
Theory and Practise of Monotone Minimal Perfect Hashing

Djamal Belazzougui∗ Paolo Boldi† Rasmus Pagh‡ Sebastiano Vigna§

Abstract
Minimal perfect hash functions have been shown to be useful
to compress data in several data management tasks. In par-
ticular, order-preserving minimal perfect hash functions [12]
have been used to retrieve the position of a key in a given
list of keys: however, the ability to preserve any given or-
der leads to an unavoidable �(n log n) lower bound on the
number of bits required to store the function. Recently, it
was observed [1] that very frequently the keys to be hashed
are sorted in their intrinsic (i.e., lexicographical) order. This
is typically the case of dictionaries of search engines, list of
URLs of web graphs, etc. We refer to this restricted version
of the problem as monotone minimal perfect hashing. We
analyse experimentally the data structures proposed in [1],
and along our way we propose some new methods that, al-
beit asymptotically equivalent or worse, perform very well in
practise, and provide a balance between access speed, ease
of construction, and space usage.

1 Introduction
A minimal perfect hash functions maps bijectively a set S
of n keys into the set { 0, 1, . . . , n − 1 }. The construction
of such functions has been widely studied in the last years,
leading to fundamental theoretical results such as [13, 14,
19].

From an application-oriented viewpoint, order-
preserving minimal perfect hash functions have been used to
retrieve the position of a key in a given list of keys [12, 26].
In [1] we note that all existing techniques for this task
assume that keys can be provided in any order, incurring an
unavoidable �(n log n) lower bound on the number of bits
required to store the function. However, very frequently the
keys to be hashed are sorted in their intrinsic (i.e., lexico-
graphical) order. This is typically the case of dictionaries of
search engines, list of URLs of web graphs, etc. Thus, it is
interesting to study monotone minimal perfect hashing—the
problem of mapping each key of a lexicographically sorted
set to its ordinal position.

In this paper our main goal is that of minimising
the function description while maintaining quick (ideally,

∗École Nationale Supérieure d’Informatique, Algiers, Algeria
†Università degli Studi di Milano, Italy
‡IT University of Copenhagen, Denmark
§Università degli Studi di Milano, Italy

constant-time) access. At SODA 2009 [1], we will present
two solutions for the case where elements of S are taken
from a universe of u elements. The first solution (based
on longest common prefixes) provides O((log u)/w) ac-
cess time, where w is the size of a machine word (so it is
constant time if the string length is linear in the machine-
word size), but requires O(log log u) bits per element. The
second solution (based on a relative z-fast trie) requires
just O(log log log u) bits per element, but access requires
O((log u)/w + log log u) steps.

In this paper, we present some new structures for this
problem, and compare them experimentally with the above-
mentioned ones. The purpose is twofold: first of all, we want
to understand the constants hidden in the asymptotic esti-
mates of [1]; second, we want to establish whether in a real-
world scenario the new solutions proposed here have some
practical advantage over the theoretically better ones.

To this purpose, we provide precise, big-Oh-free es-
timates of the number of bits occupied by each structure,
which turn out to match very closely the number of bits
required in the actual implementations. Moreover, we im-
plement and engineer in detail all solutions in Java, and run
them against large and real data.

In Section 2 we define precisely our problem, and in
Section 3 we set up the tools that will be used in the rest
of the paper. Then, in Sections 4, 5, 6, 7 and 8 we present
data structures that provide different tradeoffs between space
and time. Throughout the paper, we use the example of
Figure 1 to illustrate the algorithms. Finally, in Section 10
we present experiments based on Java implementations of
our data structures.

The code used for our experiments is distributed as part
of the Sux4J project (http://sux4j.dsi.unimi.it/)
under GNU Lesser General Public License. The lists of
URLs used in the experimental section are available as part
of the data sets distributed by the Laboratory for Web Al-
gorithmics (http://law.dsi.unimi.it/), so as to make
our experiments fully reproducible.

2 Definitions and notation

Sets and integers. We use von Neumann’s definition and
notation for natural numbers: n = { 0, 1, . . . , n − 1 }. We
thus freely write f : m → n for a function from the first
m natural numbers to the first n natural numbers. We do
the same with real numbers, with a slight abuse of notation,

132 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

s0 0001001000000 s3 0010011000000 s6 0010011010100 s9 0010011110110
s1 0010010101100 s4 0010011001000 s7 0010011010101 s10 0100100010000
s2 0010010101110 s5 0010011010010 s8 0010011010110

Figure 1: A toy example: S = {s0, . . . , s10} is divided into three buckets of size three (except for the last one that contains just two
elements), whose delimiters D = {s2, s5, s8} appear in boldface.

understanding a ceiling operator.
In the following, we will always assume that a universe

u of integers, called keys, is fixed; this set may in many
applications be infinite, but unless otherwise specified we
will suppose that it is finite. The set u has a natural
order which corresponds to the string lexicographical order
of the log u-bit left-zero-padded binary representation. We
assume, for sake of simplicity, that all strings have the same
length log u. We describe at the end of the paper the few
modifications that are needed to state our results in terms of
the average string length of a set of variable-length strings.

Given S ⊆ u with |S| = n, and given m, an m-bucket
hash function for S is any function h : S → m. We say that:

• h is perfect iff it is injective;

• h is minimal perfect iff it is injective and n = m;

• h is monotone iff x ≤ y implies h(x) ≤ h(y) for all
x, y ∈ S;

• h is order-preserving with respect to some total order �

on U iff x � y implies h(x) ≤ h(y) for all x, y ∈ S.

We would like to stress the distinction between monotone
and order-preserving functions, which we introduce be-
cause the structures proposed in the literature as “order-
preserving” [12] actually make it possible to impose any or-
der on the keys. On the contrary, we are interested in the
existing, standard lexicographical order on keys viewed as
strings. The distinction is not moot because the lower bound
�(n log n) for order-preserving hashing does not hold for
monotone hashing.

Notice that since monotone hash functions are a special
case of order-preserving hash functions (applied to the natu-
ral order), any structure for the latter can be used to imple-
ment the former, but not vice versa.
Approximations. In this paper we purposely avoid asymp-
totic notation; our interest is in providing fairly precise esti-
mates of the number of bits used by each structure. Nonethe-
less, we must allow some approximation if we want to con-
trol the size of our expressions. We will tacitly assume the
following:

log(ε + log n)) ≈ log log n for small ε

log(ln n)) ≈ log log n

log n − log log n ≈ log n when appearing as a subexpression.

Moreover, o(n) components will be tacitly omitted.

3 Tools
The data structures described in this paper are based on
a combination of techniques from two different threads
of research: minimal perfect hashing based on random
hypergraphs, and succinct data structures.

3.1 Rank and select. We will make extensive use of the
two basic blocks of several succinct data structures—rank
and select. Given a bit array (or bit string) b ∈ { 0, 1 }

n ,
whose positions are numbered starting from 0, rankb(p) is
the number of ones up to position p, exclusive (0 ≤ p ≤ n),
whereas selectb(r) is the position of the r -th one in b, with
bits numbered starting from 0 (0 ≤ r < rankb(n)). These
operations can be performed in constant time on a string of
n bits using additional o(n) bits [22, 8]. When b is obvious
from the context we shall omit the subscript.

3.2 Storing functions. In the rest of the paper we will
frequently need to associate values to the key set S, that is, to
store a function f : S → 2r for some constant r . An obvious
possibility is to store a minimal perfect hash function on S
and use the resulting value to index a table of rn bits. Much
better theoretical solutions were made available recently [6,
9, 29]: essentially, it is possible to evaluate a function
in constant time storing just rn + o(n) bits. Since we
are interested in practical applications, however, we will
use an extension of a technique developed by Majewski,
Wormald, Havas and Czech [26] that has a slightly larger
space usage, but has the advantage of being extremely fast,
as it requires just the evaluation of three hash functions1 plus
three accesses to memory.

The technique developed in [26] was used to compute
order-preserving hash functions in γ rn bits, where γ =

1.23. Actually, the very same approach allows one to assign
any value to the keys—emitting a distinct value in n for
each element of S is just one of the possibilities. Thus, we
will extend (and improve) the technique to store arbitrary
functions in just γ n + rn bits.

We recall briefly the technique of [26]. We start
by building a random 3-hypergraph with γ n nodes and n
hyperedges—one per element of S—defined by three ran-
dom2 hash functions h1, h2, h3 : S → γ n. The choice of

1Actually, we use Jenkins hashing [23], which provides three 64-bit hash
values with a single evaluation.

2In this paper we make the full randomness assumption—our hash func-

133 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

γ = 1.23 makes the probability that the resulting graph is
acyclic positive (see [5, 26] for details).

The acyclicity check computes a (sort-of) topological
order of the hyperedges with the property that by examining
the hyperedges in that order, at least one vertex of each hy-
peredge, the hinge, will have never appeared previously. We
now assign values ai to vertices, with the aim of obtaining
that

f (x) = (ah1(x) + ah2(x) + ah3(x)) mod 2r .

This is always possible, because by examining the vertices
in the order produced by the acyclicity check we can always
choose the value for the hinge (if there are more unassigned
values, we set them to zero).

Storing the function in this way would require γ rn bits.
We call such a structure an MWHC function (from Majewski,
Wormald, Havas and Czech). We note, however, that when
r is large we can use an additional bit array s to mark those
vertices that have a non-zero value, and record in an array
b only the (at most n) nonzero values. To compute ai , we
first look at si : if it is zero, vi = 0; otherwise, we compute
ranks(i) and use the resulting value to index the array b.

The resulting structure, which we call a compacted
MWHC function, uses γ n + rn bits: this is advantageous
as long as γ + r < γ r , which happens when r > 5.3

Three remarks are in order:

• even the best imaginable solution obtained by coupling
a minimal perfect hash function (requiring at least
n log e ≈ 1.44 n bits [13]) and an array of rn bits is
never advantageous;

• for an order-preserving hash function, log(n!) =

n log n − O(n) bits is an obvious lower bound (as we
can store the keys following any order), so a compacted
MWHC function provides an optimal solution: thus, we
will not discuss order-preserving functions further.

Another, complementary approach to the storage of
static functions uses a minimal perfect hash function to in-
dex a compressed bit array (see the next section for some
examples of suitable techniques). To obtain a minimal per-
fect hash function, we can adopt again the above hypergraph
technique and use two bits per vertex to code the index of
the hash function outputting the hinge. This effectively pro-
vides a perfect hash function S → γ n into the vertex space
(by mapping each key to its hinge, a value in {1, 2, 3}). Thus,
the perfect hash function can be turned into a minimal perfect
hash function by ranking, as it is immediate to devise a space

tions are fully random. Albeit controversial, this is a common practical
assumption that makes it possible to use the results about random hyper-
graphs.

3This evaluation does not take into account that ranking structures are
asymptotically o(n), but on real data they occupy a significant fraction of
the original data size. The actual threshold depends on that fraction.

o(n), constant-time ranking structure that counts nonzero
pairs of bits, so we obtain minimal perfect hashing in 2γ n
bits (the idea of coding the hinge position appeared for the
first time in Bloomier filters [7]; using ranking to obtain a
minimal perfect hash function was suggested in [3]). This
approach is advantageous if the bit array can be compressed
with a ratio better than 1 − γ /r .
Two-step MWHC functions. To gain a few more bits when
the distribution of output values is significantly skewed, we
propose two-step MWHC functions. We fix an s < r :
then, the 2s

− 1 most frequent output values are stored in
a (possibly compacted) s-bit MWHC function, whereas the
value 2s

− 1 is used as an escape to access a secondary
MWHC function storing all remaining values. Of course, we
need to store explicitly the mapping from 2s

− 1 to the set of
most frequent values. The value s is chosen so to optimise
the space usage.
A large-scale approach. MWHC functions require a large
amount of memory to be built, as they require random
access to the 3-hypergraph to perform a visit. To make their
construction suitable for large-size key sets we reuse some
techniques from [4]: we divide keys into chunks using a
hash function, and build a separate MWHC function for each
chunk. We must now store for each chunk the offset in the
array a where the data relative to the chunk is written, but
using a chunk size ω(log n) (say, log n log log n) the space
is negligible. The careful analysis in [4] shows that this
approach can be made to work even at a theoretical level by
carefully reusing the random bits when building the MWHC
functions of each chunk.

3.3 Elias–Fano representation of monotone functions.
We will frequently need to store either a list of arbitrary
integers, or a list of nondecreasing natural numbers. In both
cases, we would like to consume as little space as possible.
To this purpose, we will use the Elias–Fano representation
of monotone functions [10, 11]. Such a data structure stores
a monotone function f : n → 2s , that is, a list of
nondecreasing natural numbers 0 ≤ x0 ≤ x1 ≤ · · · ≤

xn−1 < 2s , provides constant-time access4 to each xi , and
uses 2+s−log n bits per element when n < 2s , and 1+2s/n
bits when 2s

≤ n.
Here, for completeness we briefly recall from [11] the

representation: we store explicitly the s − log n lower bits
of each xi in a bit array. The value v of the upper log n
bits of xi are written in a bit array b of 2n bits by setting
the bit of position i + v. It is easy to see that now v can
be recovered as selectb(i) − i . Since the lower bits use

4Actually, in the original Elias paper access is not constant, as it relies
on a selection structure that is not constant-time. On one side, replacing
the selection structure with a modern, constant-time structure provides
constant-time access to the xi s; on the other side, practical implementations
use the original Elias inventory-based linear scan, as it turns out to be faster.

134 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

s − log n bits per element, and the bit array requires 2n
bits, we obtain the stated space bounds (in the case 2s

≤

n, the first array is empty, and the second array requires
just n + 2s bits). Selection in b can be performed with
one of the many selection structures in the literature (see,
e.g., [8, 16, 17, 24, 30]; we note that if n � 2s , the impact
of the selection structure on the space usage is irrelevant).

Finally, if we have to store a list of natural numbers
x0, x1, . . . , xn−1, we can just juxtapose the binary repre-
sentation of x0 + 1, x1 + 1, . . . , xn−1 + 1 (without the most
significant bit) and use an Elias–Fano monotone sequence to
store the starting point of each binary representation. The re-
sulting structure provides significant gains if the distribution
is skewed towards small values, as the overall space usage is
2n + n log(

∑
iblog(xi + 1)c/n)+

∑
iblog(xi + 1)c. We will

speak in this case of an Elias–Fano compressed list.

3.4 Bucketing. We now discuss here briefly a general
approach to minimal perfect monotone hashes that we will
use in this paper and that will be referred to as bucketing. The
same idea has been widely used for non-monotone perfect
hashing, and its extension proves to be fruitful.

Suppose you want to build a minimal perfect monotone
hash function for a set S; you start with:

• a monotone hash function f : S → m mapping S to a
space of m buckets, called the distributor;

• for each i ∈ m, a minimal perfect monotone hash
function gi on f −1(i);

• a function ` : m → n such that, for each i ∈ m,

`(i) =

∑
j<i

| f −1(j)|.

Then, the function h : S → n defined by

h(x) = `(f (x)) + g f (x)(x)

is a minimal perfect monotone hash function for S. The idea
behind bucketing is that the distributor will consume little
space (as we do not require minimality or perfection), and
that the functions hashing each element in its bucket will
consume little space if the bucket size is small enough.

4 Bucketing with longest common prefixes
The first solution we propose is taken from [1] and is based
on longest common prefixes. This solution has the advantage
of requiring just the evaluation of a fixed number of hash
functions; on the other side, it has in practise the highest
memory usage among the algorithms we discuss.

Let b be a positive integer, and divide the set S into buck-
ets Bi of size b preserving order. We now apply bucketing as
described in Section 3.4, but to store the function f : S → m
(with m = dn/be, as before), we proceed as follows:

s0 2
s1 2
s2 2
s3 8
s4 8
s5 8
s6 11
s7 11
s8 11
s9 1
s10 1

00 0
00100110 1
00100110101 2
0 3

(a) (b)

Figure 2: Bucketing with least common prefix for the set S of
Figure 1: (a) f0 maps each element x of S to the length of the
least common prefix of the bucket to which x belongs; (b) f1 maps
each least common prefix to the bucket index.

• we store a compacted MWHC function f0 : S →

log(u/b) that assigns, to each x ∈ S, the length ` f (x)

of the longest common prefix of the bucket containing
x (note that the length of the common prefix of a set of
b strings of length log u cannot exceed log u − log b);

• we store a compacted (or a two-step) MWHC function
f1 : { p0, p1, . . . , pm−1 } → m mapping pi to i .

To compute f (x) for a given x ∈ S, one first applies f0
obtaining the length ` f (x); from this one can compute p f (x),
whence, using f1, one obtains f (x). Figure 2 displays the
functions f0 and f1 for the example of Figure 1.

The function f0 requires (γ + log log(u/b))n bits,
whereas f1 requires (γ + log(n/b))n/b bits; the gi s would
require (γ + log b)n bits, as before, but we can pack the in-
formation returned by f0 and the gi s into a single function.
Altogether, we obtain:(

γ + log log
u
b

+ log b
)

n +

(
γ + log

n
b

)
n
b
.

Approximating log log(u/b) with log log u, the above func-
tion is minimised by b = W (ξn) where W is Lambert’s W
function and ξ = e2γ

≈ 6.4, so

b ≈ ln(ξn) − ln ln(ξn) ≈ 1 + γ ln 2 + ln n − ln ln n,

giving about(
γ + log e + log log n + log log

u
log n

)
n

bits. A good upper bound on the space usage is (2.7 +

2 log log u)n bits.

4.1 Variable-size bucketing. In case n is close to u, we
can still use longest prefixes, but we must modify our

135 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

structure so as to use O(n log log(u/n)) bits. To do so, we
divide the elements of S in buckets on the basis of their
first log n bits. Clearly, the size of each bucket will now be
variable, but the position of the first element of each bucket
is a monotone function that can be recorded in 2n bits using
the Elias–Fano representation. This construction provides
the monotone hashing part of the bucketing scheme.

We are now left to define the minimal perfect monotone
hashing inside each bucket. Let b(x) = 1 + γ ln 2 + ln x −

ln ln x be the bucket size used in the previous section. If
a bucket has size smaller than b(u/n), we simply use a
MWHC function (which requires at most γ + log b(u/n) bits
per element). Otherwise, we exploit the fact that each bucket
can be seen as a subset of a smaller universe of size u/n by
stripping the first log n bits of each string. Thus, the bound
given in the previous section, when applied to a bucket of
size s, becomes(

2γ + log e + log log s + log log
u

n log s

)
s,

where the additional γ s bits come from the need of separat-
ing the storage for the f0 and the gi s: in this way, both the
(log b(u/n))-sized data for large and small buckets can be
stored in the same bit array with no additional costs.

We conclude that the entire data structure requires at
most(

2γ + log e + 2 + min
{

log log n, log log
u
n

}
+ log log

u
n

)
n

bits; evaluation is obviously still constant time if log u is
smaller than a constant number of machine words. Note that
the latter formula only becomes advantageous when n is very
large (n ≈

√
u or larger).

5 Bucketing with partial compacted tries
We now turn to a data structure requiring access time linear
in the length of the key (e.g., O(log u)). As in the previous
section, the idea is always that of dividing S into equally
sized buckets, and then compute the bucket offset using a
compacted MWHC function. However, this time for each
bucket Bi we consider its delimiter ki , which is the last string
in Bi (with respect to the natural ≤-order). Let D denote the
set of delimiters of all buckets, except for the last one: we
will locate the bucket of a key x ∈ S by counting the number
of elements of D that are smaller than x . This is actually a
standard operation, called rank:

rankT (x) = |{t ∈ T | t < x }| for T ⊆ u and x ∈ u.

There are many data structures in the literature that can
be used to compute ranks. An obvious, naive possibility is
using a compacted trie [25] containing the strings in D (see
Figure 3). A much more sophisticated approach is described

0 001001

s
s

s8s5

2s

s9

10

0 1

010101110

10 10

3
4

s6
s7

s1

10ss

Figure 3: The standard compacted trie built from the set D of
Figure 1. This data structure can be used to rank arbitrary elements
of the universe with respect to D: when the trie is visited with an
element not in D, the visit may terminate at some arbitrary node,
determining that the given element is to the left (i.e., smaller than)
or to the right (i.e., larger than) all the leaves that descend from that
node. The picture shows, for each element of S, the node where the
visit would end.

in [18], whose fully indexable dictionaries make it possible
to store the distributor f in n/b log(ub/n) bits (plus lower-
order terms); each gi requires (γ + log b)n/b bits. So we
need altogether

n
b

log
ub
n

+ (γ + log b)n bits.

This quantity is minimised letting b = −W (−ne/u), so
when n � u

b ≈ ln
u
ne

+ ln ln
u
ne

≈ ln
u
n

+ ln ln
u
n

+ 1

and we need (
γ + log e + 2 log log

u
n

)
n bits.

The time required to access the data structure is now dom-
inated by the computation of the rank (see [18]; the cost
should be actually multiplied by log u as we do not assume
that the log u is equal to the word size).

We propose, however, an interesting alternative based
on the observation that both tries and the above dictionaries
are able to rank any element of u on D. This is actually not
necessary, as we need just ranking the elements of S.

5.1 Partial compacted tries. When using a compacted
trie for the computation of rank, one has to compare at each
step the sequence contained in the currently visited node
(say p) with the same-length prefix x of the element that
is sought. If x < p or x > p, the visit ends at this point
(the sequence was, respectively, smaller than or larger than
the elements of D corresponding to the leaves that descend
from the current node). If x = p, we must continue our visit
on the left or right subtrie, depending on the |p|-th bit of the

136 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

string (this is what happens, in particular, for the elements of
D).

In this section we introduce a new data structure, the
partial compacted trie, that reduces the space usage of a
compacted trie if you know in advance that you want to rank
only strings out of a certain set S ⊇ D (as opposed to ranking
all strings in u).

To understand the idea behind this, suppose that you
build the standard compacted trie of D, and that the root
is labelled by p: when the trie is used to rank an element
of S that has p as prefix, the visit continues on the left or
right subtrie; this happens, in particular, for all elements of
D (because p is the least common prefix of D) and, more
generally, for all the elements of S that are between min D
and max D (because they also have prefix p). On the other
hand, some of the remaining elements of S (those that do
not start with p and are smaller than min D or larger than
max D) cause the visit to end at the root. Now, in many cases
it is not necessary to look at the whole prefix of length |p|

to understand that the visit must end; for example, suppose
that p = 01010 but all the elements smaller than min D
start with 00 and all elements larger than max D start with
11: then the first two bits of p are enough to determine if
the visit must stop, or if we must proceed to some subtrie.
We might store 01??? to mean that if the string starts with
something smaller (larger, resp.) than 01, then it falls on the
left (right, resp.) of the whole D, otherwise, we can ignore
the following three bits (whose values are anyway fixed for
the remaining elements of S), and proceed in the usual way
looking at the sixth bit.

This intuitive idea is formalised as follows: a partial
compacted trie (PaCo trie, for short) is a binary tree in which
every node contains not a binary string but rather a pattern
formed by a binary string followed by zero or more “don’t
know” symbols (?), for instance, “00101???”. Given a PaCo
trie, and an x ∈ u, the visit of the trie with x starts from the
root and works as follows:

• if the node we are visiting is labelled by the pattern w?k ,
we compare the first |w| symbols of x (possibly right-
padded with zeroes), say x ′, with w:

• if x ′ is smaller than w, or if x ′
= w and the current

node is a leaf, we end the visit and return the number of
leaves to the left of the current node;

• if x ′ is larger than w, we end the visit and return the
number of leaves to the left of the current node plus
the number of leaves in the subtrie rooted at the current
node;

• if x ′
= w and the current node is not a leaf, let b be the

(|w| + k)-th bit of x , and y be the suffix following it:
we recursively visit the left or right subtrie (depending
on whether b = 0 or b = 1) with y.

Differently from a standard compacted trie, the con-
struction of a PaCo trie depends both on S and D; it is sim-
ilar to the construction of a standard trie, but instead of tak-
ing the whole least common prefix p of the elements of D,
we just take the smallest part that is enough to disambiguate
it from all the elements of S that do not start with p (and
that are, necessarily, all smaller than min D or larger than
max D). In particular, it is enough to find the largest element
smaller than min D that does not start with p (say s′) and the
smallest element larger than max D that does not start with
p (say s′′); these two elements alone are sufficient to deter-
mine how short we can take the prefix of p: if the prefix we
take is enough to understand that s′ falls on the left, then the
same will a fortiori happen for smaller elements of S, and
similarly for s′′.

Formally, we define the PaCo trie associated to a set
S = {s0 < · · · < sn−1} ⊆ u with respect to D = {si0 <

· · · < sik−1} as follows (the reader may find it easier to
understand this construction by looking at Figure 4):

• let p be the least common prefix of D;

• let j ′ be the largest integer in {0, . . . , i1 − 1} such that
p is not prefix of sj ′ , and `′ be the length of the longest
common prefix between p and sj ′ ; in the case all strings
in s0, . . . , si1−1 start with p, we let `′

= |p| − 1 and
j ′ = 0;

• let j ′′ be the smallest integer in {ik + 1, . . . , n − 1}

such that p is not prefix of sj ′′ , and `′′ be the length
of the longest common prefix between p and sj ′′ ; in the
case all strings in sik+1, . . . , sn−1 start with p, we let
`′′

= |p| − 1 and j ′′ = n;

• let now ` = 1 + max(`′, `′′), and q be the prefix of
length ` of p;

• if k = 1, the PaCo trie of S w.r.t. D is the one-node
PaCo trie labelled with q?|p|−`;

• if k > 1, let j be the smallest index such that sj
starts with p1, and t be the smallest index such that
j ≤ it : the PaCo trie of S w.r.t. D has root labelled
with q?|p|−`, and the left and right subtries are defined
as follows5:

– the left subtrie is the PaCo trie of
{sj ′+1 − p, . . . , sj−1 − p} with respect to
{si0 − p, . . . , sit−1 − p};

– the right subtrie is the PaCo trie of {sj −

p, . . . , sj ′′−1 − p} with respect to {sit −

p, . . . , sik−1 − p}.

5Here, we are writing s − p for the string obtained omitting the prefix p
from s.

137 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

j

0
0
1
0
0
1
0

0
0
0

0
0

0
0
1
0
0
1
0
1
0
1
1
0
0

0
0
1
0
0
1
0
1
0
1
1
1
0

0
0
1
0
0
1
1
0
1
0
0
1
0

0
0
1
0
0
1
1
0
1
0
1
1
0

j’

0

0

0
0
1
0
0
1
1
0
0
0
0
0
0

0
0
1
0
0
1
1
0
0
1
0
0
0

0
0
1
0
0
1
1
0
1
0
1
0
0

0
0
1
0
0
1
1
0
1
0
1
0
1

0
0
1
0
0
1
1
1
1
0
1
1
0

1
0
0
1
0
0
0
1
0
0
0

j’’

l’ l’’

p

q

0

Figure 4: Constructing the first level of the PaCo trie for S with
respect to D (see Figure 1): the central box corresponds to the
longest common prefix p = 001001; here `′

= 2 and `′′
= 1,

hence ` = 3 giving rise to q = 001.

The PaCo trie for the example of Figure 1 is shown in
Figure 5.

This definition is justified by the following theorem:

THEOREM 5.1. Let D ⊆ S ⊆ u and T be the PaCo trie of S
with respect to D. Then, for every x ∈ S, the visit of T with
x returns |{y ∈ D | y < x}|.

Proof. We will use the same notation as above, and show
that the visit of a PaCo trie with an x ∈ S follows the same
route as a visit to the full compacted trie built over D. Let
us suppose that x = sm . If j ′ < m < j ′′, then p is a
prefix of x , hence also q is a prefix of x , and we proceed
with the visit going down to the left or right subtrie, as we
would do with the full compacted trie. If m = j ′ (the case
m = j ′′ is analogous) is treated as follows: q is strictly
longer than the longest common prefix between p and sj ′

(because |q| > max{`′, `′′
} ≥ `′); so the prefix of x of length

|q|, say q ′, is different from q , and it must necessarily be
lexicographically smaller than it. We therefore end the visit,
as we would do in the full trie (x is smaller than all keys). If
m < j ′ (the case m > j ′′ is analogous) follows a fortiori,
because the prefix of x of length |q| will be even smaller than
(or equal to) q ′.

In our general framework, we will use a PaCo trie as
a distributor; more precisely, given S = {s0, . . . , sn−1}

consider, for some positive integer b, the set D =

{s0, sb, s2b, . . . }: the PaCo trie of S with respect to D is a
distributor for the function f : S → dn/be that maps sm to
bm/bc. In this application, all buckets have size b (except
possibly for the last one, which may be smaller).

001???

s

s8s5

2s

s9

10

0 1

01?10111?

?? 1?

3
4

s6
s7

s1

10ss0

s

|p|

3
p

001
m

3
`A

1
(|p|

5
p

10111
m

1
) (|p|

2
p

01
m

1
`A

1
(|p|

0
) (|p|

1
p
1

))
Figure 5: The PaCo trie for S with respect to D (see Figure 1):
like for the trie in Figure 3, we can use this data structure to rank
with respect to D, but only for elements of S, and not for arbitrary
elements of the universe. At the bottom, we show the recursive bit
stream representation: all framed numbers are written in δ coding.
The skip component is omitted but we use parentheses to isolate the
parts of the stream corresponding to each subtree.

5.2 Implementation issues. Experimental evidence sug-
gests that PaCo tries usually save 30 − 50% of the space
occupied for paths compared to a standard trie. To get most
benefits from this saving, we propose to store PaCo tries in a
recursive bit stream format. More precisely, the represen-
tation [[T]] of a trie T whose root contains a bit string p
followed by m don’t-care symbols, left subtrie A and right
subtrie B is given by the concatenation

s |p| p m `A [[A]] [[B]],

where s is the length in bits of [[A]], `A is the number of
leaves of A, and all numbers are represented in δ coding.
Leaves have s = 0, and they do not record the information
that follows p. Figure 5 shows the encoding of our example
trie.

This representation (which is trivially decodable) makes
it possible to navigate the PaCo trie in at most log u steps,
as the left subtrie of a node is available as soon as the node
data is decoded, and it is possible to jump to the right subtrie
by skipping s bits. Moreover, at each navigation step we can
compute in constant time the number of leaves at the left or
under the current node using `A.6

By sizing buckets appropriately, the space usage of this
representation is linear in n, and indeed we will see that
using a PaCo trie as a distributor provides in practise the best
space/time tradeoff for long keys.

We observe, however, that due to the difficulty of es-
timating the bit gain of a PaCo trie w.r.t. a dictionary or a

6We remark that in principle `A can be reconstructed by visiting the trie.
However, adding it to the structure makes it possible to return the correct
value immediately after locating the exit node.

138 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

standard trie, it is very likely that the computation of the op-
timal bucket size is far off the best value. Since trying ex-
haustively all bucket sizes is out of the question, we propose
the following heuristic approach: we first estimate the bucket
size using the formula above. Then, we compute the PaCo
trie and assume that halving the bucket size (thus doubling
the number of delimiters) will also approximately double the
size of the PaCo trie. Using this simple model, we compute a
new estimation of the bucket size and build the correspond-
ing structure. In practise, this approach provides a very good
approximation.

The algorithm given in the previous section requires
accessing the strings of S and D randomly. However, there
is a two-pass sequential algorithm that keeps in internal
memory a representation of the trie built on D, only.

6 Succinct hollow tries
The hollow trie associated to S is a compacted trie [25] in
which all paths of internal nodes have been replaced with
their length, and all paths on leaves have been discarded.
More in detail, given S, we can define the hollow trie
inductively as follows:

• if |S| ≤ 1, the associated hollow trie is the empty binary
tree;

• otherwise, if p is the longest common prefix of strings
in S, the associated hollow trie is a binary tree whose
root is labelled by |p|, and whose left and right subtrees
are the hollow tries associated to the sets { x ∈ { 0, 1 }

∗
|

pix ∈ S } for i = 0, 1, respectively.

The hollow trie for the example of Figure 1 is shown in
Figure 6.

Note that a hollow trie is very similar to the blind trie
that underlies a Patricia trie [27]: however, in a blind trie we
keep track of the lengths of all compacted paths, whereas in
a hollow trie the lengths on the leaves are discarded. Indeed,
the blind trie of a single string is given by a node containing
the first character of the string and the number of remaining
characters, whereas the hollow trie of a single string is the
empty binary tree.

We store hollow tries by computing the corresponding
forest (in the first-child/next-sibling representation), adding
a node at the top, and using Jacobson’s representation [22]
to store the string of balanced parentheses associated to the
tree. Thus, we use two bits per node plus log log u bits
for each label of an internal node (actually, in practise us-
ing a variable-length bit array for the labels provides signif-
icant savings). We recall that Jacobson’s representation di-
vides parentheses in blocks of log n elements and stores ex-
plicitly the closing parentheses corresponding to a subset of
open parentheses called pioneers. In our case, we use 64-bit
blocks; we store the list of positions of open pioneers using

s

0

1

0

3

04

2

1

s0

10s

s1 s2 s9

1 1

s3

s8

s7s6

s54

1

0 3 0

4 0 1 2

1 1

((1 (0) (3 (4)) (0 (0 (1)) (1) (2 (1)))))

Figure 6: The hollow trie for the set S of Figure 1, and the
associated forest (in this case, a tree); at a node labelled by i , look
at the i-th bit (numbered from 0), follow the corresponding arc, and
discard all bits up to the i-th (inclusive). At the bottom, we show
the corresponding representation by balanced parentheses; the bold
pair corresponds to the fictitious (round) node.

an Elias–Fano monotone sequence, and the distance of the
corresponding closed parenthesis using an Elias–Fano com-
pressed list. In practise, this brings down the space needed to
less than one bit per node. Much more sophisticated schemes
(e.g., [15, 28]) achieve in theory o(n) bits usage, but they re-
quire either to store both open and closed pioneers (we need
just open pioneers—see below) or to use the standard trick
of using several levels of blocking, which in our case leads
to a very small space gain and a significant slowdown. Fig-
ure 6 shows our example trie, the corresponding forest, and
the associated balanced parentheses.

All in all, just (2 + log log u) n bits are sufficient, plus
the bits required to store the structure for balanced parenthe-
ses. Traversing such a trie on the succinct representation is
an easy process: if we are examining the open parenthesis
at position p, moving on the left is just moving on the open
parenthesis at position p + 1 (if the parenthesis at p + 1 is
closed, the left binary subtree is empty), whereas moving on
the right is just matching the current parenthesis, getting po-
sition q , and moving to position q + 1 (if the parenthesis at
q + 1 is closed, the right binary subtree is empty). For ev-
ery element x ∈ S the resulting leaf will be exactly the leaf
associated to x ; of course, since we have discarded all paths,
the result for strings not in S will be unpredictable.

We note that while walking down the trie we can easily
compute the number of strings in S that are lexicographically
smaller then w and the number of open parentheses the

139 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

precede the current one. When we move to the left subtree,
the first number does not change and the second one is
incremented by one; when we move to the right subtree,
we must add to both numbers the number of leaves in the
left subtree: this number is exactly (q − p + 1)/2—the
number of open parentheses between p and q , using the same
notation of the previous paragraph. This observation makes
it possible to get the skip associated to each node, and also
to return the correct value as soon as the right leaf has been
found.

Note that the process above requires time O(log u),
albeit for not-so-pathological sets it will be more like
O(log n). However, the constant factors associated to the
navigation of the succinct representation are very high. In
theory and in practise, a hollow trie occupies less space than
the previous two structures, but we will see that its main use-
fulness lies in the possibility of using it as the base of a dis-
tributor.

6.1 Variable-size bucketing. Similarly to the case of
longest common prefixes, for dense sets we can get to a
space usage O(log log(u/n)) by dividing the elements of S
in buckets on the basis of their first log n bits. We can record
the start of each bucket using a 2n-bits Elias–Fano represen-
tation, and concatenate the bit representations of the hollow
tries of each bucket. Since we store each trie in 2b bits we
can recover the trie of a bucket using only the index of the
first element. This gives a space usage of(

4 + log log
u
n

)
n bits.

It seems that this modification is not going to be practical
unless n is very close to u (n ≥ u4/5).

6.2 Implementation issues. The speed of rank/select op-
eration is of course crucial in implementing a hollow trie. We
use the currently fastest practical implementations available
on 64-bit processors [30].

Another important issue is the storage of the labels. As
in the case of a compacted trie, it is difficult to estimate the
actual size of the labels of a hollow trie, so we store the
labels in an Elias–Fano list. An interesting path for future
research is to explore alternative, more efficient and cache-
effective succinct representations for hollow tries (e.g., using
a bit stream format similar to that used for PaCo tries).

7 Bucketing with hollow tries
We finally turn to the slowest data structure, which make
it possible to use just O(log log log u) bits per element: in
practise, unless the string length exceed a billion, any data
set can be monotonically hashed using less than one byte per
element in time O(log u).

The basic idea is that of using a succinct hollow trie

built on the delimiters as a distributor. Since skips require
log log u bits each, we can use the same size for our buckets;
then, the occupation of the trie will be linear in the number
of keys, and the bucket offset will require just log log log u
bits.

It is however very easy to check that a hollow trie is
not sufficient to map correctly each key into its bucket:
in the example of Figure 1, if we built a hollow trie on
the delimiters, the string s10 would be misclassified (more
precisely, mapped to the first bucket), as the first test would
be on the seventh bit, which is zero in s10.

The idea we use to solve this problem is to mimic the
behaviour of a trie-based distributor: all we need to know
is, for each node and for each key, which behaviour (exit on
the left, exit on the right, follow the trie) must be followed.
This information, however, can be coded in very little space.
To see how this can be done, consider what happens when
visiting a trie-based distributor using a key x .

At each node, we know that x starts with a prefix that
depends only on the node, and that there is a substring s
of x , following the prefix, that must be compared with the
compacted path stored at the node. The behaviour of x at
the node depends only on the comparison between s and the
compacted path. The problem with using a hollow trie as
distributor is that we know just the length of the compacted
path, and thus also s, but we do not know the compacted
path.

The solution is to store explicitly the function (depend-
ing on the node) that maps s to its appropriate behaviour (exit
on the left, exit on the right, follow the trie). The fundamen-
tal observation is that the number of overall keys of such
maps (upon which the space usage depends) is very low, as
we have one exit substring per key (n keys) and one follow
substring per node (n/b keys, where b is the bucket size), as
you follow the trie only when s coincides with the compacted
path associated to the node. Figure 7 shows the distributor
obtained for our example.

This, we have to map n +n/b strings to one of three val-
ues. We note, however, that there is no “follow” behaviour
on leaves (from a distributor viewpoint, “follow” on a leaf
coincides with “exit on the left”). All in all, the space re-
quirement is n/b(2 + log log u) for the trie, 2γ n bits to store
the behaviour on internal nodes, and γ n/b bits to store the
behaviour on the leaves using MWHC functions7; finally, we
need 2nγ log log log u bits to store the offset of each key into

7Actually, these are upper bounds, as it might happen that some strings
exit on a leaf.

140 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

000100 −> left
010010 −> right
001001 −> follow

101100 −> left
101110 −> left

000 −> left
001 −> left
111−> right
010 −> follow

10 −> left 00 −> left
01 −> left
10 −> left

1

0 1

0

Figure 7: The distributor based on a hollow trie built from the set D
of Figure 1. This data structure can be used to rank elements of S
with respect to D (the reader is invited to compare with Figure 3).
The picture shows, for each node of the hollow trie, the associated
function.

his bucket8, resulting in

n
b
(2 + log log u) + 2γ n + γ

n
b

+ γ n log b

bits. This is minimised when

b =
ln 2
γ

(log log u + 2) + ln 2,

resulting in (1
ln 2

+ 2 + γ log log log u
)

n

overall bits, that is, approximately 3.44 + 1.23 log log log u
bits per element. The time required to hash a string is
O(log u), as in the case of the hollow trie; at each node we
have to compute a MWHC function, but since the overall
length of all the strings involved in such computation is
bounded by log u, this has no asymptotic effect on the
computation time.

7.1 Implementation issues. Storing n/b functions explic-
itly would increased significantly space usage. Rather, we
store just two functions mappings pairs node/string to the as-
sociated action.

The distributor we discussed can be easily built using a
three-pass linear procedure similar to that of the PaCo trie:

8We remark that we are actually wasting 2 − log 3 bits per element in
coding the behaviour of internal nodes, but this has a very minor influence
on the final result. Moreover, we are using non-compacted MWHC
functions as in this case they are advantageous unless u is preposterously
large.

in the first phase we build a compacted trie on the delimiters.
Then, we compute for each key the action at each node, and
store it in a temporary file, taking care of never saving twice
the “follow” action at an internal node. Then, we read the
temporary file and build the necessary MWHC functions.
Finally, we compute the MWHC function mapping each key
to its offset.

8 Bucketing with relative z-fast tries
In [1] we have proposed a data structure for the monotone
minimal perfect hashing problem which has space usage
O(log log log u) and access time O((log u)/w + log log u),
where w is the size of a machine word. The structure, which
uses as distributor a relative z-fast trie, is very complex and
we invite the interested reader to consult [1] for the details.
We have implemented the structure using the techniques
described in this paper: the formula giving the space usage,
however, is wide and ugly. We simply report that the optimal
bucket size is b ≈ 16 + 7 ln u ln u + ln ln ln u, which is the
value used in our implementation.

9 Average length
In this section we remark the few modifications that are nec-
essary to make the space usage of our structures proportional
to log `, where ` is the average length of a set of prefix-free,
variable-length strings S. The main ingredient is again the
Elias–Fano representation. We remark, however, that on the
files used for our experiments (see Section 10) the (small)
additional constant costs in bits per key due to the addi-
tional structures makes the final hashing structure actually
more expensive than the original one in terms of bits per key.
However, generally speaking a bound in terms of the average
length makes the method robust against the situation where
a few keys in S are much longer than the average.

In the case of bucketing based on longest common pre-
fixes, we simply note that since the longest common prefix
of a bucket is shorter than the shortest string in the bucket,
the sum of lengths of all prefixes does not exceed (n/b)`, so
we can replace the function storing the prefixes length with a
minimal perfect hash function (2γ bits per prefix) followed
by an Elias-Fano list (log((n/b)`)/(n/b)) = log ` bits per
prefix). The analysis of Section 4 can be carried on using `

in place of log u, obtaining the desired result.
In the case of bucketing based on PaCo tries, we choose

as delimiters the shortest string of each bucket, and then
again the overall number of bits in the trie paths cannot
exceed (n/b)` (in lieu of the obvious bound (n/b) log u).
In this case, we also have to store an additional bit per key,
which tells whether the string falls at the right or at the left
of its delimiter.

Finally, in a hollow trie the sum of labels cannot exceed
the overall string length `n, so storing the n − 1 labels
actually requires 2 + log ` bits per key. The result can be

141 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

obviously carried over to the structure using the hollow trie
as a distributor, using the same idea of PaCo tries.

10 Experiments
In this section we discuss a set of experiments conducted
using the three data structure we introduced, and, for com-
parison, an order-preserving hash function computed by an
MWHC compacted function. We used Java for all imple-
mentations; the tests were run using the Sun JVM 1.6 on a
64-bit Opteron processor running at 2814 MHz with 1 MiB
of first-level cache. We remark that all our implementations
are 64-bit clean (e.g., the number of strings, overall length of
the files, etc. are limited by 264) and none requires loading
the entire set of data to be processed into internal memory.

For our tests, we used a number of files that we describe
in detail:

• trec-title.terms (9.1 MiB, ≈1 million strings):
the terms appearing in titles of the TREC GOV2 col-
lection (UTF-8);

• trec-text.terms (419 MiB, ≈35 million strings):
the terms appearing in the text of the TREC GOV2
collection (UTF-8);

• webbase-2001.urls (6.7 GiB, ≈118 million strings):
the URLs of a general crawl performed by the WebBase
crawler [2] in 2001 (ISO-8859-1);

• uk-2007-05.urls (12 GiB, ≈106 million strings):
the URLs of a 101 Mpages crawl of .uk performed by
UbiCrawler [20] in May 2007 (ISO-8859-1);

• largerandom.bin (859 MiB, 100 million strings):
random 64-bit strings;

• smallrandom.bin (477 MiB, 100 million strings):
random 32-bit strings.

The first two files represent typical text dictionaries. We pro-
vide two different URL lists because they are very differ-
ent in nature (the most recent one has significantly longer
URLs). Finally, the random string files are useful to test the
behaviour of our structures in the presence of random strings.
The latter, in particular, is extremely dense (n is close to u).

Table 1 reports the results of our experiments. Beside
the plain encoding of each file, we also tried a more sophisti-
cated approach based on Hu–Tucker codes [21]. Hu–Tucker
codes are optimal lexicographical codes—they compress op-
timally a source reflecting, however, the order between the
symbols of the source in the lexicographical order of the
codewords (this entails a loss of space w.r.t. to entropy, which
is however bounded by 2 bits). It is interesting to experiment
with Hu–Tucker codes because the increase of compression

(or, better, a lack thereof) can be used as a measure of the ef-
fectiveness of our data structures (in case of binary numbers,
Hu–Tucker codes were computed on bytes).

We accessed one million randomly selected strings from
each set. The tests were repeated thirteen times, the first
three results discarded (to let the Java Virtual Machine warm-
up and optimise dynamically the code) and the remaining
ones averaged.

• From the results of our experiments, PaCo-based mono-
tone hash function has the best tradeoff between space
and time, but in case a high speed is required, LCP-
based monotone hash functions have a much better per-
formance.

• PaCo-based monotone hashing comes close to the space
of hollow tries on long string. While we cannot justify
this fact theoretically, in practise this shows that PaCo
tries exploit very well the redundancy in our data.

• There no significant advantage in using Hu–Tucker
coding. The only relevant effect is on LCP-based
monotone hashing, as the size of the hash function is
very dependent on the string length, and Hu–Tucker
coding does reduce the string length; however, the same
gain can be obtained by a two-step LCP-based function.

• The smallest structures come from hollow tries—either
used directly, or as a distributor, but accessing them
is usually very expensive. The case of short strings,
however, is different: here hollow tries provide a very
significant compression gain, with a small loss in access
time. This is due to the significantly smaller number of
accesses.

• Structures based on relative z-fast tries, albeit the best
in theory, are always beaten by PaCo-based structures.
The gap, however, is small, and might suggest that some
additional engineering might make relative z-fast tries
the best also in practise.

We remark that in our current implementation we fo-
cused on compression ratio and access time: our construc-
tion procedures are not particularly optimised and in partic-
ular building PaCo tries is quite expensive.

11 Conclusions
We have presented experimental data about some old and
new data structures that provide monotone minimal perfect
hashing in a very low number of bits. Our results show that
our data structures are practical and cover a wide range of
space/time tradeoffs.

Improvements to function storage (e.g., using rn + o(n)

methods) would yield immediately improvements to the data

142 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

File
trec-title

139 b/key
trec-text

202 b/key
webbase-2001

481 b/key
uk-2007-05

898 b/key
64-bit random 32-bit random

b/key µs/key c.t. b/key µs/key c.t. b/key µs/key c.t. b/key µs/key c.t. b/key µs/key c.t. b/key µs/key c.t.
Plain string encoding

MWHC 22.47 0.54 3.9 27.47 0.78 3.2 28.46 1.18 4.8 28.46 1.32 5.7 28.47 0.74 3.7 28.46 0.64 2.3
LCP 16.62 0.74 4.1 22.17 1.11 13.0 25.20 1.48 9.7 22.20 1.93 10.2 13.18 1.21 6.1 13.18 1.17 3.5
LCP (2-step) 12.87 0.96 6.8 14.47 1.46 15.6 17.76 2.08 12.3 18.83 2.66 11.8 10.70 1.18 8.0 10.67 1.16 5.3
PaCo 8.43 1.66 7.8 8.62 2.60 25.1 9.85 4.26 19.9 10.53 4.62 16.7 7.04 1.82 7.1 6.78 1.70 3.6
Hollow 6.74 5.16 .3 6.91 8.73 .1 7.21 15.44 .1 7.57 15.31 .1 4.41 7.07 .1 4.37 6.60 .1
HTDist 6.38 10.42 9.0 6.36 16.66 23.4 6.51 24.87 18.1 6.49 29.07 15.4 5.99 11.28 9.8 5.60 13.41 9.7
RelZFast 9.40 4.50 12.8 9.94 6.24 25.1 10.22 8.88 23.2 9.91 10.65 24.5 8.57 6.15 10.0 8.58 6.03 9.3

Hu–Tucker encoding

LCP 14.62 1.29 5.9 22.18 1.83 8.0 24.20 4.40 17.9 22.20 7.12 26.7 13.18 1.73 6.9 13.18 1.55 3.9
LCP (2-step) 12.55 1.94 8.1 13.82 2.53 10.3 17.59 7.78 20.9 18.57 13.09 29.1 10.70 2.25 8.9 10.67 1.82 6.1
PaCo 7.30 1.93 8.1 7.53 2.63 25.0 9.47 6.35 41.9 9.89 9.62 60.9 7.00 2.29 10.3 7.31 2.06 5.3
Hollow 5.09 4.74 .3 5.23 7.69 .1 6.70 16.13 .1 7.11 20.78 .1 4.41 7.46 .1 4.37 6.89 .1
HTDist 5.96 8.78 12.6 6.16 12.39 19.8 6.44 27.41 31.8 6.43 31.02 42.5 5.99 11.55 13.1 5.60 13.45 10.7
RelZFast 9.26 4.49 13.9 9.80 6.48 20.1 10.14 10.59 38.1 9.87 14.76 53.4 8.58 6.58 11.1 8.58 6.15 9.4

Table 1: Experimental results. For each of the test files, we show the number of bits per key. Then, for each combination of test file and
hash function we show the number of bits per key, the number of microseconds per key of a successful probe (unsuccessful probes are
actually faster), and the time spent constructing the data structure (“c.t.”) expressed again in microseconds per key. The first table uses the
encoding of each file as specified in Section 10, whereas the second table shows structures built using optimal lexicographical Hu–Tucker
encoding.

structures presented here. However, current methods appear
to be too slow for practical implementations.

The speed of our structures is presently mainly con-
strained by memory latency and unaligned access. Future
work will concentrate on reducing this burden without in-
creasing space usage.

References

[1] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna. Monotone
minimal perfect hashing: Searching a sorted table with O(1)

accesses. In Proceedings of the 20th Annual ACM-SIAM
Symposium On Discrete Mathematics (SODA), New York,
2009. ACM Press.

[2] P. Boldi, B. Codenotti, M. Santini, and S. Vigna. Ubicrawler:
A scalable fully distributed web crawler. Software: Practice
& Experience, 34(8):711–726, 2004.

[3] F. C. Botelho, R. Pagh, and N. Ziviani. Simple and space-
efficient minimal perfect hash functions. In WADS, pages
139–150, 2007.

[4] F. C. Botelho and N. Ziviani. External perfect hashing for
very large key sets. In CIKM, pages 653–662, 2007.

[5] J. Cain and N. C. Wormald. Encores on cores. Electronic
Journal of Combinatorics, 13(1), 2006.

[6] D. Charles and K. Chellapilla. Bloomier filters: A second
look. In Proc. ESA 2008, 2008.

[7] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The
Bloomier filter: an efficient data structure for static support

lookup tables. In J. I. Munro, editor, Proceedings of the
Fifteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2004, New Orleans, Louisiana, USA, January
11-14, 2004, pages 30–39. SIAM, 2004.

[8] D. R. Clark and J. I. Munro. Efficient suffix trees on
secondary storage (extended abstract). In SODA, pages 383–
391, 1996.

[9] M. Dietzfelbinger and R. Pagh. Succinct data structures for
retrieval and approximate membership (extended abstract). In
L. Aceto, I. Damgård, L. A. Goldberg, M. M. Halldórsson,
A. Ingólfsdóttir, and I. Walukiewicz, editors, Automata, Lan-
guages and Programming, 35th International Colloquium,
ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceed-
ings, Part I: Tack A: Algorithms, Automata, Complexity, and
Games, volume 5125 of Lecture Notes in Computer Science,
pages 385–396. Springer, 2008.

[10] P. Elias. Efficient storage and retrieval by content and address
of static files. J. Assoc. Comput. Mach., 21(2):246–260, 1974.

[11] R. M. Fano. On the number of bits required to implement an
associative memory. Memorandum 61, Computer Structures
Group, Project MAC, MIT, Cambridge, Mass., n.d., 1971.

[12] E. A. Fox, Q. F. Chen, A. M. Daoud, and L. S. Heath. Order-
preserving minimal perfect hash functions and information
retrieval. ACM Trans. Inf. Sys., 9(3):281–308, 1991.

[13] M. L. Fredman and J. Komlós. On the size of separating
systems and families of perfect hash functions. SIAM J.
Algebraic Discrete Methods, 5(1):61–68, 1984.

[14] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a
sparse table with O(1) worst case access time. J. Assoc.

143 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Comput. Mach., 31(3):538–544, July 1984.
[15] R. F. Geary, N. Rahman, R. Raman, and V. Raman. A sim-

ple optimal representation for balanced parentheses. Theor.
Comput. Sci, 368(3):231–246, 2006.

[16] A. Golynski. Optimal lower bounds for rank and select in-
dexes. In M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener,
editors, Automata, Languages and Programming, 33rd Inter-
national Colloquium, ICALP 2006, Venice, Italy, July 10-14,
2006, Proceedings, Part I, volume 4051 of Lecture Notes in
Computer Science, pages 370–381. Springer, 2006.

[17] R. Gonzàlez, S. Grabowski, V. Mäkinen, and G. Navarro.
Practical implementation of rank and select queries. In
Poster Proceedings Volume of 4th Workshop on Efficient and
Experimental Algorithms (WEA’05), pages 27–38. CTI Press
and Ellinika Grammata, 2005.

[18] A. Gupta, W.-K. Hon, R. Shah, and J. S. Vitter. Compressed
data structures: Dictionaries and data-aware measures. Theo-
ret. Comput. Sci., 387(3):313–331, 2007.

[19] T. Hagerup and T. Tholey. Efficient minimal perfect hash-
ing in nearly minimal space. In Proceedings of the 18th
Symposium on Theoretical Aspects of Computer Science
(STACS ’01), volume 2010 of Lecture Notes in Computer Sci-
ence, pages 317–326. Springer–Verlag, 2001.

[20] J. Hirai, S. Raghavan, H. Garcia-Molina, and A. Paepcke.
WebBase: a repository of Web pages. Computer Networks,
33(1–6):277–293, 2000.

[21] T. C. Hu and A. C. Tucker. Optimal Computer Search Trees
and Variable-Length Alphabetical Codes. SIAM J. Applied
Math., 21(4):514–532, 1971.

[22] G. Jacobson. Space-efficient static trees and graphs. In In
Proc 30th Annual Symposium on Foundations of Computer
Science, pages 549–554, 1989.

[23] B. Jenkins. Algorithm alley: Hash functions. Dr. Dobb’s
Journal of Software Tools, 22(9):107–109, 115–116, Sept.
1997.

[24] D. K. Kim, J. C. Na, J. E. Kim, and K. Park. Efficient imple-
mentation of rank and select functions for succinct represen-
tation. In S. E. Nikoletseas, editor, Proc. of the Experimental
and Efficient Algorithms, 4th InternationalWorkshop, volume
3503 of Lecture Notes in Computer Science, pages 315–327.
Springer, 2005.

[25] D. E. Knuth. Sorting and Searching, volume 3 of The Art
of Computer Programming. Addison-Wesley, second edition,
1997.

[26] B. S. Majewski, N. C. Wormald, G. Havas, and Z. J. Czech.
A family of perfect hashing methods. Comput. J., 39(6):547–
554, 1996.

[27] D. R. Morrison. PATRICIA—practical algorithm to re-
trieve information coded in alphanumeric. J. Assoc. Comput.
Mach., 15(4):514–534, 1968.

[28] J. I. Munro and V. Raman. Succinct representation of
balanced parentheses and static trees. SIAM J. Comput.,
31(3):762–776, 2001.

[29] E. Porat. An optimal bloom filter replacement based on
matrix solving, 2008. arXiv:0804.1845v1.

[30] S. Vigna. Broadword implementation of rank/select queries.
In Proc. WEA 2008: 7th International Workshop on Ex-
perimental Algorithms, Lecture Notes in Computer Science.

Springer–Verlag, 2008.

144 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

