
A simpler implementation and analysis of Chazelle’s Soft Heaps

Haim Kaplan ∗ Uri Zwick ∗

Abstract

Chazelle (JACM 47(6), 2000) devised an approximate
meldable priority queue data structure, called Soft
Heaps, and used it to obtain the fastest known determin-
istic comparison-based algorithm for computing mini-
mum spanning trees, as well as some new algorithms
for selection and approximate sorting problems. If n el-
ements are inserted into a collection of soft heaps, then
up to εn of the elements still contained in these heaps,
for a given error parameter ε, may be corrupted, i.e.,
have their keys artificially increased. In exchange for
allowing these corruptions, each soft heap operation is
performed in O(log 1

ε) amortized time.
Chazelle’s soft heaps are derived from the binomial

heaps data structure in which each priority queue is
composed of a collection of binomial trees. We describe
a simpler and more direct implementation of soft heaps
in which each priority queue is composed of a collection
of standard binary trees. Our implementation has the
advantage that no clean-up operations similar to the
ones used in Chazelle’s implementation are required.
We also present a concise and unified potential-based
amortized analysis of the new implementation.

1 Introduction

Chazelle [4, 2] devised an approximate meldable prior-
ity queue data structure, called Soft Heaps, and used it
to obtain the fastest known deterministic comparison-
based algorithm for computing minimum spanning trees
(Chazelle [3, 2]), as well as some new algorithms for se-
lection and approximate sorting problems. If n elements
are inserted into a collection of soft heaps, then up to
εn of the elements still contained in these heaps, for a
given error parameter ε, may be corrupted, i.e., have
their keys artificially increased. (Note that n here is
the number of elements inserted into the heaps, not the
current number of elements in the heaps which may be
considerably smaller.) In exchange for allowing these
corruptions, each soft heap operation is performed in
O(log 1

ε) amortized time.

∗School of Computer Science, Tel Aviv University, Tel Aviv
69978, Israel. E–mail: {haimk,zwick}@tau.ac.il. Uri’s research
was supported by BSF grant no. 2006261. Haim Kaplan is
partially supported by BSF grant no. 2006204

Soft heaps are also used by Pettie and Ra-
machandran [8, 9] to obtain an optimal deterministic
comparison-based algorithm for finding minimum span-
ning trees, with a yet unknown running time, and for
obtaining a randomized linear time algorithm for the
problem that uses only a small number of random bits.

Chazelle’s soft heaps are derived from the binomial
heaps data structure in which each priority queue is
composed of a collection of binomial trees. We describe
a simpler and more direct implementation of soft heaps
in which each priority queue is composed of a collection
of standard binary trees. Our implementation has the
advantage that no clean-up operations similar to the
ones used in Chazelle’s implementation are required.
We also present a concise and unified potential-based
amortized analysis of the new implementation.

1.1 Soft heaps Soft heaps are approximate meld-
able priority queue data structures that support the fol-
lowing operations:

make-heap(e) – Generate and return a new
soft heap containing the single element e
whose original key is key[e].

insert(P, e) – Insert element e, with original
key key[e], into soft heap P .

delete(e) – Delete element e from the soft
heap currently containing it. (It is as-
sumed that e is currently contained in ex-
actly one soft heap.)

meld(P,Q) – Meld the two soft heaps P and
Q, destroying them in the process, and
return the melded heap.

extract-min(P) – Return an element with
the smallest current key in soft heap P
and delete it from P .

It is important to note that an extract-min(P)
operation returns an element e with the smallest current
key contained in P . The current key of an element e
may be larger then its original key key[e], which is
never changed by the implementation. Elements whose
current key is larger than their original key are said to
be corrupted. Current keys of elements are sometimes

477 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

raised to speed-up the implementation of soft heap
operations. The user has no control as to which
elements become corrupted.

If soft heaps were allowed to corrupt all elements
then their implementation would be trivial, but they
would be useless. A surprisingly useful data structure
is obtained if we require that at most εn of the elements
still contained in soft heaps are corrupted, where n is
the total number of elements inserted so far into soft
heaps, and 0 < ε < 1 is a prespecified error parameter.
Note that an element is inserted into a soft heap by
either a make-heap or an insert operation. Also note
that corrupted elements that were removed from soft
heaps by extract-min operations are not counted.

Following Chazelle [4], we describe an implementa-
tion of soft heaps with error parameter ε in which the
amortized cost of make-heap and insert operations is
O(log 1

ε) and the amortized cost of all other operations
is 0.

2 Implementation

In this section we describe the implementation of all
soft heap operations, except the delete operation which
will be added in Section 5. (We note that some of the
applications listed by Chazelle [4] do not use delete
operations.)

2.1 The data structure Each soft heap priority
queue is composed of a collection of binary trees. A
node x of a binary tree may have a left child left[x]
and may have a right child right[x]. If x does not
have a left child, then left[x] =⊥, where ⊥ represents
null. Similarly, if x does not have a right child, then
right[x] =⊥. Every node x in a binary tree has an
integer rank, denoted by rank[x], associated with it.
The rank of a node never changes. If x is a node of
rank k, then the ranks of left[x] and right[x], if they
exist, are k − 1. The rank of a tree is defined as the
rank of its root.

Each node x, has a target size size[x] associated
with it. Let r = �log2

1
ε� + 5, where ε is the desired

error rate. The target size size[x] of a node of rank k
is sk, where

sk =
{

1 if k ≤ r,

� 3sk−1
2 � otherwise.

(The choice of 3/2 in the definition of sk is arbitrary.
Any constant strictly between 1 and 2 would do.) Thus
s0 = s1 = . . . = sr = 1, while sr+1 = 2, sr+2 = 3,
sr+3 = 5, sr+4 = 8, sr+5 = 12, etc. It is easy to prove
that

(
3
2

)k−r ≤ sk ≤ 2
(

3
2

)k−r − 1 for k ≥ r .

Each node x has a list of elements list[x]. The
number of elements in list[x] is ‘roughly’ size[x]. (This
will be made more precise below.) A node x also has
a key ckey[x] which is an upper bound on the keys of
the elements contained in list[x]. If e is an element
contained in list[x], and key[e] < ckey[x], then e is
corrupted. The data structure behaves as if the key of e
is artificially raised to ckey[x]. (In the terminology of
the previous section, if e is an element of list[x], then
ckey[x] is the current key of e.)

Each tree is heap ordered with respect to the ckey
values, i.e., if x is a node and left[x] exists, then
ckey[x] ≤ ckey[left[x]]. Similarly, if right[x] exists, then
ckey[x] ≤ ckey[right[x]].

A priority queue P is composed of a sequence of
trees, at most one of each rank. The rank rank[P] of P
is defined to be the largest rank of a tree in P . The
trees composing P are arranged in a linked list in which
the trees appear in an increasing order of rank. first[P]
points to the tree with the smallest rank belonging to P .

If T is a tree contained in a priority queue P ,
then root[T] is the root node of T , next[T] is the tree
following T in the linked list of P , and prev[T] is the
tree preceding T in the list. (Both next[T] and prev[T]
may be ⊥.) Finally, if T is a tree, then sufmin[T] points
to the tree whose root has the smallest ckey among all
the trees that follow T in the linked list of P . (In case of
ties, trees that appear earlier in the list are preferred.)

A soft heap containing four binary trees of ranks
0,1,4 and 5, respectively is shown in Figure 1. The num-
bers within the nodes of the trees are their ckey values.
Each node has a list list[x] of elements associated with
it. (Lists of length 1 are not shown.)

2.2 The sift operation As in Chazelle’s imple-
mentation, the keystone of soft heaps operation is the
sift operation. As we have mentioned, we would like
the number of elements in list[x] to be about size[x]. If
the number of elements in list[x] drops below size[x]/2,
and x is not a leaf, we use a sift(x) operation to add
more elements to list[x].

A sift(x) operation works as follows. By exchang-
ing left[x] and right[x], if necessary, we make sure that
left[x] exists, and that ckey[left[x]] ≤ ckey[right[x]], if
right[x] exists. (Recall that x is not a leaf.) Then,
using what Chazelle refers to as the “data structures’
version of car-pooling”, we take all the elements of
list[left[x]] and move them to list[x]. (This can be done
in constant time by concatenating the lists list[x] and
list[left[x]].) We let ckey[left[x]] be the new ckey[x].
The list list[left[x]] is now empty. If left[x] is a leaf, we
simply remove it from the tree by setting left[x] to ⊥.
Otherwise, we recursively call sift(left[x]) to replenish

478 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Figure 1: A soft heap composed of four binary trees.

list[left[x]]. Finally, if the number of elements in list[x]
is still below size[x] and x still not a leaf, we perform
these operations again. (See Figure 2.)

It is easy to check that sift operations maintain
heap order. We show below that if x is not a leaf after
a sift(x) operation, then size[x] ≤ |list[x]| ≤ 3 size[x].

2.3 The combine operation The second most
important operation in the implementation of soft heaps
is the combine operation. A combine(x, y) operation
takes two root nodes x and y of the same rank, say k,
and combines the corresponding trees into a single tree
of rank k + 1. This is done by generating a new
node z and setting left[z] ← x, right[z] ← y and
list[z] ← φ. A sift(z) operation is then performed
to move enough elements into list[z]. (See Figure 2.)
The combine operation is of course instrumental in the
implementation of meld and insert operations, as we
explain below.

Note that we do not do any rebalancing of the
binary trees of the heaps. The only structural changes
performed on the trees are: 1) Discarding a leaf (done by
sift). 2) Combining two trees of rank k into a larger
tree of rank k + 1 by allocating a new root (done by
combine).

2.4 The update-suffix-min operation An
update-suffix-min(T) operation updates the sufmin
pointers of T and all the trees that precede T in the

linked list of trees. Such an operation is performed
when ckey[x], where x = root[T], is changed, e.g., by a
sift(x) operation, when T is a new tree added to the
list of trees, or when the tree following T in the list is
deleted.

An update-suffix-min(T) operation traverses the
list of trees backward from T . If T ′ is a tree such
that sufmin[next[T ′]] was already set to its correct
value, then sufmin[T ′] is set to T ′, if ckey[root[T ′]] ≤
ckey[root[next[T ′]]], or to sufmin[next[T ′]], otherwise.
(See Figure 4 below.)

2.5 The make-heap operation A make-heap(e)
operation receives an element e and returns a priority
queue P composed of a single tree T containing a single
node x of rank 0. (See Figure 3.)

2.6 The meld operation A meld(P,Q) operation
receives two priority queues P and Q and returns a new
priority queue obtained by melding P and Q. Meld-
ing P and Q is done in a fairly straightforward way. The
linked lists of trees of P and Q are combined, keeping a
non-decreasing order of rank. Next, if two consecutive
trees T1 and T2 in the list have the same rank, they are
combined using a combine(root[T1], root[T2]) operation
and the combined tree replaces them in the list. If three
consecutive trees T1, T2 and T3 in the list have the same
rank, then T1 is left alone, while T2 and T3 are replaced
by the combined tree combine(root[T2], root[T3]). Fi-

479 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Function sift(x)

while |list[x]| < size[x] and (not
leaf(x)) do

if left[x] =⊥ or (right[x] �=⊥ and
ckey[left[x]] > ckey[right[x]]) then

left[x]↔ right[x]
concatenate(list[x], list[left[x]])
ckey[x]← ckey[left[x]]
list[left[x]]←⊥
if leaf(left[x]) then

left[x]←⊥
else

sift(left[x])

Function combine(x, y)

z ← new-node()
left[z]← x
right[z]← y
rank[z]← rank[x] + 1

if rank[z] ≤ r then
size[z]← 1

else
size[z]← (3 ∗ size[x] + 1)/2

sift(z)
return z

Figure 2: Implementation of sift and combine.

nally, if T is the last tree in the list affected by these
operations, an update-suffix-min(T) is performed to
update the sufmin pointers. If k = rank[P] ≤ rank[Q],
then it is easy to perform meld(P,Q) operation in
O(k + 1) time. (See Figure 3.)

2.7 The insert operation To add an element e
to priority queue P , we use make-heap(e) to generate a
priority queue containing the single element e and we
then meld this priority queue with P . (See Figure 3.)

2.8 The extract-min operation An
extract-min(P) operation returns an element with a
minimum current key contained in P . If e is contained
in list[x], then the current key of e is ckey[x]. The
implementation of extract-min(P) is extremely simple.
Let T = sufmin[first[P]] and let x = root[T]. Thus
x is the root of a tree of P with the smallest ckey.
We return an arbitrary element from list[x]. Note
that list[x] is never empty. If the number of elements
in list[x] drops below size[x]/2, we call sift(x) to
replenish x and then update-suffix-min(T) to update
the sufmin pointers. (See Figure 3.)

2.9 Pseudo-code As already mentioned, pseudo-
code for sift and combine is given in Figure 2,
and pseudo-code for make-heap, meld, insert and
extract-min is given in Figure 3. (The reader is ad-
vised to have at least a quick look at Figures 2 and 3,
as they give a concise and precise definition of the main
soft heap operations.)

The fairly standard implementation of operations
performed on sequences of trees are given in Fig-

ure 4. Among the functions described there are
update-suffix-min, and the functions merge-into and
repeated-combine called by meld. Finally, Figure 5
describes the functions make-tree and make-node, that
generate a new tree and a new node, respectively, and
the function leaf that checks whether a given node is
a leaf.

In extract-min, we use a function called pick-elem
to pick, and delete, an arbitrary element from list[x],
which is assumed to be a linked list. In sift, we use
a function called concatenate to concatenate the lists
list[x] and list[left[x]]. The straightforward implemen-
tation of these two functions is not given.

3 Correctness

We start by showing that extract-min operations do
indeed return elements with minimum current keys:

Lemma 3.1. A extract-min(P) always returns an ele-
ment of P with a minimal current key.

Proof. All elements inserted into P are contained in
the lists of nodes that are part of the trees forming P .
All operations performed on soft heaps maintain heap
order. Thus, elements with the smallest current key
in a tree always reside at the root of that tree. A
extract-min(P) operation uses the sufmin pointer of
the first tree in P to access a tree whose root x has
a minimal ckey, and returns an element e contained
in list[x], which is guaranteed to be non-empty. This
element has a minimal key, as required. �

The next two lemmas will be used to bound the
number of corrupted elements.

480 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Function makeheap(e)

P ← new-heap()
first[P]← make-tree(e)
rank[P]← 0
return P

Function meld(P,Q)

if rank[P] > rank[Q] then P ↔ Q

merge-into(P,Q)
repeated-combine(Q, rank[P])

return Q

Function insert(P, e)

return meld(P, make-heap(e))

Function extract-min(P)

if first[P] =⊥ then return ⊥
T ← sufmin[first[P]]
x← root[T]
e← pick-elem(list[x])

if |list[x]| ≤ size[x]/2 then
if not leaf(x) then

sift(x)
update-suffix-min(T)

else if list[x] = φ then
remove-tree(P, T)

return e

Figure 3: Implementation of main soft heaps operations.

Lemma 3.2. If x is a node of rank at most r, then
|list[x]| = 1. If x is a non-leaf node of rank k ≥ r,
then 1

2 size[x] ≤ |list[x]| < 3 size[x].

Proof. If x is a node of rank at most r, then size[x] = 1.
If list[x] becomes empty, then sift(x) brings exactly
one element into list[x].

Suppose now that rank[x] ≥ r. If |list[x]| drops
below 1

2 size[x], and x is not a leaf, then sift(x) adds
elements to list[x] until either |list[x]| ≥ size[x], or
until x becomes a leaf. We next prove by induction
that |list[x]| ≤ 3size[x]. If rank[x] ≤ r, the claim is
obvious. We show now that if the claim holds for all
vertices of rank k − 1, then it also holds for all vertices
of rank k. Let x be a node of rank k. New elements are
added to list[x] only when |list[x]| < size[x]. A sift(x)
operation concatenates list[y] to list[x], where y is a
child of x. As y is of rank k − 1, we get by induction
that |list[y]| < 3 size[y] ≤ 3 · 23size[x] = 2 size[x]. Thus,
|list[x] ∪ list[y]| < 3size[x], as claimed. �

Lemma 3.3. If n elements are inserted into soft heaps,
then the number of nodes of rank k is at most n/2k.

Proof. By induction on k. A node of rank 0 is generated
only when a new element is inserted (using a make-heap
operation) into a soft heap. Thus, the number of
elements of rank 0 is at most n as claimed. An element
of rank k is generated only when two roots of rank k−1
are combined. �

Lemma 3.4. If n elements are inserted into soft heaps,
then the total number of corrupted elements contained
in the heaps, at any given time, is at most εn.

Proof. Each node of rank at most r contains a single
element. Thus, all corrupted elements belong to nodes
of rank greater than r. By Lemma 3.3, the number of
nodes of rank k is at most n/2k. By Lemma 3.2, a node
of rank k > r contains at most 3sk < 6

(
3
2

)k−r elements.
As r = �log2

1
ε� + 5, the number of corrupted elements

is at most
∑
k>r

n

2k
· 3sk <

n

2r
·
∑
k>r

6
(

1
2

)k−r (
3
2

)k−r

=
6n

2r
·
∑
i≥1

(
3
4

)i =
18n

2r
< εn .

�

4 Amortized analysis

We assign potentials to heaps, trees, and nodes. A
heap of rank k has potential k + 1. A tree whose root
is x has potential (r + 2) ·del(x), where del(x) is the
number of elements deleted from x since the last sift(x)
operation, or since the creation of x. If x is a root node
of rank k, then x has potential k + 7. If x is a non-root
node, it has potential 1.

We start with the analysis of sift. Suppose that x
is a node of rank k, that y is a child of x, and that the
elements of list[y] are moved to list[x]. If |list[y]| <

481 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Function merge-into(P,Q)

if rank[P] > rank[Q] then abort

T1 ← first[P]
T2 ← first[Q]

while T1 �=⊥ do
while rank[T1] > rank[T2] do

T2 ← next[T2]

T ′
1 ← next[T1]

insert-tree(Q,T1, T2)
T1 ← T ′

1

Function repeated-combine(Q, k)

T ← first[Q]
while next[T] �=⊥ do

if rank[T] = rank[next[T]] then
if next[next[T]] =⊥ or
rank[T] �= rank[next[next[T]]]
then

root[T]←
combine(root[T], root[next[T]])
rank[T]← rank[root[T]]
remove-tree(Q,next[T])

else if rank[T] > k then
break

T ← next[T]

if rank[T] > rank[Q] then
rank[Q]← rank[T]

update-suffix-min(T)

Function update-suffix-min(T)

while T �=⊥ do
if ckey[root[T]] ≤
ckey[root[sufmin[next[T]]]] then

sufmin[T]← T
else

sufmin[T]← sufmin[next[T]]
T ← prev[T]

Function insert-tree(P, T1, T2)

next[T1]← T2

if prev[T2] =⊥ then
first[P]← T1

else
next[prev[T2]]← T1

Function remove-tree(P, T)

if prev[T] =⊥ then
first[P] = next[T]

else
next[prev[T]]← next[T]

if next[T] �=⊥ then
prev[next[T]]← prev[T]

Figure 4: Implementation of update-suffix-min and other operations on sequences of trees

1
2 size[y], then y is a leaf, and y disappears as a result
of this operation. The unit potential released by the
disappearance of y pays for this operation. If, on the
other hand, |list[y]| ≥ 1

2 size[y], and hence |list[y]| ≥
� size[y]

2 �, we split the unit cost of the operation among
the |list[y]| elements participating in the ‘car-pool’.
The charge for each element is at most � size[y]

2 �−1 =
� sk−1

2 �−1. An element is charged at most once at each
rank, thus its total ‘travel expenses’ are
∑
k≥0

⌈sk

2

⌉−1

≤ r + 2
∑
i≥0

(
2
3

)i = r + 6 = O(log
1
ε
) .

We next consider a combine(x, y) operation which
combines two trees of rank k, rooted at x and y, into
a tree of rank k + 1, rooted at a new node z. The

potentials of both x and y decrease from k + 7 to 1,
releasing 2k + 12 units of potential. One of these
units pays for the constant cost of the operation, k + 8
units are assigned to z, one unit is used to increase
the potential of the heap containing the newly formed
tree, if it is now the tree with the largest rank. The
remaining k + 2 units are used, if needed, to pay for
an ensuing update-suffix-min operation. (Note that
1 + (k + 8) + 1 + (k + 2) = 2k + 12.)

A meld(P,Q) operation receives two heaps, of
ranks k and k′ respectively. Suppose that k ≤ k′. The
meld operation first merges the lists of trees of P and Q,
effectively destroying P . This takes O(k+1) time, which
is paid by the released potential of P . The subsequent
combine operations pay for themselves and for the en-

482 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Function maketree(e)

T ← new-tree()
root[T]← make-node(e)
next[T]←⊥
prev[T]←⊥
rank[T]← 0
sufmin[T]← T
return T

Function makenode(e)

x← new-node()
list[x]← {e}
ckey[x]← key[e]
rank[x]← 0
size[x]← 1
left[x]←⊥
right[x]←⊥
return x

Function leaf(x)

return (left[x] =⊥) and
(right[x] =⊥)

Figure 5: Implementation of make-tree, make-node and leaf.

suing update-suffix-min operation. If no combine op-
erations are performed, the potential released by the
destruction of P pays for the update-suffix-min oper-
ation.

Finally, we bound the amortized cost of
extract-min(P) operations. An extract-min(P)
operation locates an element e with minimal current
key in constant time. Suppose that x is the root node
containing e. If after deleting e from list[x] we still
have |list[x]| ≥ 1

2 size[x], or if |list[x]| > 0 and x is a
leaf, then no further action is taken. Note, however,
that del(x), the number of elements deleted from list[x]
since the last sift(x) operation, is increased by 1,
and the potential of tree whose root is x is increased
by r + 2. This total cost of 1 + (r + 2) = r + 3 is
charged to e, which would never be charged again. If
|list[x]| < 1

2 size[x] and x is not a leaf, then a sift(x)
operation is performed. As x is not a leaf, it must have
had at least size[x] elements in its list after the previous
sift(x) operation. Thus del(x) ≥ � size[x]

2 �, and the
potential of the tree, prior to the sift operation, is at
least (r + 2)� size[x]

2 � = (r + 2)� sk

2 �, where k = rank[x].
It is not difficult to verify that for every k ≥ 0 we have

(r + 2)
⌈sk

2

⌉
≥ k + 1 .

Indeed, for 0 ≤ k ≤ r+1, we have (r+2)� sk

2 � = r+2 ≥
k + 1. For k = r + 2, we have sr+2 = 3 and thus
(r +2)� sr+2

2 � = 2(r +2) > r +3. For k ≥ r +3, we have

(r + 2)� sk

2 � ≥ r+2
2

(
3
2

)k−r ≥ k + 1, as 1
2

(
3
2

)k−r ≥ k+1
r+2 ,

for k ≥ r+3. This decrease of at least k+1 in potential
of the tree pays for the update-suffix-min operation
that follows the sift(x) operation. Finally, if the root
node x is a leaf, and e is the last element in list[x],
then x and the tree rooted at x are removed. The k + 7
units of potential of x are more than enough to pay for
the update-suffix-min operation performed after the
removal of x.

When an element e is inserted into a soft heap, a

new heap, a new tree and a new node are created. The
heap, of rank 0, is assigned one potential unit, the tree
zero units, while the new node, of rank 0, is assigned 7
units. During its life time, at most r +6 potential units
are charged to e to pay for its movements. Finally,
additional r+3 units are charged to e when it is deleted.
If we change the 1 unit of actual work involved in
inserting e into a soft heap of its own, and the 8 potential
units assigned to this heap to e, we get that the total
charge for e, from its insertion until its deletion, is at
most 8 + (r + 6) + (r + 3) = 2r + 17 = O(log 1

ε). We
have thus proved:

Theorem 4.1. The amortized cost of inserting an ele-
ment into a soft heap with error rate ε is O(log 1

ε). The
amortized cost of all other operations is 0.

5 Adding a delete operation

We next consider the implementation of delete opera-
tions. One option, used by Chazelle [4], is to implement
delete operations in a lazy manner. Deleted elements
are simply marked as deleted. If an extract-min oper-
ation returns an element marked as deleted, the opera-
tion is simply called again until a non-deleted element
is returned. The drawback of such an implementation is
that it is not space optimal, as the space used by deleted
elements cannot be reclaimed immediately. (This can be
fixed by rebuilding the data structure when more than
half of the elements are deleted.)

We implement delete(e) operations directly as
follows. We delete e from the linked list list[x] currently
containing it. This can be easily done in constant time,
using the forward and backward pointers of e in the list,
without knowing the indentity of x. (The node x can be
retrieved using a union-find data structure, but this is
too expensive in our context.) We do assume, however,
that the first element in a linked list knows to which list
it belongs to. Thus, if e is the last remaining element
of list[x], we can initiate a sift(x) operation to bring

483 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

new elements into list[x]. If x is a leaf, it is removed
from the data structure. (To implement this we need a
pointer to the parent of x in the tree.)

For each node x we keep a number num[x] that
gives the number of elements in list[x], including ghost
elements that were deleted from list[x] or from lists
that were appended to list[x]. We may thus have
|list[x]| < num[x]. When list[left[x]] is appended to
list[x], we do num[x] ← num[x] + num[left[x]]. We
do not decrement num[x] when an element is deleted
from list[x], as we do not know when it happens. (In
fact, num[x] values should also be maintained by the
implementation of Section 2. All occurrences of |list[x]|
in the pseudo-code given in Figures 2 and 3 should
by replaced by num[x], and num[x] values should be
updated when lists are created and moved.)

A moment’s reflection shows that the amortized
analysis of Section 4 remains valid. Some of the
operations are charged to ghost elements, i.e., elements
that were already deleted, but this is legal.

6 Comparison with Chazelle’s implementation

The main difference between our implementation and
Chazelle’s [4] implementation is that our implementa-
tion uses binary trees, whereas Chazelle’s implementa-
tion uses binomial trees. We believe that our imple-
mentation is simpler and more intuitive, as we argue
below.

Chazelle’s binomial trees are binarized. Each bino-
mial tree is represented as a binary tree, with each node
of the binomial tree corresponding to a left path in the
binary tree. Thus, only root nodes or nodes that are
right children of their parents have elements and keys
associated with them. In our binary trees, all nodes
play the same role.

The trees in Chazelle’s implementation are actually
partial binomial trees, as tree nodes that remain with-
out elements are deleted. In a standard binomial tree,
a node of rank k has exactly k children. In Chazelle’s
partial binomial trees, a node of rank k may have less
than k children. If the number of children of an empty
root node of rank k drops below k/2, Chazelle resorts to
a clean-up operation that breaks the tree into a collec-
tion of trees. This slightly complicates the implementa-
tion and makes the analysis somewhat subtler. No such
complications arise in our implementation.

Another important difference between our imple-
mentation and Chazelle’s implementation is that we ex-
plicitly control the number of elements contained in the
list of a node of rank k. We believe that this makes our
implementation more intuitive and the analysis more
transparent.

The way we implement delete operations is also

different from the way suggested by Chazelle. Our
implementation is automatically space efficient, without
the need for periodic rebuildings.

The changes in the implementations enable us to
present a simplified and unified amortized analysis.

7 Concluding remarks

We presented a simpler implementation of Chazelle’s
soft heaps. It would be interesting to find additional
applications of this data structure. It would also be
interesting to know whether the soft heap operations
could be implemented in O(log 1

ε) worst-case time.
In the implementation presented, the amortized

number of comparisons made for each element inserted
into soft heaps is 2 log 1

ε + O(1). It is possible to reduce
this number to (1 + o(1)) log 1

ε by maintaining sufmin
pointers only for trees of rank greater than, say, 2r and
keeping the ckey values of the roots of trees of rank at
most 2r in a small priority queue.

It is interesting to point out that if we set r = ∞
in our construction, i.e., have size[x] = 1 for every
node x, we get a standard meldable priority queue data
structure in which no corruptions occur. Each operation
is performed in O(log n) amortized time, where n is the
total number of elements inserted into priority queues.
This may be viewed as an alternative to the celebrated
Binomial heaps data structure of Vuillemin [11] (See
also [5]).

As noted by Chazelle [4, 2], soft heaps give rise to a
new linear-time median selection algorithm, very differ-
ent from the algorithms of Blum et al. [1], Schönhage et
al. [10], and Dor and Zwick [6]. It would be interesting
to explore the possibility of using soft heaps to obtain
an algorithm that finds the median of n elements using
less than 2.95n comparisons. The best lower bound on
the number of comparisons needed to find the median
is currently (2 + ε)n, for a fixed, but tiny, ε > 0 (see
Dor and Zwick [7]).

Acknowledgment

We would like to thank Bob Tarjan for his comments
on an earlier version of this paper.

References

[1] M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, and
R.E. Tarjan. Time bounds for selection. Journal of
Computer and System Sciences, 7(4):448–461, 1973.

[2] B. Chazelle. The Discrepancy Method: Randomness
and Complexity. Cambridge University Press, 2000.
Available on-line at: http://www.cs.princeton.edu/

~chazelle/pubs/book.pdf.

484 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

[3] B. Chazelle. A minimum spanning tree algorithm with
inverse-Ackermann type complexity. Journal of the
ACM, 47(6):1028–1047, 2000.

[4] B. Chazelle. The soft heap: an approximate priority
queue with optimal error rate. Journal of the ACM,
47(6):1012–1027, 2000.

[5] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and
C. Stein. Introduction to algorithms. The MIT Press,
2nd edition, 2001.

[6] D. Dor and U. Zwick. Selecting the median. SIAM
Journal on Computing, 28:1722–1758, 1999.

[7] D. Dor and U. Zwick. Median selection requires (2+ε)n
comparisons. SIAM Journal on Discrete Mathematics,
14:312–325, 2001.

[8] S. Pettie and V. Ramachandran. An optimal mini-
mum spanning tree algorithm. Journal of the ACM,
49(1):16–34, 2002.

[9] S. Pettie and V. Ramachandran. Randomized min-
imum spanning tree algorithms using exponentially
fewer random bits. ACM Transactions on Algorithms,
4(1):1–27, 2008.

[10] A. Schönhage, M. Paterson, and N. Pippenger. Find-
ing the median. Journal of Computer and System Sci-
ences, 13(2):184–199, 1976.

[11] J. Vuillemin. A data structure for manipulating prior-
ity queues. Communications of the ACM, 21:309–314,
1978.

485 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

