize itself, for example by re-reading its configuration file.

This behaviour ensures that "initctl reload <job>" will work as expected.

• retain its current PID: if the daemon calls fork(2) on receiving this signal. See expect.

This behaviour ensures that Upstart can continue to manage the PID.

• When sent a SIGTERM signal, Upstart expects the daemon to shut down cleanly.

If a daemon does not shut down on receipt of this signal in a timely fashion, Upstart will send it the
unblockable SIGKILL signal.

• Signalling "readiness": Since Upstart tracks forks, it can only assume that once the final fork(2) call
has been made (as indicated by the expect stanza specification), that the job is "ready" to accept
work from other parts of the system.

This generally works very well, but can be an issue for daemons which start relatively quickly, but
which are not considered "ready" to service requests until some arbitrary future time.

A good example of this scenario would be a database server which starts but which can only be
considered "ready" or "online" once it has finished replaying some transaction logs (which take some
time to process). In this scenario, there are two approaches:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

1. Create a post-start section that performs some check and only returns once the service is
"ready".

2. If the service accepts incoming network connnections, modify it to make use of the
upstart-socket-bridge.

• The daemon should not make use of the ptrace(2) system call (atleast not until it has initialized itself
fully).

This ensures that Upstart is able to track the daemons pid. See expect.

The following are recommendations if you are writing a new daemon:

• If the daemon does not need to run as root, it should drop its privilege level (using setuid(2) and
setgid(2)).

• If a daemon is able to drop its privilege level to any non-root user, it should provide a documented
way (such as command-line options) for the invoker to specify the user and group to have the
daemon eventually run as.

16 Precepts for Creating a Job Configuration File

16.1 Determining the value of expect
The Expect section explains how to determine the value of the expect stanza. Note that you should not
introduce the respawn stanza until you are fully satisfied you have specifed the expect stanza correctly.

16.2 start on and stop on condition
See How to Establish a Jobs start on and stop on Conditions.

16.3 Services

• If your job is a service, identify the correct value for the expect stanza.

Once you have decided on the correct value:

1. start the job:

$ sudo start myjob

2. Check the PID of the job matches the expected PID:

$ actual_pid=$(pidof myapp)
$ upstart_pid=$(status myjob | awk '{print $NF}')
$ ["$actual_pid" = "$upstart_pid"] || echo "ERROR: pid "

3. Stop the job:

$ sudo stop myjob

4. Ensure the PID no longer exists:

$ [-z "$(pidof myapp)"] || echo "ERROR: myapp still running"

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man2/ptrace.2.html
http://manpages.ubuntu.com/manpages/man2/setuid.2.html
http://manpages.ubuntu.com/manpages/man2/setgid.2.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

• Only once you have specified the correct expect stanza should you introduce the respawn stanza
since if you introduce it at the outset, this will just confuse your understanding, particulary if the
expect stanza has been misspecified.

16.4 Ubuntu Rules ()
On Ubuntu, the following rules should be adhered to:

16.4.1 Console attributes
Jobs that specify console output or console owner should NOT modify the attributes of the console
(/dev/console), for example by using tcsetattr(3).

The reason for this being that Plymouth, the graphical boot splash application, needs full control over the
console on boot and shutdown.

17 Debugging

17.1 Obtaining a List of Events
To obtain a list of events that have been generated by your system, do one of the following:

17.1.1 Add --verbose or --debug to the kernel command-line
By adding --verbose or --debug to the kernel command-line, you inform Upstart to enter either
verbose or debug mode. In these modes, Upstart generates extra messages which can be viewed in the
system log. See initctl log-priority.

Assuming an standard Ubuntu Natty system, you could view the output like this:

grep init: /var/log/syslog

Note that until Upstart 1.3 it was difficult to get a complete log of events for the simple reason that when
Upstart starts, there is no system logger running to record messages from Upstart (since Upstart hasn't
started it yet!) However, Upstart 1.3 writes these "early messages" to the kernel ring buffer (see dmesg(1))
such that by considering the kernel log and the system log, you can obtain a complete list of events from
the initial "startup". So, for a standard Ubuntu Oneiric system, you would do:

grep init: /var/log/kern.log /var/log/syslog

The mechanism for adding say the --debug option to the kernel command-line is as follows:

1. Hold down SHIFT key before the splash screen appears (this will then display the grub menu).

2. Type, "e" to edit the default kernel command-line.

3. Use the arrow keys to go to the end of the line which starts "linux /boot/vmlinuz ...".

4. Press the END key (or use arrows) to go to end of the line.

5. Add a space followed by "--debug" (note the two dashes).

6. Press CONTROL+x to boot with this modified kernel command line.

17.1.2 Change the log-priority
If you want to see event messages or debug messages "post boot", change the log priority to debug or
verbose. See initctl log-priority.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://www.ubuntu.com
http://manpages.ubuntu.com/manpages/man3/tcsetattr.3.html
http://www.freedesktop.org/wiki/Software/Plymouth
http://manpages.ubuntu.com/manpages/man1/dmesg.1.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

17.2 See the Environment a Job Runs In
To get a log of the environment variables set when Upstart ran a job you can add simple debug to the
appropriate script section. For example:

script
 echo "DEBUG: `set`" >> /tmp/myjob.log

 # rest of script follows...
end script

Alternatively you could always have the script log to the system log:

script
 logger -t "$0" "DEBUG: `set`"

 # rest of script follows...
end script

Or, have it pop up a GUI window for you:

env DISPLAY=:0.0

script
 env | zenity --title="got event $UPSTART_EVENTS" --text-info &
end script

17.3 Checking How a Service Might React When Run as a Job
You may find that your service runs fine when executed from the command-line, but does not work initially
when you start testing it with Upstart. This is because the environment the service is run in when started
by Upstart is potentially radically different to your interactive user (or even root user) environment.

Before you even put your service into a Job Configuration File, try the following test which simulates an
Upstart-like environment.

Assumine your service is /usr/bin/mydaemon and you want to run it as user root:

$ user=root
$ cmd=/usr/bin/mydaemon
$ su -c 'nohup env -i $cmd </dev/null >/dev/null 2>&1 &' $user

That command will run /usr/bin/mydaemon:

• as user $user (root here, but maybe not for you if you've used setuid)

• with no associated terminal

• parented to init

• with no environment

Or, if you want to set a user and a group, use sudo(8) (or maybe su(1) and newgrp(1)):

$ user=user1
$ group=group2

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man8/sudo.8.html
http://manpages.ubuntu.com/manpages/man1/su.1.html
http://manpages.ubuntu.com/manpages/man1/newgrp.1.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

$ cmd=/usr/bin/mydaemon
$ (sudo -u $user -g $group nohup env -i $cmd < /dev/null > /dev/null 2>&1) &

For the sudo example, you should first check that $user is able to run $cmd.

If your service is unable to run in one of these environments, it is also likely to fail when run as a Job.

17.4 Obtaining a log of a Script Section

17.4.1 Upstart 1.4 (and above)
Upstart 1.4 provides automatic logging of all job output.

See console log for further details.

17.4.2 Versions of Upstart older than 1.4
This technique relies on a trick relating to the early boot process on an Ubuntu system. On the first line
below script stanza, add:

exec >>/dev/.initramfs/myjob.log 2>&1
set -x

This will ensure that /bin/sh will log its progress to the file named /dev/.initramfs/myjob.log.

The location of this file is special in that /dev/.initramfs/ will be available early on in the boot
sequence (before the root filesystem has been mounted read-write).

Note that newer releases of Ubuntu mount /run/ read-writeable very early on in the boot process too.

17.5 Log Script Section Output to Syslog
There are two techniques you can use to do this:

Use the same technique as shown in Obtaining a log of a Script Section, but change the file to /dev/kmsg.
This will send the data to the kernels ring buffer. Once the syslog(3) daemon starts, this data will be
redirected to the system log file:

script
 exec >/dev/kmsg 2>&1
 echo "this data will be sent to the system log"
end script

17.6 Checking a Job Configuration File for Syntax Errors
See init-checkconf.

17.7 Check a Script Section for Errors
Upstart runs your job using /bin/sh -e for safety reasons: scripts running as the root user need to
be well-written! But how can you check to ensure that your script sections contain valid (syntactically
correct at least) shell fragments? Simply run the init-checkconf script, which performs these checks
automatically.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man3/syslog.3.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

17.7.1 Older versions of Upstart
To check that you haven't made a (shell) syntax error in your script section, you can use sed like this:

$ /bin/sh -n <(sed -n '/^script/,/^end script/p' myjob.conf)

Or for a pre-start script section:

$ /bin/sh -n <(sed -n '/^pre-start script/,/^end script/p' myjob.conf)

No output indicates no syntax errors.

Alternatively, you could wrap this into a script like this:

#!/bin/sh
check-upstart-script-sections.sh

[$# -ne 1] && { echo "ERROR: usage: $0 <conf_file>"; exit 1; }
file="$1"

[! -f "$file"] && { echo "ERROR: file $file does not exist" >&2; exit 1; }

for v in pre-start post-start script pre-stop post-stop
do
 if egrep -q "\<${v}\>" $file
 then
 sed -n "/^ *${v}/,/^ *end script/p" $file | \
 sh -n || echo "ERROR in $v section"
 fi
done

And run it like this to check all possible script sections for errors:

$ check-upstart-script-sections.sh myjob.conf

17.8 Debugging a Script Which Appears to be Behaving Oddly
If a script section appears to be behaving in an odd fashion, the chances are that one of the
commands is failing. Remember that Upstart runs every script section using /bin/sh -e. This
means that if any simple command fails, the shell will exit. For example, if file /etc/does-not-exist.cfg does
not exist in the example below the script will exit before the shell runs the if test:

script
 grep foo /etc/does-not-exist.cfg >/dev/null 2>&1
 if [$? -eq 0]
 then
 echo ok
 else
 echo bad
 fi
end script

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

In other words, you will get no output from this script if the file grep is attempting to operate on does not
exist.

The common idiom to handle possible errors of this type is to convert the simple expression into an
expression guaranteed to return true:

script
 # ensure this statement always evaluates to true
 command-that-might-fail || true

 # ditto
 another-command || :
end script

See man sh for further details.

18 Recovery
If you do something really bad or if for some reason Upstart fails, you might need to boot to recovery
mode and revert your job configuration file changes. In Ubuntu, you can therefore either:

18.1 Boot into Recovery Mode
Select the "recovery" option in the Grub boot menu

This assumes that Upstart (init(8) itself) is usable.

Note that you need to hold down the SHIFT key to see the Grub boot menu.

18.2 Boot to a shell directly
If Upstart (init(8)) itself has broken, you'll need to follow the steps below. By specifying an alternate "initial
process" (here a shell) it is possible to repair the system.

1. Hold down SHIFT key before the splash screen appears (this will then display the grub menu).

2. Type, "e" to edit the default kernel command-line.

3. Use the arrow keys to go to the end of the line which starts "linux /boot/vmlinuz ...".

4. Press the END key (or use arrows) to go to end of the line.

5. Add a space followed by "init=/bin/sh".

6. If the line you are editing contains "quiet" and/or "splash", remove them.

7. Press CONTROL+x to boot with this modified kernel command line.

8. When the shell appears you will need to remount the root filesystem read-write like this:

mount -oremount,rw /

You can now make changes to your system as necessary.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man8/init.8.html
http://manpages.ubuntu.com/manpages/man8/init.8.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

19 Advanced Topics

19.1 Changing the Default Shell
By default, Upstart uses "/bin/sh" to execute script sections. If you wish to change this behaviour, you
have the following options:

• Link /bin/sh to your chosen shell 9.

• Copy your chosen shell to /bin/sh.

• Recompile Upstart specifying an alternative shell as follows:

XXX: Note the careful quoting to retain double-quotes around the shell!
export CFLAGS=-DSHELL='\"/bin/bash\"'
./configure && make && sudo make install

Note that you should consider such a change carefully since Upstart has to rely upon the shell.
Remember too that Upstart runs all script sections as the root user.

• Use a "here document" (assuming your chosen shell supports them) within the Job Configuration
Files you wish to run with a different shell:

script
/bin/bash <<EOT

echo "Hi - I am running under the bash shell"

date

echo "and so am I :)"

EOT
end script

Note that currently, this technique is the only way (without modifying the Upstart source code) to run
a shell without specifying the "-e" option (see dash(1) or bash(1) for details).

19.2 Running a script Section with Python
To run a script section with Python:

script

python - <<END

from datetime import datetime

today = datetime.now().strftime("%A")

fh = open("/tmp/file.txt", "w")
print >>fh, "Today is %s" % today
fh.close()

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man1/dash.1.html
http://manpages.ubuntu.com/manpages/man1/bash.1.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

END

end script

19.3 Running a script Section with Perl
To run a script section with Perl:

script

perl - <<END

use strict;
use warnings;
use POSIX;

my $fh;
my $today = POSIX::strftime("%A", localtime);

open($fh, ">/tmp/file.txt");
printf $fh "Today is %s\n", $today;
close($fh);

END

end script

20 Development and Testing

20.1 Unit Tests
Every major feature in Upstart needs to be accompanied with comprehensive unit tests. To run the tests:

$ autoreconf -fi
$./configure --enable-compiler-coverage ...
$ make check 2>&1|tee make-check.log

Note that as of Upstart 1.3, some of these tests cannot be run from within a chroot(2) environment unless
D-Bus is installed and configured within the chroot. This scenario is detected, a warning about bug
728988 is logged and those tests are automatically skipped. Hence, to run all the tests, please ensure you
run "make check" outside of a chroot(2) environment.

20.1.1 Building Within a Chroot
Some of the unit tests assume a full environment, including a controlling terminal. If you wish to build an
Upstart package on a Debian or Ubuntu system, note that although the pbuilder(8) tool will work as
expected, currently sbuild(1) does not provide a controlling terminal which causes tests to fail. See 19 and
20.

20.1.2 Statistics
At the time of writing, the number of Upstart tests, and tests for the NIH Utility Library used by Upstart are:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man2/chroot.2.html
https://bugs.launchpad.net/upstart/+bug/728988
https://bugs.launchpad.net/upstart/+bug/728988
http://manpages.ubuntu.com/manpages/man2/chroot.2.html
http://www.debian.org
http://www.ubuntu.com
http://manpages.ubuntu.com/manpages/man8/pbuilder.html
http://manpages.ubuntu.com/manpages/man1/sbuild.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

Unit Test Statistics.

Application Test Count

Upstart unit tests 1068

Upstart user tests 80

NIH Utility Library 2863

Total 4011

20.1.3 Test Coverage
To check the test coverage after running the tests, look at each file using gcov(1):

$ cd init
$ gcov -bf event.c

20.2 Enable Full Compiler Warnings
If you want to start submitting changes to Upstart, you need to ensure you build it as follows to catch any
warnings and errors the compiler can flag:

./configure --disable-silent-rules --enable-compiler-warnings --disable-compiler-optimisations --disable-linker-optimisations --enable-compiler-coverage

20.3 Running Upstart as a Non-Privileged User
Upstart 1.3 introduced a number of options to help with testing. The "--session" command-line option
allows you to run Upstart as a non-privileged user since it makes Upstart connect to the D-Bus session
bus for which each user has their own:

$ /sbin/init --session --debug --confdir $HOME/conf/ --no-sessions

This is useful since you can now try out new features, debug with GDB, et cetera without having to install
Upstart and run it as root. Once you've got your second instance of Upstart running, you can then use
the same option on initctl to manipulate jobs:

$ initctl --session emit foo

The caveat here is that running Upstart as a non-privileged user with a PID other than 1 changes its
behaviour slightly. So, only use this technique for unit/functional testing and remember that any changes
you post for inclusion should have been tested in a real scenario where Upstart is run as root and used
to boot a system.

20.4 Useful tools for Debugging with D-Bus
If you are debugging initctl(8), you'll need to understand D-Bus. These tools are invaluable:

• dbus-send(1)

• D-Feet

20.5 Debugging a Job
There is a magic stanza called debug which will start the job via fork(2) and then pause it. This can be
useful. Assuming you have a job "debug.conf" such as:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man1/gcov.1.html
http://www.gnu.org/software/gdb/
http://manpages.ubuntu.com/manpages/man8/initctl.8.html
http://manpages.ubuntu.com/manpages/man1/dbus-send.1.html
https://live.gnome.org/DFeet/
http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

XXX: magic stanza!
debug

script
 /bin/true
end script

You could now trace the job process like this:

start debug
debug start/running, process 12345
strace -p 12345 -o /tmp/debug.log -Ff -s 1024 -v
status debug debug stop/waiting

After the call to start, the job process will be "running", but paused. The strace(1) will resume the job and
you will then have a log of what happened in file "/tmp/debug.log".

20.6 Debugging Another Instance of Upstart Running as root
with PID 1

20.6.1 Method 1 (crazy)
Caveat Emptor: this is somewhat crazy, but if you really want to do this:

$ sudo \
 gdb --args \
 clone -e DBUS_SYSTEM_BUS_ADDRESS=$DBUS_SESSION_BUS_ADDRESS \
 -f CLONE_NEWPID,SIGCHLD,CLONE_PTRACE -- \
 init/init --debug --confdir /my/conf/dir --no-startup-event
 --no-sessions

This uses the Clone tool, which is very similar to unshare(1) but allows you to put a process into a new
PID namespace.

20.6.2 Method 2 (saner)
Use a container technology such as LXC, that simplifies the access to namespaces. For example 8:

$ sudo lxc-start -n natty
$ upstart_pid=$(pgrep -f /sbin/init|grep -v '^1$')
$ sudo gdb /sbin/init $upstart_pid

Like the example above, here we use gdb to debug Upstart running as root with PID 1, but with thanks to
LXC, the container is fully isolated from the host system using namespaces. See lxc(7) for details of LXC
on Ubuntu.

20.7 Debugger Magic
Debugging in gdb initially seems rather difficult, but you just need to know the right tricks. The
complication comes from the fact that Upstart uses the NIH Utility Library, which uses macros (such as
NIH_LIST_FOREACH and NIH_HASH_FOREACH) for performance.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

https://code.launchpad.net/~jamesodhunt/+junk/clone
http://manpages.ubuntu.com/manpages/man1/unshare.1.html
http://lxc.sourceforge.net/
http://www.gnu.org/software/gdb/
http://lxc.sourceforge.net/
http://manpages.ubuntu.com/manpages/man7/lxc.7.html
http://lxc.sourceforge.net/
http://www.ubuntu.com
http://www.gnu.org/software/gdb/
http://launchpad.net/libnih
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

However, how do you access a data structure such as an NihList whose only method of iteration is a
macro? Like this:

20.7.1 NihList

first entry
(gdb) print *(JobClass *)job_classes->next

2nd entry
(gdb) print *(JobClass *)job_classes->next->next

3rd entry
(gdb) print *(JobClass *)job_classes->next->next->next

ConfSource NihWatch for 1st entry in conf_sources list
(gdb) print *((ConfSource *)conf_sources->next)->watch

20.7.2 NihHash

size of JobClass->instances hash list
XXX: this is the capacity, *NOT* the number of entries!
print class->instances->size

first entry in job_classes global hash
print *(JobClass *)job_classes->bins->next

21 Known Issues

21.1 Restarting Jobs with Complex Conditions
The and and or operators allowed with start on and stop on do not work intuitively: operands to
the right of either operator are only evaluated when the specified event is emitted. This can lead to jobs
with complex start on or stop on conditions not behaving as expected when restarted. For example,
if a job specifies the following condition:

start on A and (B or C)

When the events "A" and "B" are emitted, the condition is satisfied so the job will be run. If the job fails to
start, or is stopped later, there is no guarantee that "A" will be emitted again, and the fact that it happened
before is no longer known to Upstart. Meanwhile, events "C" or "B" may occur, but the job will not be
transitioned back to a start goal, until event "A" is emitted again.

21.1.1 Advice
To minimise the risk of being affected by this issue, avoid using complex conditions with jobs which need
to be restarted.

21.2 Using expect with script sections
Using the expect stanza with a job that uses a script section will lead to trouble if your script spawns
any processes (likely!). Consider:

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

expect fork
respawn
script
 ARGS=$(cat /etc/default/grub)
 exec echo "ARGS=$ARGS" > /tmp/myjob.log
end script

This job configuration file is somewhat nonsensical, but it does demonstrate the problem. The main issue
here is that by specifying expect fork, Upstart will attempt to follow only the first fork(2) call. The first
process that this job will spawn is... cat(1), NOT echo. As such, starting the job will show something like
this:

start myjob
myjob start/running, process 12345
status myjob
myjob start/running, process 12345
ps --no-headers -p 12345
kill 12345
-su: kill: (12345) - No such process

As the ps(1) call shows, the (cat) process is no longer running, but Upstart thinks it is.

Unfortunately, since Upstart will wait forever until it is able to stop the pid (which no longer exits). A
manual attempt to either "stop myjob" or "start myjob" will also hang.

The only solution to clear this "stuck job" is to reboot. See 18 and Recovery on Misspecification of expect.
Note that this "zombie job" isn't actually causing any problems for Upstart, but it is annoying and
potentially confusing seeing it listed in initctl output. It will of course also be consuming a very small
amount of memory.

Note however, that if you are working on a development system (hopefully you are whilst developing your
job configuration file!), what you can do to keep working is to copy the problematic job configuration file to
a new name, ignore the old job entirely and keep working using the new job!

21.3 Bugs
Upstart bugs

https://bugs.launchpad.net/upstart

Ubuntu-specific Upstart bugs

https://launchpad.net/ubuntu/+source/upstart/+bugs

22 Support
The primary sources of support are:

• The IRC Channel #upstart on IRC server freenode.net.

If you don't get a response, consider posting to the Mailing List.

• The Mailing List

If you don't get a response, consider raising a bug. See Coverage to determine how to report bugs
and ask questions.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man2/fork.2.html
http://manpages.ubuntu.com/manpages/man1/cat.1.html
http://manpages.ubuntu.com/manpages/man1/ps.1.html
http://upstart.ubuntu.com
https://bugs.launchpad.net/upstart
http://upstart.ubuntu.com
https://launchpad.net/ubuntu/+source/upstart/+bugs
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

23 References

23.1 Manual Pages
man 5 init

Configuration syntax reference.

man 8 init

Options for running the Upstart init daemon.

man 8 initctl

Explanation of the Upstart control command.

man 7 upstart-events

Comprehensive summary of all "well-known" Upstart system events on Ubuntu.

23.2 Web Sites
http://upstart.ubuntu.com/

Main Ubuntu page for Upstart.

http://launchpad.net/upstart

The main Upstart Bazaar project page.

http://upstart.at

The New Upstart Blog site.

http://netsplit.com/category/tech/upstart/

Scotts Original Upstart blog with useful overviews of features and Concepts.

https://wiki.ubuntu.com/ReplacementInit

Original Specification.

23.3 Mailing List

• https://lists.ubuntu.com/mailman/listinfo/upstart-devel

24 Answers to Test

25 Footnotes

26 Colophon
Copyright: Copyright © 2011-2012, Canonical Ltd. All Rights Reserved. This work is licensed

under the Creative Commons Attribution-Share Alike 3.0 Unported License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a
letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA.V

Organization: Canonical Ltd.

Status: Drafting

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man5/init.5.html
http://manpages.ubuntu.com/manpages/man8/init.8.html
http://manpages.ubuntu.com/manpages/man8/initctl.8.html
http://manpages.ubuntu.com/manpages/man7/upstart-events.7.html
http://upstart.ubuntu.com/
http://www.ubuntu.com
http://upstart.ubuntu.com
http://launchpad.net/upstart
http://upstart.ubuntu.com
http://bzr.launchpad.net
http://upstart.at
http://netsplit.com/category/tech/upstart/
https://wiki.ubuntu.com/ReplacementInit
https://lists.ubuntu.com/mailman/listinfo/upstart-devel
http://creativecommons.org/licenses/by-sa/3.0/
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

27 Appendices

27.1 Ubuntu Well-Known Events ()
The information in this section is taken from the upstart-events(7) manual page.

Name

 upstart-events — Well-known Upstart events summary

Event Summary

 This manual page summarizes well-known events generated by the Upstart init(8) daemon. It is
 not an exhaustive list of all possible events, but rather details a standard set of events
 expected to be generated on any Ubuntu system running Upstart.

 The primary table, Table 1, encodes the well-known events, along with the type of each event
 (listed in Table 2), the emitter of the event (see Table 3) and the approximate time at which
 the event could be generated. Additionally, the Note column indexes into Table 4 for further
 details on a particular event.

 The Ref (Reference) column is used to refer to individual events succinctly in the Time
 column.

 Note that the '<' and '>' characters in the Time column denote that the event in the Event
 column occurs respectively before or after the event specified in the Time column (for
 example, the mounting(7) event occurs "at some time" after the startup(7) event, and the
 virtual-filesystems(7) event occurs after the last mounted(7) event relating to a virtual
 filesystem has been emitted).

 For further details on events, consult the manual pages and the job configuration files,
 usually located in /etc/init.

 Table 1. Table 1: Well-Known Event Summary.

 +--+
 | Ref | Event | Type | Emit | Time | Note |
 |-----+------------------------------+------+------+----------------------------+------|
 | | all-swaps | S | M | > (5) | |
 |-----+------------------------------+------+------+----------------------------+------|
 | | control-alt-delete(7) | S | A | > (5) | A |
 |-----+------------------------------+------+------+----------------------------+------|
 | | container | S | C | > /run mounted | Q |
 |-----+------------------------------+------+------+----------------------------+------|
 | | dbus-activation | S | B | > D-Bus client request | |
 |-----+------------------------------+------+------+----------------------------+------|
 | | deconfiguring-networking | H | V | < non-local IFs down | P |
 |-----+------------------------------+------+------+----------------------------+------|
 | | desktop-session-start | H | D | > X(7) session created | B |
 |-----+------------------------------+------+------+----------------------------+------|
 | | desktop-shutdown | H | D | > X(7) session ended | O |
 |-----+------------------------------+------+------+----------------------------+------|
 | | device-not-ready | H | M | > (2) | N |

 |-----+------------------------------+------+------+----------------------------+------|
 | | drm-device-added | S | U | > (5) | C |
 |-----+------------------------------+------+------+----------------------------+------|
 | | failsafe-boot | S | X | > (7) and local IF | S |
 |-----+------------------------------+------+------+----------------------------+------|
 | 7 | filesystem | S | M | After last (1) | D |
 |-----+------------------------------+------+------+----------------------------+------|
 | | graphics-device-added | S | U | > (5) | C |

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://manpages.ubuntu.com/manpages/man7/upstart-events.7.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

 |-----+------------------------------+------+------+----------------------------+------|
 | | keyboard-request(7) | S | A | > (5) | E |
 |-----+------------------------------+------+------+----------------------------+------|
 | | local-filesystems(7) | S | M | > (6) | |
 |-----+------------------------------+------+------+----------------------------+------|
 | | login-session-start | H | D | < DM running | F |
 |-----+------------------------------+------+------+----------------------------+------|
 | 1 | mounted(7) | H | M | > associated (2) | G |
 |-----+------------------------------+------+------+----------------------------+------|
 | 2 | mounting(7) | H | M | > (5) | H |
 |-----+------------------------------+------+------+----------------------------+------|
 | 3 | net-device-added | S | U | > (5) | C |
 |-----+------------------------------+------+------+----------------------------+------|
 | | net-device-changed | S | U | > (5) | C |
 |-----+------------------------------+------+------+----------------------------+------|
 | | net-device-down | S | F | < (4) | C |
 |-----+------------------------------+------+------+----------------------------+------|
 | 4 | net-device-removed | S | U | > (5) | C |
 |-----+------------------------------+------+------+----------------------------+------|
 | | net-device-up | S | F,N | > (3) | C |
 |-----+------------------------------+------+------+----------------------------+------|
 | | not-container | S | C | > /run mounted | Q |
 |-----+------------------------------+------+------+----------------------------+------|
 | | power-status-changed(7) | S | I | > (5) | I |
 |-----+------------------------------+------+------+----------------------------+------|
 | | recovery | S | G | Boot (<5) | R |
 |-----+------------------------------+------+------+----------------------------+------|
 | | remote-filesystems(7) | S | M | > (6) | |
 |-----+------------------------------+------+------+----------------------------+------|
 | | runlevel(7) | M | T | > (7) + (8) | |
 |-----+------------------------------+------+------+----------------------------+------|
 | | socket(7) | S | S | > socket connection | |
 |-----+------------------------------+------+------+----------------------------+------|
 | 5 | startup(7) | S | I | Boot | J |
 |-----+------------------------------+------+------+----------------------------+------|
 | | started(7) | S | I | > job started | K |
 |-----+------------------------------+------+------+----------------------------+------|
 | | starting(7) | H | I | < job starts | K |
 |-----+------------------------------+------+------+----------------------------+------|
 | 8 | static-network-up | S | N | > last static IF up | |
 |-----+------------------------------+------+------+----------------------------+------|
 | | stopped(7) | S | I | > job stopped | K |
 |-----+------------------------------+------+------+----------------------------+------|
 | | stopping(7) | H | I | < job stops | K |
 |-----+------------------------------+------+------+----------------------------+------|
 | | unmounted-remote-filesystems | H | V | > last remote FS unmounted | L |
 |-----+------------------------------+------+------+----------------------------+------|
 | 6 | virtual-filesystems(7) | S | M | > last virtual FS (1) | M |
 +--+

 Key: 'DM' is an abbreviation for Display Manager. 'FS' is an abbreviation for filesystem. 'IF'
 is an abbreviation for Network Interface.

 Table 2. Table 2: Event Types.

 +--+
 | Ref | Event Type | Notes |
 |-----+------------+---|
 | H | Hook | Blocking. Waits for events that start on or stop on this event. |
 |-----+------------+---|
 | M | Method | Blocking task. |
 |-----+------------+---|
 | S | Signal | Non-blocking. |
 +--+

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

 Table 3. Table 3: Event Emitters.

 +--+
 | Ref | Emitter | Notes |
 |-----+----------------------------------+---------------------------------|
 | A | System Administrator (initiator) | Technically emitted by init(8). |
 |-----+----------------------------------+---------------------------------|
 | B | dbus-daemon(1) | Run with "--activation=upstart" |
 |-----+----------------------------------+---------------------------------|
 | C | container-detect job | |
 |-----+----------------------------------+---------------------------------|
 | D | Display Manager | e.g. lightdm/gdm/kdm/xdm. |
 |-----+----------------------------------+---------------------------------|
 | F | ifup(8) or ifdown(8) | See /etc/network/. |
 |-----+----------------------------------+---------------------------------|
 | G | bootloader or initramfs | |
 |-----+----------------------------------+---------------------------------|
 | I | init(8) | |
 |-----+----------------------------------+---------------------------------|
 | M | mountall(8) | |
 |-----+----------------------------------+---------------------------------|
 | N | network-interface job | |
 |-----+----------------------------------+---------------------------------|
 | S | upstart-socket-bridge(8) | |
 |-----+----------------------------------+---------------------------------|
 | T | telinit(8), shutdown(8) | |
 |-----+----------------------------------+---------------------------------|
 | U | upstart-udev-bridge(8) | |
 |-----+----------------------------------+---------------------------------|
 | V | System V init system | |
 |-----+----------------------------------+---------------------------------|
 | X | failsafe job | |
 +--+

 Table 4. Table 4: Event Summary Notes.

 +--+
 | Note | Detail |
 |------+---|
 | A | Requires administrator to press Control-Alt-Delete key combination on the console. |
 |------+---|
 | B | Event generated when user performs graphical login. |
 |------+---|
	These are specific examples. upstart-udev-bridge(8) will emit events which match
C	the pattern, "S-device-A" where 'S' is the udev subsystem and 'A' is the udev
	action. See udev(7) and for further details. If you have sysfs mounted, you can
	look in /sys/class/ for possible values for subsystem.
------+---	
D	Note this is in the singular - there is no 'filesystems' event.
------+---	
E	Emitted when administrator presses Alt-UpArrow key combination on the console.
------+---	
F	Denotes Display Manager running (about to be displayed), but no users logged in

 | | yet. |
 |------+---|
 | G | Generated for each mount that completes successfully. |
 |------+---|
 | H | Emitted when mount attempt for single entry from fstab(5) for any filesystem type |
 | | is about to begin. |
 |------+---|
 | I | Emitted when Upstart receives the SIGPWR signal. |
 |------+---|
 | J | Initial event. |

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

 |------+---|
 | K | Although the events are emmitted by init(8), the instigator may be initctl(8) if a |
 | | System Administrator has manually started or stopped a job. |
 |------+---|
 | L | /etc/init/umountnfs.sh. |
 |------+---|
 | M | Emitted when all virtual filesystems (such as /proc) mounted. |
 |------+---|
 | N | Emitted when the --dev-wait-time timeout is exceeded for mountall(8). This defaults |
 | | to 30 seconds. |
 |------+---|
 | O | Emitted when the X(7) display manager exits at shutdown or reboot, to hand off to |
 | | the shutdown splash manager. |
 |------+---|
 | P | Emitted by /etc/init.d/networking just prior to stopping all non-local network |
 | | interfaces. |
 |------+---|
 | Q | Either 'container' or 'not-container' is emitted (depending on the environment), |
 | | but not both. |
 |------+---|
	Emitted by either the initramfs or bootloader (for example grub) as the initial
R	event (rather than startup(7)) to denote the system has booted into recovery mode.
	If recovery was successful, the standard startup(7) event is then emitted, allowing
	the system to boot as normal.
------+---	
	Emitted to indicate the system has failed to boot within the expected time. This
S	event will trigger other jobs to forcibly attempt to bring the system into a usable
	state.
 +--+

28 Footer

1 Yes.
2 initctl show-config -e. See initctl show-config.
3 Job would start "as early as possible": when the startup event is emitted (see

Startup Process). It would also be run if the confusingly-named job called "stopped"
begun to start (see Starting a Job). It would also be run again if the also
confusingly-named job "started" begun to stop (see Stopping a Job). The example
chose names that were designed to be confusing. Clearly, in reality you should only
create jobs with sensible names that refer to the application they run.

4 Three times.
5 /tmp is not mounted.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

6 Short answer: "/usr/bin/myapp" will never run. Long answer: This job attempts to
only start myapp if it is not disabled by checking its configuration file. However, there
are two fatal flaws here:

• The script section does not handle the scenario where /etc/default/myapp
does not exist. If it doesn't exist, the script will immediately exit causing the job
to fail to start. See Debugging a Script Which Appears to be Behaving Oddly to
understand why.

• Even if the /etc/default/myapp configuration file exists, the job will fail due
to the use of expect fork and respawn with a script section.

A corrected version of the Job Configuration File is:

start on runlevel [2345]

env CONFIG=/etc/default/myapp

expect fork
respawn

pre-start
 [-f "$CONFIG"] || stop && exit 0
 enabled=$(grep ENABLED=1 $CONFIG || :)
 [-z "$enabled"] && exit 0
end script

exec /usr/bin/myapp

Or, if you need to pass options from the config file to the daemon, you could say:

start on runlevel [2345]

env CONFIG=/etc/default/myapp

expect fork
respawn

pre-start
 [-f "$CONFIG"] || stop && exit 0
 enabled=$(grep ENABLED=1 $CONFIG || :)
 [-z "$enabled"] && exit 0
end script

script
 . $CONFIG
 exec myapp $MYAPP_OPTIONS
end script

Note how the config file is sourced in the script section and how we specify the shell
keyword exec to ensure no sub-shell is created (thus allowing Upstart to track the
correct PID).

7 Recall that Upstart has no knowledge of disks whatsoever. In Ubuntu, it relies upon
mountall (ubuntu-specific) to handle mounting of disks.

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

8 Note the method for obtaining the PID of the instance of Upstart running in the LXC
container assumes only one other container is running.

9 Note that some shells (including Bash) change their behaviour if invoked as
/bin/sh. Consult your shells documentation for specifics.

10 Commands to be run as root directly for clarity. However, you should consider using
sudo(8) rather than running a root shell. Due to the way sudo works, you have to
modify your behaviour slightly. For example, rather than running the following in a
root shell:

echo hello > /tmp/root.txt

You would instead run the command below in a non-root shell:

$ echo hello | sudo tee /tmp/root.txt

Note that you should not use sudo within a job. See Changing User.
11 If there is a script or exec section and this process is running, state will be

pre-stop, else it will be stopping.
12 Note that the exec line is taken directly from the

org.freedesktop.ConsoleKit.service file.
13 Upstart was written specifically for Ubuntu, although this does not mean that it cannot

run on any other Linux-based system. Upstart was first introduced into Ubuntu in
release 6.10 ("Edgy Eft"). See http://www.ubuntu.com/news/610released

14 This section of the document contains Ubuntu-specific examples of events. Other
operating systems which use Upstart may not implement the same behaviour.

15(1, 2) This job is not actually available in Ubuntu yet, but is expected to be added early in
the 11.10 development cycle.

16(1, 2) Note that pre-stop does not behave in the same manner as other script sections. See
bug 703800 (https://bugs.launchpad.net/ubuntu/+source/upstart/+bug/703800)

17 For status on chroot support, see bugs 430224 and 728531: -
https://bugs.launchpad.net/ubuntu/+source/upstart/+bug/430224 -
https://bugs.launchpad.net/ubuntu/+source/upstart/+bug/728531

18 https://bugs.launchpad.net/upstart/+bug/406397
19 https://bugs.launchpad.net/upstart/+bug/888910
20 http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=607844
21 A series of blog posts by Scott James Remnant gives further details on events and

how they are used. See 22, 23, and 24.
22(1, 2) http://upstart.at/2010/12/08/events-are-like-signals/
23(1, 2) http://upstart.at/2011/01/06/events-are-like-hooks/
24 http://upstart.at/2010/12/16/events-are-like-methods/
25(1, 2) http://upstart.at/2011/03/25/visualisation-of-jobs-and-events-in-ubuntu-natty/
26 http://upstart.at/2011/03/16/checking-jobs-and-events-in-ubuntu-natty/
27 http://upstart.at/2011/03/11/override-files-in-ubuntu-natty/
28 Ubuntu will kill any jobs still running at system shutdown using

/etc/init.d/sendsigs.
29 Note that there is no "startup" job (and hence no /etc/init/startup.conf

file).
30 It is worth noting that Unix and Linux systems are confined by standards to the

runlevels specified in the Runlevels section. However, in principle Upstart allows any
number of runlevels.

31 https://wiki.ubuntu.com/ReplacementInit
32 http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Technical_Notes/deployment.html

Document generated from reStructuredText plaintext markup source on 2012-10-09 at 09:27:03 from Bazaar
branch branch. See Upstart Documenters and Upstart Cookbook. (revision $Revision-Id).

http://lxc.sourceforge.net/
http://www.gnu.org/software/bash/
http://manpages.ubuntu.com/manpages/man8/sudo.8.html
http://upstart.ubuntu.com
http://www.ubuntu.com
http://upstart.ubuntu.com
http://www.ubuntu.com
http://www.ubuntu.com/news/610released
https://bugs.launchpad.net/ubuntu/+source/upstart/+bug/703800
https://bugs.launchpad.net/ubuntu/+source/upstart/+bug/430224
https://bugs.launchpad.net/ubuntu/+source/upstart/+bug/728531
https://bugs.launchpad.net/upstart/+bug/406397
https://bugs.launchpad.net/upstart/+bug/888910
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=607844
http://upstart.at/2010/12/08/events-are-like-signals/
http://upstart.at/2011/01/06/events-are-like-hooks/
http://upstart.at/2010/12/16/events-are-like-methods/
http://upstart.at/2011/03/25/visualisation-of-jobs-and-events-in-ubuntu-natty/
http://upstart.at/2011/03/16/checking-jobs-and-events-in-ubuntu-natty/
http://upstart.at/2011/03/11/override-files-in-ubuntu-natty/
http://www.ubuntu.com
https://wiki.ubuntu.com/ReplacementInit
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Technical_Notes/deployment.html
http://docutils.sourceforge.net/rst.html
http://bzr.launchpad.net
lp:upstart-cookbook
https://launchpad.net/~upstart-documenters
https://launchpad.net/upstart-cookbook

	1 Meta
	1.1 Document Version
	1.2 Authors
	1.3 Acknowledgements
	1.4 Purpose
	1.5 Suggestions and Errata
	1.6 Coverage
	1.6.1 Upstream Upstart
	1.6.2 Ubuntu Version of Upstart
	1.6.3 Availability
	1.6.4 Ubuntu-Specific

	1.7 Audience
	1.8 Document Preparation
	1.9 Document Availability
	1.10 Warning

	2 Typographical Conventions
	2.1 Commands and configuration stanzas
	2.2 User Input and Command Output
	2.2.1 Non-Privileged User
	2.2.2 Super-User

	2.3 Configuration Examples

	3 Introduction
	3.1 What is Upstart?
	3.1.1 Reliability
	3.1.2 Design History
	3.1.2.1 Critique of the System V init System
	3.1.2.1.1 SysV Benefits
	3.1.2.1.1.1 Simplicity
	3.1.2.1.1.2 Guaranteed Ordering of Services

	3.1.2.1.2 SysV Limitations
	3.1.2.1.2.1 Non-Optimal Performance
	3.1.2.1.2.2 Server-Centric
	3.1.2.1.2.3 Assumes Static Hardware at all Times
	3.1.2.1.2.4 Every Service Does Heavy Lifting

	3.1.2.2 Critique of Dependency-Based init Systems
	3.1.2.2.1 Benefits of Dependency-based init
	3.1.2.2.1.1 Recognises Services Require Other Services

	3.1.2.2.2 Limitations of Dependency-based init
	3.1.2.2.2.1 Does Not Recognise Dynamic Nature of Linux

	3.1.2.3 Upstart's Design: Why It Is Revolutionary

	3.1.3 Performance
	3.1.4 Server
	3.1.4.1 Boot Performance
	3.1.4.2 Failure Modes

	4 Concepts and Terminology
	4.1 Job
	4.1.1 Job Types
	4.1.1.1 Task Job
	4.1.1.2 Service Job
	4.1.1.3 Abstract Job

	4.1.2 Job States
	4.1.2.1 Viewing State Transitions

	4.2 Job Configuration File
	4.2.1 System Job
	4.2.2 User Job
	4.2.2.1 Enabling

	4.2.3 Odd Jobs
	4.2.3.1 Job with start on, but no stop on
	4.2.3.2 Job with stop on, but no start on
	4.2.3.3 Job with no stop on or start on
	4.2.3.4 Minimal Job Configuration

	4.3 Event
	4.3.1 Event Types
	4.3.1.1 Signals
	4.3.1.2 Methods
	4.3.1.3 Hooks

	4.3.2 Events, not States

	4.4 Job Lifecycle
	4.4.1 Starting a Job
	4.4.2 Stopping a Job

	4.5 Ordering
	4.5.1 Order in which Events are Emitted
	4.5.2 Order in Which Jobs Which start on the Same Event are Run
	4.5.3 Ordering of Stop/Start Operations
	4.5.3.1 Single Job
	4.5.3.1.1 If Job is Not Currently Running
	4.5.3.1.2 If Job is Currently Running

	4.5.3.2 Multiple Jobs

	4.6 Runlevels
	4.6.1 Display Runlevel
	4.6.2 Change Runlevel Immediately
	4.6.3 Changing the Default Runlevel
	4.6.3.1 Permanently
	4.6.3.2 Single Boot

	5 System Phases
	5.1 Startup
	5.1.1 Startup Process

	5.2 Shutdown
	5.2.1 Observations
	5.2.2 Shutdown Process

	5.3 Reboot
	5.4 Single-User Mode
	5.5 Recovery Mode ()
	5.6 Failsafe Mode ()

	6 Configuration
	6.1 Stanzas by Category
	6.2 author
	6.3 console
	6.3.1 console log
	6.3.2 console none
	6.3.3 console output
	6.3.3.1 Example of console output

	6.3.4 console owner

	6.4 chdir
	6.5 chroot
	6.6 description
	6.7 emits
	6.8 end script
	6.9 env
	6.10 exec
	6.11 expect
	6.11.1 expect fork
	6.11.2 expect daemon
	6.11.3 expect stop
	6.11.4 How to Establish Fork Count
	6.11.5 Implications of Misspecifying expect
	6.11.6 Recovery on Misspecification of expect
	6.11.6.1 When start hangs
	6.11.6.2 When Wrong PID is Tracked

	6.12 export
	6.13 instance
	6.13.1 A Simple Instance Example
	6.13.2 Another Instance Example
	6.13.3 Starting an Instance Job Without Specifying an Instance Value

	6.14 kill signal
	6.15 kill timeout
	6.16 limit
	6.17 manual
	6.18 nice
	6.19 normal exit
	6.20 oom score
	6.21 post-start
	6.22 post-stop
	6.23 pre-start
	6.23.1 pre-start example ()

	6.24 pre-stop
	6.25 respawn
	6.26 respawn limit
	6.27 script
	6.28 setgid
	6.29 setuid
	6.30 start on
	6.30.1 Normal start
	6.30.2 Start depends on another service
	6.30.3 Start must precede another service

	6.31 stop on
	6.31.1 Normal shutdown
	6.31.2 Stop before depended-upon service
	6.31.3 Stop after dependent service

	6.32 task
	6.33 umask
	6.34 usage
	6.35 version

	7 Command-Line Options
	8 Explanations
	8.1 Really understanding start on and stop on
	8.1.1 The rc Job

	8.2 Environment Variables
	8.2.1 Restrictions
	8.2.2 Standard Environment Variables

	8.3 Job with Multiple Duplicate Stanzas
	8.4 Job Specifying Same Condition in start on on stop on

	9 Features
	9.1 D-Bus Service Activation

	10 Tools
	10.1 Utilities
	10.1.1 reload
	10.1.2 restart
	10.1.3 runlevel
	10.1.4 start
	10.1.4.1 Attempting to Start an Already Running Job
	10.1.4.2 Attempting to Start a Job that requires an Instance Variable

	10.1.5 stop
	10.1.5.1 Attempting to Stop an Already Stopped Job
	10.1.5.2 Attempting to Stop a Job that requires an Instance Variable

	10.1.6 initctl
	10.1.6.1 initctl Commands Summary
	10.1.6.2 initctl check-config
	10.1.6.3 initctl emit
	10.1.6.4 initctl help
	10.1.6.5 initctl list
	10.1.6.6 initctl log-priority
	10.1.6.7 initctl notify-disk-writeable
	10.1.6.8 initctl reload
	10.1.6.9 initctl reload-configuration
	10.1.6.10 initctl restart
	10.1.6.11 initctl show-config
	10.1.6.12 initctl start
	10.1.6.13 initctl status
	10.1.6.13.1 Single Job Instance Running without PID
	10.1.6.13.2 Single Job Instance Running Job with PID
	10.1.6.13.3 Single Job Instance Running with Multiple PIDs
	10.1.6.13.4 Multiple Running Job Instances Without PID
	10.1.6.13.5 Multiple Running Job Instances With PIDs
	10.1.6.13.6 Multiple Running Job Instances With Multiple PIDs
	10.1.6.13.7 Stopped Job

	10.1.6.14 initctl stop
	10.1.6.15 initctl usage
	10.1.6.16 initctl version

	10.1.7 init-checkconf
	10.1.8 mountall ()
	10.1.8.1 Mountall events
	10.1.8.1.1 mounting
	10.1.8.1.2 mounted
	10.1.8.1.3 all-swaps
	10.1.8.1.4 filesystem
	10.1.8.1.5 virtual-filesystems
	10.1.8.1.6 local-filesystems
	10.1.8.1.7 remote-filesystems

	10.1.8.2 Mountall Event Summary
	10.1.8.3 mountall Examples

	10.2 Bridges
	10.2.1 plymouth-upstart-bridge ()
	10.2.2 upstart-socket-bridge
	10.2.3 upstart-udev-bridge
	10.2.3.1 Careful Use of udev Events

	11 Cookbook and Best Practises
	11.1 List All Jobs
	11.2 List All Jobs With No stop on Condition
	11.3 List All Events That Jobs Are Interested In On Your System
	11.4 Create an Event
	11.5 Create an Event Alias
	11.5.1 Change the Type of an Event

	11.6 Synchronisation
	11.7 Determine if Job was Started by an Event or by "start"
	11.8 Stop a Job from Running if A pre-start Condition Fails
	11.9 Run a Job Only When an Event Variable Matches Some Value
	11.10 Run a Job when an Event Variable Does Not Match Some Value
	11.11 Run a Job as Soon as Possible After Boot
	11.12 Run a Job When a User Logs in Graphically ()
	11.13 Run a Job When a User Logs in
	11.13.1 Environment

	11.14 Run a Job For All of a Number of Conditions
	11.15 Run a Job Before Another Job
	11.16 Run a Job After Another Job
	11.17 Run a Job Once After Some Other Job Ends
	11.18 Run a Job Before Another Job and Stop it After that Job Stops
	11.19 Run a Job Only If Another Job Succeeds
	11.20 Run a Job Only If Another Job Fails
	11.21 Run a Job Only If One Job Succeeds and Another Fails
	11.22 Run a Job If Another Job Exits with a particular Exit Code
	11.23 Detect if Any Job Fails
	11.24 Use Details of a Failed Job from Another Job
	11.25 Stop a Job when Another Job Starts
	11.25.1 Simple Mutual Exclusion

	11.26 Run a Job Periodically
	11.27 Restart a job on a Particular Event
	11.28 Migration from System V initialization scripts
	11.29 How to Establish a Jobs start on and stop on Conditions
	11.29.1 Determining the start on Condition ()
	11.29.1.1 Standard Idioms
	11.29.1.2 More Exotic start on Conditions
	11.29.1.2.1 udev conditions

	11.29.2 Determining the stop on Condition ()
	11.29.3 Final Words of Advice

	11.30 Guarantee that a job will only run once
	11.30.1 Method 1
	11.30.2 Method 2

	11.31 Stop a Job That is About to Start
	11.32 Stop a Job That is About to Start From Within That Job
	11.33 Stop a Job from Running if its Configuration file has not been Created/Modified
	11.34 Stop a Job When Some Other Job is about to Start
	11.35 Start a Job when a Particular Filesystem is About to be Mounted
	11.36 Start a Job when a Device is Hot-Plugged
	11.36.1 To start a job when eth0 is added to the system
	11.36.2 To start a job when eth0 is available

	11.37 Stopping a Job if it Runs for Too Long
	11.38 Run a Job When a File or Directory is Created/Deleted
	11.39 Run a Job Each Time a Condition is True
	11.40 Run a Job When a Particular Runlevel is Entered and Left
	11.41 Pass State From a Script Section to its Job Configuration File
	11.42 Pass State From Job Configuration File to a Script Section
	11.43 Run a Job as a Different User
	11.43.1 Running a User Job
	11.43.2 Changing User

	11.44 Disabling a Job from Automatically Starting
	11.44.1 Override Files

	11.45 Jobs that "Run Forever"
	11.46 Run a Java Application
	11.46.1 Alternative Method

	11.47 Ensure a Directory Exists Before Starting a Job
	11.48 Run a GUI Application
	11.49 Run an Application through GNU Screen
	11.50 Run Upstart in a chroot Environment
	11.50.1 chroot Workaround for Older Versions of Upstart
	11.50.2 chroots in Ubuntu Natty

	11.51 Record all Jobs and Events which Emit an Event
	11.52 Integrating your New Application with Upstart
	11.53 Block Another Job Until Yours has Started
	11.54 Controlling Upstart using D-Bus
	11.54.1 Query Version of Upstart
	11.54.2 Query Log Priority
	11.54.3 Set Log Priority
	11.54.4 List all Jobs via D-Bus
	11.54.5 Get Status of Job via D-Bus
	11.54.6 Get Jobs start on and stop on Conditions via D-Bus
	11.54.7 To Start a Job via D-Bus
	11.54.8 To Stop a Job via D-Bus
	11.54.9 To Restart a Job via D-Bus

	11.55 Establish Blocking Job
	11.56 Determine if a Job is Disabled
	11.57 Visualising Jobs and Events
	11.58 Sourcing Files
	11.58.1 Develop Scripts Using /bin/sh
	11.58.2 ureadahead

	11.59 Determining How to Stop a Job with Multiple Running Instances
	11.60 Logging Boot and Shutdown Times
	11.61 Running an Alternative Job on a tty
	11.62 Creating a SystemV Service that Communicates with Upstart

	12 Test Your Knowledge
	12.1 Questions about start on
	12.2 General Questions

	13 Common Problems
	13.1 Cannot Start a Job
	13.2 Cannot stop a job
	13.3 Strange Error When Running start/stop/restart or initctl emit
	13.4 The initctl command shows "the wrong PID"
	13.5 Symbolic Links don't work in /etc/init
	13.6 Sometimes status shows PID, but other times does not

	14 Testing
	15 Daemon Behaviour
	16 Precepts for Creating a Job Configuration File
	16.1 Determining the value of expect
	16.2 start on and stop on condition
	16.3 Services
	16.4 Ubuntu Rules ()
	16.4.1 Console attributes

	17 Debugging
	17.1 Obtaining a List of Events
	17.1.1 Add --verbose or --debug to the kernel command-line
	17.1.2 Change the log-priority

	17.2 See the Environment a Job Runs In
	17.3 Checking How a Service Might React When Run as a Job
	17.4 Obtaining a log of a Script Section
	17.4.1 Upstart 1.4 (and above)
	17.4.2 Versions of Upstart older than 1.4

	17.5 Log Script Section Output to Syslog
	17.6 Checking a Job Configuration File for Syntax Errors
	17.7 Check a Script Section for Errors
	17.7.1 Older versions of Upstart

	17.8 Debugging a Script Which Appears to be Behaving Oddly

	18 Recovery
	18.1 Boot into Recovery Mode
	18.2 Boot to a shell directly

	19 Advanced Topics
	19.1 Changing the Default Shell
	19.2 Running a script Section with Python
	19.3 Running a script Section with Perl

	20 Development and Testing
	20.1 Unit Tests
	20.1.1 Building Within a Chroot
	20.1.2 Statistics
	20.1.3 Test Coverage

	20.2 Enable Full Compiler Warnings
	20.3 Running Upstart as a Non-Privileged User
	20.4 Useful tools for Debugging with D-Bus
	20.5 Debugging a Job
	20.6 Debugging Another Instance of Upstart Running as root with PID 1
	20.6.1 Method 1 (crazy)
	20.6.2 Method 2 (saner)

	20.7 Debugger Magic
	20.7.1 NihList
	20.7.2 NihHash

	21 Known Issues
	21.1 Restarting Jobs with Complex Conditions
	21.1.1 Advice

	21.2 Using expect with script sections
	21.3 Bugs

	22 Support
	23 References
	23.1 Manual Pages
	23.2 Web Sites
	23.3 Mailing List

	24 Answers to Test
	25 Footnotes
	26 Colophon
	27 Appendices
	27.1 Ubuntu Well-Known Events ()

	28 Footer

