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Abstract

Asymptotic behavior of the solution of the moving oscillator problem is examined for large and small
values of the spring stiffness for the general case of non-zero beam initial conditions. In the limiting case of
infinite spring stiffness, it is shown that the moving oscillator problem for a simply supported beam is not
equivalent, in a strict sense, to the moving mass problem. The two problems are shown to be equivalent in
terms of the beam displacements but are not equivalent in terms of stresses (the higher order derivatives of
the two solutions differ). In the general case, the force acting on the beam from the oscillator is shown to
contain a high-frequency component , which does not vanish and can even grow when the spring coefficient
tends to infinity. The magnitude of this force and its dependence on the oscillator parameters can be
estimated by considering the asymptotics of the solution for the initial stage of the oscillator motion. It is
shown that, for the case of a simply supported beam, the magnitude of the high-frequency force depends
linearly on the oscillator eigenfrequency and velocity. The deficiency of the moving mass model is
principally that it fails to predict stresses in the supporting structure. For small values of the spring stiffness,
the moving oscillator problem is shown to be equivalent to the moving force problem. The discussion is
amply illustrated by results of numerical experiments.
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1. Introduction

The calculation of the dynamic response of a distributed parameter system carrying one or
more travelling subsystems is very important in many engineering applications related, for
example, to the analysis and design of highway and railway bridges, cable-railways, and the like.
Two simple models of moving subsystems are generally accepted in studies of this subject, where
the emphasis is placed on the dynamics of the distributed parameter system rather than on that of
the moving subsystem: moving mass and moving oscillator models. The difference between the two
models is that the stiffness of the coupling between the moving subsystem and the continuum in
the former model is assumed infinite. In the following, the problem of the vibration of the
distributed parameter system due to the moving mass or oscillator will be referred to as the
moving mass or moving oscillator problem, respectively. If the velocity of the moving subsystem is
low, its inertia can be neglected, and one arrives at the moving force problem, which is
considerably simpler than either of these two problems. There is a large body of literature devoted
to all three problems, and a number of methods for solving them have been developed during the
past several decades. We refer the interested reader to the ample lists of references [1,2], as well to
those in other works cited throughout this paper. Some discussion of papers on the moving mass
problem related to the main subject discussed in this study is given in Section 4.

The purpose of this study is to examine the asymptotic behavior of the solution of the moving
oscillator problem for large and small values of the spring stiffness and to establish the
relationship between the moving oscillator problem and the other two. The emphasis is put on the
asymptotics for large values of the spring stiffness, and our reasons for carefully examining this
case are as follows.

It is commonly accepted that the moving oscillator problem, in the limit of infinite coupling
stiffness, is equivalent to the moving mass problem (see, e¢.g. Refs. [3.4]). One can also find
statements in some papers to the effect that their authors used large values of the spring stiffness
in their numerical experiments, thus modeling the moving mass problem. At first glance, the
assumption about the equivalence of the two problems seems to be valid taking into account the
fact that the amplitude of the oscillator vibration vanishes when the spring stiffness goes to
infinity. It is also substantiated by numerous results of numerical experiments presented in the
literature, which show the convergence of the response solution of the moving oscillator problem
as the spring stiffness grows. To the authors’ best knowledge, however, the validity of this
assertion has never been proved in the literature but was taken for granted.

On the other hand, when modeling the multiple moving oscillator problem, one can observe
that the force acting on the beam from the second oscillator is very different from that of the first.
Fig. 1 illustrates this; it shows the time history of the forces acting on the unit dimensionless
simply supported beam with zero initial conditions traversed by two identical high-frequency
oscillators of unit weight moving with the velocity v = n/2 (more details about this example, as
well as about the subsequent illustrations, are given in Section 6). The second oscillator enters the
left end of the beam at the moment when the first oscillator leaves the beam. Both oscillators are
assumed to have zero initial conditions at the moment when they enter the beam. Thus, the
problem is decomposed into two problems of one moving oscillator (in the intervals [0,2/7] and
[2/m,4 /], respectively). The only difference between these two problems is that the beam initial
conditions in the second problem are non-zero. The difference in the two forces is easily seen:
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Fig. 1. Forces acting on the SS beam from two oscillators traversing it one after another.

whereas the force from the first oscillator may be associated with the inertia of the moving mass,
the force from the second oscillator contains a high-frequency component of large magnitude,
which is not typical of a moving mass solution. This phenomenon implies that the solution to the
problem considered cannot adequately be approximated by any kind of moving mass solution.

This was our motivation to more closely examine the effect of non-zero beam initial conditions
on the moving oscillator solution and to compare it with the corresponding moving mass solution.
In Section 3, the problem of equivalence of the moving mass and moving oscillator solutions is
examined, and the explanation of the behavior of the curve depicted in Fig. 1 is given. It will be
shown that the moving oscillator solution does not tend to the corresponding moving mass
solution in a strict sense and that the force acting on the beam from the oscillator contains a high-
frequency component which not only does not vanish but also can grow when the spring stiffness
increases. In spite of this, the two solutions are still equivalent in terms of the beam displacement
(which is further referred to as weak equivalence).

The examination of the equivalence problem brought us to the conclusion concerning deficiency
of the moving mass model, which is discussed in Section 4. While the moving mass model can be
used to accurately approximate the displacement of a long bridge due to a real vehicle with a stiff
suspension, it fails to predict stresses. The issue of deficiency of the moving mass solution comes
into play when the beam initial conditions are allowed to be non-zero and originates from the fact
that the moving mass problem statement is physically incorrect in this case. Note that, in most
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publications on the moving mass problem, the initial conditions for the beam either are not
discussed at all or are assumed to be zero. Even when the governing equations are written for
arbitrary initial conditions, the discussions are usually reduced to zero initial conditions by means
of the ubiquitous phrase “without loss of generality.” Indeed, in many cases, the presumption of
zero initial conditions simplifies calculations and causes no loss of generality. However, this
expedient does not work in the case of the moving mass problem, which is an idealization
obtained by assuming infinitely large stiffness of the coupling between the subsystems.

The asymptotics of the moving oscillator solution for small values of the spring stiffness are
discussed in Section 5.

2. Problem statement

The vibration of a uniform beam traversed by an oscillator of mass mg attached to the beam
through a spring of stiffness £ moving with a constant velocity v is governed by the equations

Fod o
papW + El5 3w = —(mog + k(w(vt, 1) = 2(0))d(x — o), 1)
moz = k(w(vt, t) — z(¢)), 0<x<L, 0<t<L/v. ()

subject to given boundary and initial conditions, where z(#) is the absolute displacement of the
lumped mass. The beam ends are assumed to be fixed (simply supported or clamped).

The equations governing the moving mass and moving force solutions, wy,,(x, 1) and w,r(x, 1),
are well known to be

& & o o\’
P2+ EL g = = mog 5+ 02 ) w1 |] -, )
and
0 0
6t2wmf + EI@ MWmp = —Mogd(x — vt), 4)

respectively, subject to given boundary and initial conditions.

The basic purpose of this study is to examine the asymptotics of the solution of Egs. (1) and (2)
for large values of the spring stiffness k, to find out what new phenomena are associated with non-
zero beam initial conditions, and to establish the conditions under which the moving mass and
moving oscillator problems are equivalent in the limit of infinite spring stiffness.

We will also formally prove an intuitively clear fact that, if the spring stiffness tends to zero, the
solution of the moving oscillator problem (1), (2) reduces to that of the moving force Eq. (4).
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3. Asymptotics for large values of spring stiffness
3.1. Equation for the concentrated elastic force

Let us rewrite Eq. (2) in the form

Z+ (ugz = co%w(vl, 1), (%)

where wy = /k/my is the eigenfrequency of the oscillator. The solution to Eq. (5) is the sum of
the solution to the homogeneous Eq. (5) satisfying given initial conditions and the particular
solution satisfying zero initial conditions and is given by

1 . ! .
z(t) = z(0) cos wot + w—z‘(O) sin wyt + wy / w(vt, 7) sin wy(t — 7) dr. (6)
0 0

Let wg be large, and let beam initial conditions be arbitrary. Taking the integral on the right-
hand of Eq. (6) by parts four times with regard to the condition w(0,0) = 0 and dropping the
terms of order less than 1/w], we get

1
z(t) = z(0) cos wot + w—Z’(O) sin wyt
0

1 1 1 1
+ w(vt, 1) — —W(0, 0) sin wot — —i(vt, 1) + —1(0, 0) cos wot + 0 <—2> , (7)
o o5 o wj
where W(vt, t) and Ww(uvt, ¢) are the convective derivatives,
. _ (o 0 ) (o o\’
w(vt, t) = (5 + v&> w(x, Dlyzy,, (VL 1) = <§ + va—x> w(X, )| x=pt-
Note that, for r = 0, we have
#(0,0) = vwy(0,0),1(0,0) = v*wyx(0,0) + 20wx,(0,0), ®)

where w,, wy, and w,, are the partial derivatives.

It is evident from physical considerations that the oscillator initial conditions cannot be taken
as arbitrary but, rather, must be consistent with large spring stiffness. Under the assumption that
the oscillator initial conditions are due to external forces of finite magnitude acting on the
oscillator before it enters the beam, it can easily be shown that we should confine our
consideration to the case where

200)= 0 (%) £0)=0 <i> 9)
0)0 (ON)

Then, it follows immediately from Egs. (7) and (9) that the relative oscillator displacement
z(t) — w(vt, t) vanishes when the spring stiffness goes to infinity.

Further, multiplying both sides of Eq. (7) by the spring stiffness k, we find the elastic force of
interaction between the beam and oscillator,

f(H) = —k(w(vt, t) — z(t)) = — moawo(W(0,0) — 2(0))sin wot
+ mo(i(0, 0) + wz(0))cos wot — mgii(vt, ) + o(1). (10)
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As can be seen, in the general case of oscillator and beam initial conditions, the elastic
interaction force contains two harmonic components with frequency wg due to the eigenvibration
of the oscillator, which do not vanish when k goes to infinity. Moreover, the amplitude of the first
of them grows infinitely as the spring stiffness tends to infinity. This means that the moving mass
and moving oscillator problems are generally not equivalent in the limit of infinite spring stiffness
since the force on the right-hand side of Eq. (1) does not tend to that of Eq. (3).

The oscillating character of the interaction force in the moving oscillator problem implies, in
particular, that the picture of the shear force distribution changes rapidly in time, especially in the
vicinity of the moving oscillator attachment point, since the concentrated force acting on the beam
is equal to the jump in the shear force at that point. This phenomenon is illustrated in Fig. 2,
which shows the shear force distributions at three close instants, ¢t = 0.8, 0.805, and 0.81, for the
example discussed above (see explanations to Fig. 1). It demonstrates that the jump in the shear
force distribution changes considerably in a short time interval, which may imply that the beam is
subject to (high-frequency) damaging stresses.

3.2. Conditions for the equivalence of the moving oscillator and moving mass problems
Since the operators on the left sides of Egs. (1) and (3) are exactly the same, the solution of the

moving oscillator problem, together with all its derivatives, tends to that of the moving mass
problem if the right-hand of Eq. (1) tends to that of Eq. (3) as wy— oo. It follows from Eq. (10)
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Fig. 2. Shear force distributions at three close instants in the two-oscillator problem (the first oscillator is outside the
beam): t =08 (- - - - - ), t =0.805(----- ), and £ = 0.81 (—).
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that the latter condition holds only if oscillator initial conditions satisfy the relations
(0, 0)

2 b
Wy

z(0) =

2(0) = 1(0,0) = vw.(0, 0). (11)

The second condition of Eq. (11) implies that the velocity of the oscillator at ¢ = 0 is directed
along the tangent line to the beam at x = 0, and the first condition of Eq. (11) implies that the
spring is prestressed to make the force acting on the beam at = 0 equal to the initial inertia force
inherent in the moving mass problem.

In the case of zero beam initial conditions, Eq. (11) are satisfied by taking zero oscillator initial
conditions. Now, let the beam initial conditions be non-zero. If the left end of the beam is simply
supported, the initial slope is generally a certain finite number not depending on the oscillator
eigenfrequency, and the second condition of Eq. (11) cannot be satisfied since, by virtue of Eq. (9),
2(0) must vanish when wy— oco. This implies that the moving oscillator problem in the limit of
infinite spring stiffness is not equivalent in the strict sense to the moving mass problem. In the case
of the clamped left end, conditions (11) are fulfilled if

2
2(0) = —5w(0,0),  £(0) = 0. (12)
@y

Thus, we may conclude that, except for the case of zero initial conditions, there is no strict
equivalence between the two problems in the limit of infinite spring stiffness if the left end of the
beam is simply supported. If the left end of the beam is clamped, it is always possible to choose
oscillator initial conditions such that the moving oscillator problem is strictly equivalent to the
moving mass problem in the limit of infinite spring stiffness. If the oscillator initial conditions do
not match the beam initial conditions as described by Eq. (12), the two problems are not
equivalent.

Remark 1. Consider a simply supported beam with non-zero initial conditions. When solving the
moving oscillator problem numerically for a set of increasing finite values of the oscillator
eigenfrequency, we can always force the oscillator initial conditions to satisfy conditions (11),
which implies that the force on the right-hand side of Eq. (1) tends to that of Eq. (3) and,
accordingly, the corresponding solutions tend to the moving mass solution. It may seem that this
reasoning contradicts the above conclusion about non-equivalence of the two problems. The
contradiction is explained if we note that the requirement of the fixed value of the oscillator
velocity z(0) implicitly suggests infinitely growing forces acting on the oscillator before it enters
the beam. Hence, the limit procedure cannot correspond to any physically correct process. The
other side of this conclusion is that the moving mass problem statement is physically incorrect in
the case of non-zero beam initial conditions. This is further discussed in Section 4.

The above analysis shows that high-frequency oscillations of the elastic (dynamic) force appear
when a stiff oscillator enters an already vibrating beam. In the general case, the oscillator initial
conditions cannot be adjusted to satisfy Eq. (11), and we need to examine the effect of the high-
frequency component of the dynamic force on the beam vibration. We will show that the beam
displacement is not sensitive to the oscillator initial conditions as long as they are consistent with
large spring stiffness (i.e., satisfy Eq. (9)), and that, in spite of the “‘stress’ nonequivalence, the
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two problems are still equivalent in terms of the beam displacements (i.e., the response of the
beam due to the moving oscillator tends to that due to the moving mass as k— oo). We will call
this weak equivalence.

3.3. Weak equivalence of the moving mass and moving oscillator problems

Let the oscillator initial conditions not satisfy Eq. (11). Eq. (10) can be written in the form
f(t) = —cimowg sin wgt + camg cos wot — m,w(vt, t) + o(1), (13)

where ¢; and ¢; are determined by the beam and oscillator initial conditions and do not depend on
wo. Note that it may seem, from Eq. (10), that ¢, also depends on the oscillator eigenfrequency,
but, by virtue of condition (9), it does not (if wq increases, the initial oscillator displacement
inevitably vanishes). Let us represent the solution to Eq. (1) in the form

w(x, 1) = Wp(x, 1) + W(x, 1), (14)

where wy,;;(x, ) is the solution to the corresponding moving mass problem (3) satisfying the given
initial conditions

0 0
Wmm(x: 0) = M}(xv 0): awmm(xs Z) | =0 — aw(xa t)l t=0>
and

w(x,0) = %ﬂ}(x, )] =0 =0.

Substituting Eq. (14) into Eq. (1) and taking Eq. (13) into account, we get

2 84 52 4
pﬁwmm + Elwwmm + P@VT’ + EI@W = —(mog + mowmm(l)[s l)
+ c1mywosin wot — camg cos wot + mow(vt, 1) + o(1))8(x — vt). (15)

Comparing the right sides of Egs. (3) and (15), we find that W(x, ¢) satisfies the equation
2 64 .
pﬁw + Elﬂw = —(mow(vt, t) + cimywg sin wot — camy cos wyt + o(1))d(x — vt)
X
subject to the given boundary conditions and zero initial conditions. Dropping the small order
term and rewriting the last equation in the form

a—zﬂ/ + Eliﬂ/ + mg(vt, £)5(x — vt)
Por oyt IO

= —(c1mowy Sin wot — ¢y cos wot)d(x — vt), (16)

we find that it governs the vibration of the beam with the rigidly attached weightless mass n, that
moves along the beam with the velocity v (or, in other words, the beam with the mass distribution
given by p + myd(x — vt)) excited by the moving harmonic force.

It is evident that the second harmonic force on the right-hand side of Eq. (16) can be dropped
for sufficiently large values of wy (it remains constant when wy— oo, whereas the first force
increases infinitely). Thus, for simplicity of the notation, it is sufficient to prove that the solution



A.V. Pesterev et al. | Journal of Sound and Vibration 260 (2003) 519-536 527

to the equation
2 4

0 N
p=—W + EI—W + mow(vt, 1)0(x — vt) = (cimowy sin (wo?)o(x — vt), (17)
or? ox*

satisfying the given boundary and zero initial conditions tends to zero when w— oo. The solution
to Eq. (17) is given by

t L
w(x,t) = /0 /0 g(x, &t — 1)eymomg sin(wgt)o(E — vr) dédr

t
= C1Myyg / g(x,vt;t — 7) sin wyt d,
0

where g (x, & ¢) is the dynamic Green’s function of the system governed by the left-hand side of
Eq. (17) with regard to the boundary conditions. Although its closed-form representation is not
available (and is unlikely to be found), it is sufficient for our purposes that such a function exists
(which follows from physical considerations). Taking the last integral by parts twice, we get

t
w(x, ) = — clmo/ g(x,vt;t — v)d cos wot = —c1mog(x, vty t — T) COS worﬁ:o
0

c1my d . t c1my g2 .
—g(x, 0751 — 1) sSin woT|,_y — —9(x, vt — 1) sin wot dt.
wo dr wy Jo dt

The first term on the right-hand of the equation vanishes since g (x,0; ) = 0 (fixed left end) and
g (x, & 0) = 0 (the deflection of the system at ¢ = 0 due to the unit impulse applied at ¢ = 0 is zero),
and we finally arrive at the equation

cimy d .
W(x, 1) = —— —g(x, 073 £ — 7) |, sin wot
wo dr
t d2
_ Gino / —9(x,vt; 1 — 7) sin wot d. (18)
o Jo dr

It follows from the last equation that, in view of the finiteness of the first and second partial
derivatives of the Green’s function, the solution to Eq. (17) tends to zero as wy— o0,

w(x, 1) =0 <L> ,
o

which proves the weak equivalence of the moving mass and moving oscillator problems in the
limit of infinite spring stiffness.

From a physical standpoint, the small effect of the additional harmonic forces on the beam
vibration is explained by the fact that these forces have high frequency and excite only high order
eigenvibrations of the beam, the contribution of which in the beam response is negligible. Moreover,
no resonance phenomena can take place because of the finiteness of the passage time and since the
time-varying system governed by the left-hand of Eq. (17) has no fixed resonance frequencies.

Remark 2. The incorporation of damping into the oscillator model complicates all calculations
and makes the analysis more involved. It is for this reason that we consider here the undamped
oscillator. It can be shown, however, that all basic findings of this study remain valid for the
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damped case. The elastic force in the damped case is described by an equation similar to Eq. (10),
with the functions sinwgt and coswgt being replaced by the e *sin/w?— o and

e % cos y/w} — o, respectively, where « is the damping coefficient. This implies, in particular,
that the conclusion about nonequivalence of the moving mass and moving oscillator problems for
the general case of initial conditions remains valid. The coefficients of the latter functions are
more complicated functions of the initial conditions and the spring and damper coefficients. It
can be proved, however, that these coefficients vanish when the oscillator initial conditions satisfy
the same Eq. (11).

Although the high-frequency component of the dynamic interaction force does not result in any
increase of the beam displacement, the magnitude of this force (or, to be more specific, the
magnitude of the total dynamic force) is of great significance, in particular to pavement wear [5].
The magnitude of the additional high-frequency force is determined by the oscillator parameters
and the beam and oscillator initial conditions and may be considerable. Thus, it is important to
establish the dependence of this force on the oscillator parameters and initial conditions and to
find a priori estimates of the peak values of the concentrated force acting on the beam. In the next
section, we will show that the magnitude of the dynamic force f(¢) can be estimated by considering
its asymptotics for small values of time.

3.4. Asymptotics of the dynamic force at the initial stage of oscillator motion

As was shown above, when a stiff oscillator enters the already vibrating beam, there appears a
harmonic high-frequency component in the elastic interaction force with frequency wy and the
accompanying force associated with the high-frequency low-amplitude vibration Ww(x,7) of the
beam excited by the former force. Although, as was shown in Section 3.3, W(x, f) tends to zero as
wo — o0, the force mgw(x, t) associated with this vibration does not (note that this is clearly seen in
Fig. 2). These forces are added to the force associated with the inertia of the moving mass such
that the resulting dynamic force acting on the beam from the oscillator can be represented as

f(l) = —I’I’l()ﬁ/mm(l)l, t) ‘|’fad(t)~ (19)
By virtue of Egs. (10) and (14), the equation for the additional force is given by
Jaa(t) = —mgwocy sin wot + moca cos wot — mow(vt, 1), (20)

where ¢ and ¢, are determined by the oscillator and beam initial conditions and do not depend on
wyq (see also the remark after Eq. (13)).

If ¢;#0 and wyq is sufficiently large, the amplitude of the harmonic force can be very well
approximated by the first term only. The inertia term mgw(vt, f) associated with the moving mass
solution can also be neglected for large wy. The last term in Eq. (20) is a rather complicated
function and can only be accurately calculated numerically. As can be seen from Eq. (18), its
magnitude depends linearly on the amplitude of the exciting harmonic force (and, hence, on wy),
and, thus, it generally cannot be neglected. Note, however, that, due to the damping inherent in
any real problem, the high-frequency vibrations of the beam and oscillator decrease rapidly. Thus,
from a practical standpoint, it is sufficient to be able to estimate the peak values of the dynamic
force at the initial stage of the oscillator motion. For small ¢ such that vf < L (the oscillator is close
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to the left end of the beam), the third term on the right-hand of Eq. (20) can be dropped. This can
formally be proved if we take into account that the harmonic force with frequency wq excites
mainly the beam eigenvibrations at the eigenfrequencies w, close to wy and that the wave numbers
A, are proportional to the square roots of the eigenfrequencies, \/w“n Then it follows that the
maximum magnitude of the dynamic force f(¢) can be very well approximated by that for small ¢
which is given by
: 2(0)

max If ()| = mowov (WX(O, 0) — T) , vt<L. (21)
Note that the expression in parentheses is the difference between the initial slope of the beam at
x = 0 and the direction of the oscillator velocity. As can be seen from Eq. (21), the magnitude of
the dynamic force is proportional to the oscillator eigenfrequency and velocity.

If ¢; (the difference between the initial beam slope and the direction of the oscillator velocity) is
small or the spring stiffness is not sufficiently large, the estimate can be improved by taking the
second term on the right-hand of Eq. (20) into account. Moreover, we can also take the first term
in Eq.(19) into account by noting that, for vr<L, it can be considered constant,
Wim(vt, £) (0, 0). Thus, for a simply supported beam and zero oscillator initial conditions, we
get the approximate formula for the concentrated force acting on the beam for vt < L,

F(t)~ — myg — mowoow«(0, 0) sin wgt — 2moow(0,0)(1 — cos wyt). (22)
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Fig. 3. Dynamic force F(¢) acting on the SS beam from the undamped (——) and damped (=) oscillators with wg
=200 and v = 7/2, and its approximation (----- ) by Eq. (22).
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Fig. 4. Dynamic force F(t) acting on the SS beam from the undamped (——) and damped ( ) oscillators with wq

=400 and v = n/2, and its approximation (----- ) by Eq. (22).

Figs. 35 illustrate this. The concentrated forces F(¢) acting on the unit, simply supported beam
from the undamped oscillators are depicted by the thin solid lines. Figs. 3 (wy = 200, v = 7/2) and
4 (wy = 400, v = ©/2) demonstrate that the magnitude of the elastic force grows with the increase
of the oscillator eigenfrequency. Figs. 4 and 5 (o = 400, v = ) show that it is a linear function of
the oscillator velocity. Approximations of the concentrated force for small values of time by
means of Eq. (22) are shown in Figs. 3—5 by the dashed lines. The bold lines show the forces acting
on the beam in the case of the damped oscillators with the damping coefficients ¢y = 6 (Fig. 3) and
co = 12 (Figs. 4 and 5) (for both oscillators, damping is about 15%of critical). These figures
clearly demonstrate that (1) the high-frequency oscillations of the elastic force reduce rapidly and
(2) the approximate Eq. (22) can be used to adequately estimate upper bounds of the peak values
of the elastic force. If ¢; is zero, the dynamic force does not depend on wy in this case, the inertia
force cannot generally be neglected, and estimates (21) and (22) are not applicable.

4. On the deficiency of the moving mass model

The moving mass model is an idealization of the moving oscillator model obtained by assuming
infinitely large stiffness of coupling between the subsystems. However, as was discussed in
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Fig. 5. Dynamic force F(¢) acting on the SS beam from the undamped (——) and damped (====) oscillators with
o =400 and v = 7, and its approximation (----- ) by Eq. (22).

Remark 1, if the beam initial conditions are non-zero, it cannot be obtained from the moving
oscillator model without assuming infinitely large forces acting on the mass. This implies that the
moving mass model is physically incorrect if initial conditions for a simply supported beam are
allowed to be non-zero.

As shown in Section 3.3, the use of the moving mass model is still justified when we need to
calculate the beam displacement. The “‘cost” of this model incorrectness is that it fails to
accurately calculate the concentrated force acting on the beam from the vehicle and, thus, to
predict stresses in the beam. Indeed, when a vehicle with a stiff suspension enters an already
vibrating bridge, its initial conditions are generally not “in agreement’ with those of the bridge
(i.e., do not satisfy Eq. (11)). As shown in Section 3, this results in the appearance of a high-
frequency component in the dynamic interaction force. In certain circumstances, the magnitude of
this force may be considerable and exceed that of the inertia force associated with the moving
vehicle. Thus, neglecting this force, we are not able to accurately calculate stresses in the bridge.
When using the moving mass model, the high-frequency component of the force is missing, which
implies the deficiency of the moving mass model in that it fails to predict stresses in the bridge.

The deficiency of the moving mass model becomes even more evident when it is applied to
solving the problem of several vehicles traversing a bridge represented by a simply supported
beam. Assuming that a “‘rigid” vehicle approaches the beam moving along the rigid horizontal
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surface, we see that the vertical velocity of the vehicle at x = —0 is zero. When the vehicle enters
the beam, we must admit that, in the framework of the moving mass model, its vertical velocity at
x = 40 is vw,(0,0), which implies that the velocity has been instantly changed, which, in turn,
suggests infinite force acting on the mass (beam).

In view of the above, it is not surprising that the multiple moving mass problem has been nearly
neglected in the literature, and the problem of stress calculation has not been discussed at all.
Moreover, in most publications on the moving mass problem, only zero initial conditions for the
beam are considered (e.g., Refs. [6-8]). In [9], the governing equation is written for the case of
several moving masses, and it is stated that the method is applicable to arbitrary initial conditions;
however, by means of the universal expedient ““without loss of generality”, the analysis is reduced
to one moving mass and zero initial conditions, and no numerical results related to several masses
are presented. Moreover, the right-hand side of the governing equation in that paper suggests that
all masses enter the beam at the same moment. In Ref. [10], all masses are also assumed to enter
the beam at the same moment and the initial conditions are zero. Lee [11] examines the case of
high velocities of the moving mass and considers the effect of the separation between the mass and
beam. At the instant of recontact in his problem, the situation is the same as at the moment when
a moving mass enters the already vibrating beam in the problem considered in this paper. For
simplicity, the impact effect in that paper is neglected, and the concentrated force is assumed to
have a jump at the instant of recontact. Since the paper examines only the beam displacement
rather than stresses in the beam, such an approach seems to be justified in view of the analysis
given in Section 3.3 of this paper. In Refs. [12—14], results of numerical experiments with several
moving masses are presented; however, no discussions are given concerning what happens when a
mass enters the already vibrating beam, the initial conditions are not presented, and the problem
of shear stress calculation is not discussed.

5. Asymptotics for small values of spring stiffness

In order to prove that the solution of the moving oscillator problem tends to that of the moving
force problem as the spring stiffness goes to zero, it is sufficient to show that the elastic force on
the right-hand side of (1) vanishes, since, in this case, the right-hand side of (1) tends to that of
Eq. (4). Introduce the notation w,,y = maxo<,<7,|w(vt, t)|, were T, = L/v is the passage time. Let
k be small such that w7, < 1. Consider first the case of zero oscillator initial conditions. By using
Eq. (6), it can be easily shown that the maximum oscillator displacement satisfies the inequality

(CO() T, p)2 o

|Z(t)|<wmax B = 0(1)

Then, the elastic force f(¢) tends to zero as k—0,

max |f(¢)|~kwmax — 0.
<t<T,

If the oscillator initial conditions are non-zero, the oscillator displacement can be represented as
z(1) = z(0) + 2(0)¢ + o(1).
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In this case,
max |f ()| <kwmax + k|z(0)| + k|2(0)|T, — 0.
0<t<T,

Thus, we proved that for any fixed values of the oscillator initial conditions, the maximum
magnitude of the elastic force acting on the beam vanishes as the spring stiffness goes to zero,
which proves the equivalence of the two problems.

Remark 3. It should be noted that the governing equations for the moving oscillator problem are
sometimes written in a form different from Egs. (1) and (2). The point is that the weight of the
oscillator can be included either in Eq. (1) or in Eq. (2) depending on whether or not the initial sag
in the spring due to the oscillator weight is taken into account. For example, in Ref. [1], the
oscillator weight is assumed to be applied to the oscillator (the term mg is on the right-hand of
Eq. (2)). Both formulations are mathematically equivalent and are obtained from each other by
changing the variable z(z). However, if the oscillator initial conditions are assumed to be the same
(e.g., zero) in both formulations, the solutions for small values of the spring stiffness may
considerably differ from each other. The conclusion drawn in this section about the equivalence of
the moving force and moving oscillator problems in the limit of zero spring stiffness is valid only if
the governing equation is written in form (1), (2) (i.e., if the initial sag in the spring due to the
oscillator weight is taken into account).

6. Numerical examples

In our numerical experiments, we employed the unit dimensionless simply supported beam
(p = EI = L = 1). The fundamental frequency of the beam is ®w; = n°. The non-dimensionaliza-
tion procedure is standard (see, e.g., reference [1]) and is not repeated here. The dimensionless
oscillator velocity is given in terms of 7 in order to compare it with the “critical” velocity v = =«
inherent in the moving force problem [15]. The oscillator weight was taken equal to one; i.c.,
my = 1/g~0.1, where g is the acceleration of gravity. All figures show the resulting concentrated
force F(t) = —mog + f(¢) acting on the beam from the oscillator.

The results depicted in Figs. 1 and 2 (the two moving oscillators problem) correspond to zero
beam initial conditions and oscillator parameters wy = 400 and v = /2. In all other experiments,
the beam initial conditions were non-zero and remained the same to make it possible to examine
the effect of variation of the oscillator parameters on the magnitude of the elastic force. To avoid
the danger of choosing ‘“unrealistic’ initial conditions and the question of what initial functions
should be considered as “appropriate,” we did the following: First, we numerically solved the one
moving oscillator problem for the beam with zero initial conditions and oscillator parameters
o = 400 and v = =/2. The functions w(x, 7) and w,(x, ) were calculated at the moment when the
oscillator was at the right end of the beam and were then taken as the initial functions w(x, 0) and
w(x, 0) for all following experiments.

To numerically solve the moving oscillator problem, the method described in Ref. [16] (one
oscillator)and [2] (extension to the multiple moving oscillators problem) was used, which is based
on the expansion of the solution in the series in terms of the beam eigenfunctions. The number of
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terms used in the series for all calculations was equal to eight, which is sufficient to make the
results reliable (note that the maximum oscillator eigenfrequency considered, wy = 400, is less
than the seventh beam eigenfrequency w;~484).

The conventional series expansion is known to converge poorly when applied to calculation of
the higher order derivatives of the response. To accurately calculate the shear force distributions
depicted in Fig. 2, an improved series expansion suggested in Ref. [17] was employed, which
makes use of the beam static Green’s function and gives an exact value of the shear force jump.

7. Conclusions

Asymptotic behavior of the solution of the moving oscillator problem has been examined for
large and small values of the spring stiffness for the general case of non-zero beam initial
conditions.

1. It has been shown that, in the case of a simply supported beam with non-zero initial conditions,
the moving oscillator problem is not mathematically equivalent to the moving mass problem in
the limit of infinite spring stiffness. In the case of a clamped beam, the two problems are
equivalent only under appropriate choice of the oscillator initial conditions. Nevertheless, when
the spring stiffness goes to infinity, the beam displacement obtained by solving the moving
oscillator problem tends to that due to the moving mass whatever the oscillator initial
conditions consistent with the large spring stiffness. Thus, for sufficiently large spring stiffness,
the beam displacement is a function of the beam initial conditions and the oscillator mass and
velocity but is not sensitive to the spring coefficient and to the oscillator initial conditions. The
two solutions differ by their higher-order derivatives and by the dynamic force acting on the
beam from the mass.

2. The magnitude of the high-frequency component in the concentrated force has been shown to
depend linearly on the oscillator eigenfrequency and velocity if the vector of the oscillator
velocity is not directed along the tangent line to the beam at its left end. Asymptotic formulas
(21) and (22) for the concentrated force acting on a simply supported beam at the initial stage
of the oscillator motion have been derived, which provide a priori estimates for the maximum
magnitude of the dynamic force acting on the beam for the damped case. Note that the high-
frequency component of the dynamic force appears not only at the moment when the oscillator
enters the beam but also any time the oscillator passes a point where the function describing the
“road profile” is not smooth (the first derivative has a jump).

3. The existence of the high-frequency component of the interaction force in the moving oscillator
problem results in a rapidly changing “picture of stresses” in the vicinity of the oscillator
attachment point (Fig. 2). This effect may considerably affect pavement wear. If so, it follows
from the results obtained that a vehicle with a softer suspension is more road-friendly than one
with a stiffer suspension. This result agrees well with the conclusion made in Ref. [5, p.128] that
“pavement profile deteriorates more rapidly under a steel suspension than under an air
suspension carrying the same load”. The report [5] also concludes that ‘“‘the concentration of
dynamic loads for air suspensions is only about half the magnitude of that for steel
suspensions”. Taking into account that the average eigenfrequency of steel suspensions
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considered in that report is about twice as high as that of air suspensions, this observation
perfectly agrees with the fact of linear dependence of the dynamic force on the oscillator
eigenfrequency obtained in this study.

4. The adequacy of the moving mass model for modeling real vehicles and its physical
incorrectness when applied to the case of a simply supported beam with nonzero initial
conditions have been discussed. The deficiency of the model has been noted in that it fails to
predict stresses in the bridge structure.

5. For small values of the spring stiffness, the solution of the moving oscillator problem has been
shown to tend to that of the moving force problem.
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