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Abstract

The Phillips curve has long been used as a foundation for forecasting inflation. Yet
numerous studies indicate that over the past 20 years or so, inflation forecasts based
on the Phillips curve generally do not predict inflation any better than a univariate
forecasting model. In this paper, we take a deeper look at the forecasting ability of
Phillips curves from both an unconditional and conditional view. Namely, we use the
test results developed by Giacomini and White (2006) to examine the forecasting ability
of Phillips curve models. Our main results indicate that forecasts from our Phillips
curve models are unconditionally inferior to those of our univariate forecasting models
and sometimes the difference is statistically significant. However, we do find that
conditioning on various measures of the state of the economy does at times improve
the performance of the Phillips curve model in a statistically significant way. Of interest
is that improvement is more likely to occur at longer forecasting horizons and over the
sample period 1984Q1−2010Q3. Strikingly, the improvement is asymmetric − Phillips
curve forecasts tend to be more accurate when the economy is weak and less accurate
when the economy is strong. It, therefore, appears that forecasters should not fully
discount the inflation forecasts of Phillips curve-based models when the economy is
weak.
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1 Introduction

The Phillips curve has long been used as a foundation for forecasting inflation. Yet numerous

studies indicate that over the past 20 years or so, inflation forecasts based on the Phillips

curve generally do not predict inflation any better than a naive forecast or a forecast based

on either a forecast from an unobserved stochastic volatility model or an IMA(1,1) model.

This point was forcefully made by Atkeson and Ohanian (2001) in regard to naive forecasts

and has subsequently been explored in great depth by Stock and Watson (2007, 2008). Thus,

a reasonable impression regarding the usefulness of Phillips curve models for forecasting in-

flation is fairly bleak. Stock and Watson, however, pose an interesting hypothetical question:

namely despite the rich evidence against the usefulness of Phillips curve forecasts, would you

change your forecast of inflation if you were told that next quarter the economy was going

to enter a recession with the unemployment rate jumping by 2 percentage points? There is

strong evidence that many forecasters and monetary policymakers would in fact change their

forecasts. For example, the June 4, 2010 issue of Goldman and Sachs’ US Economics Analyst

posits that “Under any reasonable economic scenario, this gap – estimated at 6.5% of GDP

as of year-end 2009 by the Congressional Budget Office – will require years of above-trend

growth to eliminate. Accordingly, we expect the core consumer inflation measures · · · to

trend further, falling close to 0% by late 2011.” These sentiments were echoed in the April

27-28, 2010 minutes of the Federal Open Market Committee: “In light of stable longer-term

inflation expectations and the likely continuation of substantial resource slack, policymakers

anticipated that both overall and core inflation would remain subdued through 2012.”

Although most studies that examine the comparative forecasting performance of Phillips

curve models place emphasis on the performance over entire sample periods and specific

sub-samples, there has been little work that sheds light on the question posed by Stock and

Watson. Dotsey and Stark (2005) examine whether large decreases in capacity utilization

add any forecasting power to inflation forecasts and find that they do not. Stock and Watson

(2008), however, do provide some rough evidence that large deviations of the unemployment

gap are associated with periods when Phillips curve-based forecasts are relatively good.

Fuhrer and Olivei (2010) also examine the Stock and Watson evidence and find that a

threshold model of the Phillips curve outperforms a naive model. This paper will statistically

investigate the strength of the Stock and Watson observation along a number of dimensions

and in great depth.
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We do so in a variety of ways using both real-time and final data and by formally compar-

ing forecast accuracy of our Phillips curve-based forecasts with those of various univariate

models using the methodology developed by Giacomini and White (2006). We use their pro-

cedure because (i) it can be used when comparing the forecasts from misspecified models, (ii)

it allows for both unconditional and conditional tests, and (iii) it is relevant for testing both

nested and non-nested models. In order to explore whether it is primarily large deviations of

the unemployment gap that are informative for inflation forecasting, we look at a threshold

model as well as employing the conditional forecast comparison procedures developed by

Giacomini and White (2006).

Our basic results indicate that forecasts from our baseline Phillips curve model or the

model augmented with a threshold unemployment gap are unconditionally inferior to those

of our naive forecasting models, and sometimes the difference is statistically significant.

However, we do find that conditioning on various measures of the state of the economy

does, at times, improve the performance of the Phillips curve model in a statistically signif-

icant way. Of interest is that improvement is more likely to occur over the sample period

1984Q1−2010Q3 and that the unemployment gap improves forecasts in an asymmetric way.

Specifically, the greater the actual gap, the greater the improvement in the conditional fore-

casting accuracy of the Phillips curve model. Therefore, it appears that policymakers should

not fully discount the inflation forecasts of Phillips curve-based models when the economy

is weak.

Following a brief literature review, we lay out the various forecasting models. We then

discuss the procedures used for comparing forecasts. We follow this with the body of our

statistical analysis and then provide a brief summary and conclusion.

2 Literature Review

Our literature review will be fairly focused, concentrating on those papers that help inform

our particular approach. An excellent and in-depth literature review can be found in Stock

and Watson (2008). A departure point for our inquiry is the work of Atkeson and Ohanian

(2001). In that paper, the authors compare the root-mean-square error (RMSE) of out-of-

sample forecasts of 12-month-ahead inflation generated by a Phillips curve model using either

the unemployment rate or a monthly activity index developed at the Federal Reserve Bank of

Chicago with those of a naive model, which predicts that 12-month-ahead inflation will be the
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same as current 12-month inflation. They examine the relative RMSEs for forecasts over the

period 1984:1−1999:11 and find that the forecasts generated by the Phillips curve models

do not outperform those of the naive model. They, therefore, conclude that the Phillips

curve approach is not useful for forecasting inflation. Stock and Watson (1999) look at two

subsamples when comparing the relative forecasting power of Phillips curve specifications

relative to both a naive forecast and one based on an autoregressive specification of the

inflation rate. Over the first subsample, 1970−1983, the Phillips curve-based forecasts are

superior, whereas over the second subsample 1984−1996, the Phillips curve-based forecasts

outperform the naive forecast but are no better than forecasts based on lagged inflation only.

This is in stark contrast to Atkeson and Ohanian (2001), and as reported in Stock and

Watson (2008), it is due to the different sample period. In particular, Phillips curve forecasts

did not do well in the latter half of the 1990s. Further, over the 1984−1999 sample period,

the naive forecast outperforms forecasts based on simple autoregressive specifications, which

prompts Stock and Watson to adopt an unobserved components stochastic volatility model

(UCSV) as their benchmark for comparison. They find that there is not much difference be-

tween the naive forecasts over the 1984−1999 subsample, but that subsequently the forecasts

generated by the two methods diverge upon which point the UCSV forecasts are superior.

Fisher et al. (2002) use rolling regressions with a 15-year window rather than recursive

procedures. They also document that Phillips curve-based forecasts outperform naive fore-

casts over the period 1977−1984 and that, for a PCE-based inflation measure, the Phillips

curve forecasts improved on naive forecasts over 1993−2000. They also indicate that the

1993−2000 and 1985−1992 periods may represent different forecasting environments. An-

other intriguing result from Fisher et al. (2002) is that Phillips curve forecasts do better

at two-year horizons, which is in stark contrast to the findings in Stock and Watson (2007)

who find that Phillips curve forecasts tend to do better at horizons of less than one year.

Ang et al. (2007), however, tend to confirm the Atkeson-Ohanian results that Phillips curve

models offer no improvement over naive forecasts over the periods 1985-2002 and 1995-2002,

a result that is consistent with those found in Stock and Watson (2008) when the latter use

UCSV as the atheoretical benchmark.

Clark and McCracken (2006) reach a more cautious conclusion, pointing out that the out-

of-sample confidence bands for ratios of RMSEs are fairly wide and that rejecting Phillips

Curve models based on ratios should be approached with care. However, some of the ra-

tios found in studies like Atkeson and Ohanian (2001), Stock and Watson (2007) and Ang
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et al. (2007) are so large that they probably imply failure to reject the null of no forecast

improvement. However, many of the ratios reported in Fisher et al. (2002) are only slightly

greater than one and most likely do not imply a rejection of the null hypothesis. From a

practical point of view, one can interpret much of the evidence in these papers as indicating

that activity gaps are not reliable predictors of inflation and that predictions of inflation are

not overly sensitive to whether a Phillips curve is relied on or not.

Like ours, some studies use real-time data. Orphanides and Van Norden (2005) find

that Phillips curve-based forecasts using an output gap measure of real activity outperform

an autoregressive benchmark prior to 1983 but offer no improvement over the 1984-2002

period. In addition, a number of studies have found that the Phillips curve specification

has been unstable over time. Stock and Watson (1999, 2007) find that the instability is

largely confined to the coefficients on lagged inflation, whereas Clark and McCracken (2006)

find instability in the coefficients on the output gap. Dotsey and Stark (2005) also find

instability in coefficients on capacity utilization, with those coefficients becoming smaller

and insignificant as they rolled their sample forward.

Finally, Stock and Watson (2008) present an interesting finding, which indicates that

although inflation forecasts based on the Phillips curve do not outperform forecasts based

on inflation alone, there are episodes when that is not the case. In particular, they notice that

the RMSE from Phillips curve forecasts tend to be lower than those from an unconditional

stochastic volatility model when the unemployment gaps are larger than 1.5 in absolute

value. This finding motivates our interest in conditional forecasting tests.

3 Forecasting models

To investigate what appears to be a particular type of nonlinearity associated with fore-

casting performance, we use standard Phillips curve models together with the conditional

forecast comparison methods of Giacomini and White (2006) to indicate whether conditional

on the state of the economy Phillips curve models provide better forecasts of inflation. Be-

cause Stock and Watson (2008) indicate that the measure of real activity is of secondary

importance when evaluating forecast performance, we will concentrate on unemployment

rates and unemployment gaps. We will also use real-time data on unemployment as our

benchmark data set but will investigate whether the use of real-time data as opposed to final

data affects our results. We also concentrate our forecasting exercise on core-PCE inflation
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and do so for two reasons. One is that core-PCE is often considered to be the most relevant

measure of inflation for policy purposes and is also less affected by commodity price shocks

than headline measures of inflation. Concentrating on core-PCE means that we must use

the latest vintage estimates of inflation because real-time vintage data on the core-measure

has been reported only since 1996. Thus, there does not exist a long enough set of vintages

to use real-time measures of inflation.

3.1 The Benchmark Models

Our two benchmark models will be the naive forecasting model of Atkeson and Ohanian

(2001) and the rolling IMA(1,1) model of Stock and Watson (2007). Following Stock and

Watson (2008) the naive forecast is based on the following specification:

Et(π
h
t+h − π4

t−1) = 0, (1)

where πh
t = (400/h)[log(pt)−log(pt−h)] and pt is the price index for core personal consumption

expenditures and h = 2, 4, 6, and 8. The IMA(1,1) specification for quarter-over-quarter

inflation is given by

∆πt = ǫt − θǫt−1. (2)

In estimating the model we use only the observations that would have been available at the

date when the forecast was made.1

3.2 Phillips Curve Models

To investigate the benefits of a Phillips curve model for forecasting inflation, we examine a

simple autoregressive Phillips curve model given by:

πh
t+h − πt = +ah(L)∆πt + bh(L)ũt + vh

t+h, (3)

where πh
t+h is the h-quarter-ahead forecast of an h-quarter-annualized average of inflation

and ũt is the unemployment gap. We will use time-varying estimates of NAIRU based on

real-time measures that are constructed using a HP filter where we pad future observations

1Stock and Watson (2008) indicate that the IMA(1,1) model performs about as well as a more sophisti-
cated unobserved component model with stochastic volatility.
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with forecasts from an AR(4) model for unemployment (see below). In addition we shall

append the model with a threshold term. The threshold model is, therefore, an extension of

the Phillips curve with a threshold effect on the unemployment gap. The threshold variable

is an absolute value of the unemployment gap:

πh
t+h − πt = αh(L)∆πt + 1(|ũt| > u)γ(L)ũt + 1(|ũt| ≤ u)δ(L)ũt + νt+h, (4)

where u is a threshold value and 1(|ũt| > u) takes the value of unity when |ũt| > u and

zero otherwise. Initially we intended to use the TAR model of Hansen (1997). However,

there was insufficient variation in the data to identify the threshold over any of our rolling

windows. We, therefore, imposed a value of 1.19, which implied that the absolute value of

the unemployment gap exceeds the threshold roughly one-third of the time, by using the one

standard deviation value of the gap. Doing so provided us with enough threshold measures

to conduct our conditioning tests.

3.3 Forecast Comparison

Statistical forecast comparisons are made using the methods developed by Giacomini and

White (2006), whose procedure can be used for nested and non-nested models as well as

for constructing both unconditional and conditional tests of forecast accuracy. Using their

procedure requires limited memory estimators such as fixed windows. This allows them to

formulate test statistics that come from a chi-square distribution. Given the apparent insta-

bility in the Phillips curve, the rolling window methodology appears superior to a recursive

forecasting procedure. For unconditional tests, the null hypothesis is for equal predictability,

and the test statistic is:

n
(
n−1

∑

t

δt+h

)
V̂ −1

h

(
n−1

∑

t

δt+h

)
d
−→ χ2

1, (5)

where h denotes the forecast horizon, δt+h is the difference in the squared h-step ahead

forecast errors between any two forecasting models, n is the size of the forecast sample, and V̂h

is the HAC variance of n−1
∑

t δt+h. Note that a heteroskedastic autoregressive correction is

necessary, since we are looking at multiple-period ahead forecast errors. Following Giacomini
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and White (2006), we apply a Newey-West estimator with truncation parameter set to h−1.2

For conditional tests, we examine the test statistic:

n
(
n−1

∑

t

xtδt+h

)
′

V̂ −1
h

(
n−1

∑

t

xtδt+h

)
d
−→ χ2

k, (6)

where x is a k × 1 vector of instruments and V̂h is HAC-corrected estimator of the variance

of n−1
∑

t xtδt+h.

The unconditional test statistic tells us only if the forecasts are statistically different from

one another on average over the sample. In order to ascertain which of any two models is

giving the better forecast, we examine the sign of the coefficient in the regression:

δt+h = β0 + et+h. (7)

A negative coefficient indicates that model one, which we denote the reference model, pro-

duces the better forecast on average. We shall refer to model two as the alternative model.

When comparing the forecasts of our two Phillips curve models with the two benchmarks,

we will also examine when there are statistically significant differences conditional on (i)

whether the economy is in recession, (ii) the probability of recession from the Survey of

Professional Forecasters (SPF) data set, (iii) our real-time estimate of the unemployment

gap, (iv) the four-quarter change in the unemployment gap, (v) the absolute value of the

real-time gap, and (vi) whether the gap is bigger than a specified threshold. It is important

to note that the conditional GW test is a marginal test. It tells us whether conditioning

on a certain value significantly improves one forecast relative to another, not whether the

forecast is actually better. For example, if the IMA(1,1) model gave an unconditionally better

forecast and we find that conditioning on a recession significantly improves the Phillips Curve

forecast relative to the IMA(1,1) forecast, our results do not indicate that the Phillips curve

is conditionally providing a better forecast, only that conditioning significantly improves its

forecast relative to that of the IMA(1,1) model. To infer which forecast is better, we need

to look at the size and sign of the regression coefficient, β1, on the conditioning variable in

the regression:

δt+h = β0 + β1xt + et+h, (8)

2It is common when using a Newey-West correction to employ a truncation parameter that is somewhat
larger and that depends on the sample size. We follow Giacomini and White’s methodology, because in
footnote 5 of their paper they indicate that h − 1 works well in practice.
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where x is one of our conditioning variables. For the first four conditioning variables, when

the slope coefficient is statistically significant, we calculate the cut-off value that implies

that the alternative model’s forecast is better. It is important to note that because we are

generally conditioning on variables that were known at the time of the forecasts, the fact that

relative forecast accuracy depends on this information implies that none of our models are

true data generating mechanisms and that each is to some degree misspecified. Constructing

the true model is likely to be an extremely difficult exercise, and the conditioning tests

are a simple straightforward alternative for analyzing whether the state of the economy

affects the relative usefulness of Phillips curve forecasting models. One could argue that

conditioning on whether the economy is in recession or not is conditioning on information

that forecasters are unlikely to possess in real time. That is true, strictly speaking, but as

the SPF recession probabilities indicate forecasters are generally cognizant in real time as to

whether the economy is or is not in recession. Even if one were somewhat uncertain about

whether the economy was in recession, a policymaker with an asymmetric loss function might

want to condition on being in a recession if there was sufficient evidence indicating that the

economy might be in a recession.

4 Data Definitions and Transformations

Our analysis uses real-time data on unemployment constructed from vintage data available

to the public in the middle of the quarter and latest vintage data on inflation. Thus, a

regression run at date t uses observations on unemployment as they were known as of that

date and inflation as it was known in the last quarter of our data set. As regressions are

rolled forward, updated data are used from the vintage that was available as of the new

date. The quarter-over-quarter inflation rate is defined as πt = 400 log(Pt/Pt−1), and the h

quarter annual average inflation rate at time t is given by πh
t = (400/h) log(Pt/Pt−h).

A key variable in our analysis is the unemployment gap, ũt, defined as the difference

between the unemployment rate and the HP estimate of trend unemployment. Specifically,

we use the smoothing parameter of 105 to identify the trend component.3 In constructing

3Stock and Watson (2007, 2008) use a high-pass filter that filters out frequencies of less than 60 quarters.
The value of smoothing parameter (105) is often used in the recent labor search literature (see Shimer
(2005)). There is variation in the literature regarding what frequency should be used, and we recognize that
the properties of the unemployment gap are sensitive to the choice of the smoothing parameter. In general,
most studies use an unemployment gap that is constructed by including frequencies significantly lower than
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Figure 1: Unemployment and Unemployment Gap Series: Unemployment gap is based on the HP
filter with smoothing parameter of 105. The final estimate of the gap series uses the 2010Q4 vintage of data.
Shading indicates periods of the NBER recession.

trend unemployment, we use a HP filter with 20 quarters of forecast values beyond the sample

endpoint. The forecasts are from an AR model of unemployment where the maximum lag

length is four and the fixed window for the regression is 110 quarters. The lag length is

selected separately each period using the SIC criteria. The unemployment gap is given by:

ũt = ut − uHP
t (9)

where uHP
t is the HP trend, which we associate with a time-varying NAIRU. Orphanides

and Van Norden (2005) and Orphanides and Williams (2005) indicate that there are sig-

nificant differences between real-time and final estimates of the unemployment gap, and we

find similar results for our construct over our sample period. The final time estimates are

constructed by HP-filtering the unemployment rate over the entire sample.

As can be seen in Figure 1, revisions to the unemployment gap are significant. The

solid-black line depicts the real-time estimates of the unemployment gap, and dotted-red

those associated with the traditional business cycle frequencies as in this paper. Importantly, we have also
conducted the same analysis using the smoothing parameter of 1,600 and found that using 105 yields more
cases in favor of the Phillips curve models relative to using 1, 600.
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(a) Two-Quarter Average
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(b) Four-Quarter Average

60 65 70 75 80 85 90 95 00 05 10
0

1

2

3

4

5

6

7

8

9

10

An
nu

al
ize

d 
Pe

rc
en

ta
ge

 P
oi

nt
s

(c) Six-Quarter Average
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(d) Eight-Quarter Average
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Figure 2: Core PCE Inflation Realizations: Shading indicates periods of NBER-dated recessions.

line shows the unemployment gap using the 2010Q4 vintage of data. The largest revisions

do not seem to follow any particular pattern. For example, in both the latter half of the

1970s and latter half of the 2000s, the unemployment gap is a good deal higher than the final

estimate and these are periods of falling unemployment, but the opposite is true of the 1990s

where real-time gap is lower than the final estimate and again unemployment is falling.

The dependent variable in our analysis is various averages of final-revised core-PCE

inflation, and these are depicted in Figure 2. We are forced to use final-revised data for this

variable because vintage history begins in 1996, when U.S. Bureau of Economic Analysis

first constructed the core-PCE price index. This is probably not a significant problem for

our real-time focus because PCE inflation, for which we do have vintage data, does not suffer

from the same sort of revision problems as the unemployment gap. Those revisions are due

to not having knowledge of future unemployment rates and relying on a one-sided filter.
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5 The Usefulness of Phillips Curve Forecasts

In this section, we analyze how useful Phillips Curve models are for forecasting inflation

using the real-time unemployment gap. Our motivation for emphasizing the use of real-time

data are twofold. The first is that these are the data that are relevant for policy purposes,

and second the work of Orphanides and Van Norden (2005) on the output gap and our

own analysis of real-time unemployment gaps makes the strong case for incorporating the

measurement error associated with the real-time gap. Our investigation will focus on whether

unemployment gaps provide useful information in extreme circumstances. The exploration

of whether Phillips curve models estimated on final data generally help predict inflation

has already been exhaustively explored in the literature.4 In a subsequent section, we will

analyze the role that using real-time data plays by comparing our results with those using

final data.

Here we compare the Phillips curve forecasts from (3) and (4) with our two benchmarks

(1) and (2) where we use unemployment gaps based on the current real-time vintage as of

period t. Lag length is re-estimated each period using the SIC lag selection method, and

lag lengths are allowed to vary across the variables. In statistically comparing forecasts, we

use both the unconditional and conditional forecast tests developed in Giacomini and White

(2006). We do this for four forecast horizons, namely two-, four-, six-, and eight-quarter-

ahead average forecasts of inflation. We also compare the forecasts over two sample periods:

the entire sample period from 1975Q3 to 2010Q3 and a later sample period that includes

forecasts from 1984Q1 through 2010Q3. The entire sample begins in 1975Q3 for the two-step

horizon because it is the earliest date that we can make a forecast based on a 60-quarter

window. We break the sample at 1984, because that latter sample is associated with the

Great Moderation and consistently low and less variable inflation.

With regard to the threshold Phillips curve model, we set the threshold of the real-time

gap at a fixed value of 1.19 throughout our exercise. We initially intended to estimate the

threshold value for each rolling window, applying the TAR model of Hansen (1997). However,

the use of rolling regressions makes it difficult to tightly identify the threshold values that

are reasonably stable over time. The value of 1.19 equals the standard deviation of the final

revised unemployment gap series, and we have chosen this value to ensure that there is at

least some variation in the threshold dummy for each estimation window.

4For an excellent summary as well as an exhaustive set of experiments, see Stock and Watson (2008).
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Figure 3: IMA (1,1) Coefficient Estimates: Estimated on a fixed window of 60 quarters. Coefficient
estimates are aligned at sample endpoints.

5.1 An Analysis of Our Regression Results

Before turning to the forecast comparison tests, it is useful to examine some of the properties

of our forecasting models. First, we note that the estimates of the moving average coefficient,

θ, in the real-time fixed window IMA(1,1) model vary over time (Figure 3). Early in the

sample, a one-percentage point inflation shock is associated with a long-run multiplier (1+ θ̂)

on the level of inflation of 1.20. The multiplier then declines fairly consistently. At present,

the long-run multiplier is about 0.2 implying that the persistence of the inflation process

has declined significantly over our sample period. Over recent 60-quarter windows, inflation

shocks have had only a small effect on the level of inflation. Thus, over our sample, the

behavior of inflation changes from something close to a random walk to a process that more

closely resembles white noise.5

Importantly, we also find evidence of instability in the coefficient estimates on the gap in

the Phillips curve (Figure 4). In particular, the in-sample effect of the unemployment gap on

inflation varies over time and across forecast horizons. The Phillips curve literature suggests

that a larger gap precedes lower inflation. The estimate of the sum-of-coefficients is typically

negative for inflation equations at all horizons, but it becomes less negative as we roll the

5Our result is consistent with evidence in Stock and Watson (2007) and occurs because the volatility of
the permanent component of inflation has been decreasing over time.
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(a) Two-Quarter Average Inflation
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Figure 4: Coefficients on the Unemployment Gap in the Phillips Curve: Dashed lines indicate
the 90 percent confidence interval based on HAC standard errors.

regressions forward and is statistically insignificantly different from zero beginning around

1999 at all horizons. The falling significance may in part be due to the more transitory

nature of changes in inflation that we documented above along with the observation that

the movements in the gap remain highly persistent over the entire sample.

In recent 60-quarter windows, the sign of the sum of the coefficients turns positive. In

these latter samples, a larger gap is associated with higher, not lower, inflation although not

significantly so. Graphically, we display the coefficient instability at our four horizons. The

instability we find in the coefficients in both the univariate model and the Phillips curve are

consistent with evidence presented in Ang et al. (2007) and serves as justification for using

a rolling windows methodology as is also done in Fisher et al. (2002).
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5.2 Forecast Comparisons

In this section, we compare both the unconditional and conditional forecasting performance

of our four models. We first take a general look at the forecasts and document the unemploy-

ment gaps contribution to these forecasts. Subsequently, we perform the statistical forecast

comparison exercise developed by Giacomini and White (2006).

5.2.1 An Initial Look at the Forecasts

An initial examination of the relative forecasting ability of the various models is shown in

Table 1. We see that the IMA(1,1) forecasts are preferred to those of AO and both Phillips

curve specifications over the full sample. With the exception of the eight-quarter forecast

horizon, the AO specification is preferred over the more recent sample period. The findings

regarding the relative forecasting ability of our two benchmarks generally agree with the

analysis of Stock and Watson (2007). However, they run counter to the analysis of Fisher

et al. (2002) who find that Phillips curve models help forecast inflation at two-year horizons

for the core PCE.

In Figure 5, we show the forecasts for each horizon, along with actual inflation. The

largest disparities between the IMA(1,1) and the Phillips curve forecasts at all horizons

occur in the early 1980s and the late 1980s. There is also a large disparity between recent

forecasts generated by the Phillips curve and the IMA(1,1) model. During the most recent

period, the Phillips curve forecast is overpredicting inflation.

We next examine the unemployment gap’s contribution to the forecasts, which is de-

picted in Figure 6. Specifically, the contribution of the unemployment gap is given by
∑n(h)

j=1 b̂h
j ũt−(j−1) where the summation goes from one to the SIC minimizing lag length n(h),

calculated at each forecast horizon h, using the appropriate vintage of data. As shown in

Figure 6, the contribution of the gap is similar across all forecast horizons, but especially so

for the four-, six-, and eight-quarter horizons. During the early 1980s, the unemployment

gap makes a pronounced contribution to the Phillips curve projections at all horizons. This

period is characterized by a large unemployment gap that pulls down the forecast of infla-

tion. Also, following the 1991 recession, the gap is again high and it contributes negatively

to forecasted inflation. This is true in the early 2000s as well. However, recently, the gap is

also high, but it is contributing to higher expected inflation due to the perverse sign of the

estimated coefficient, which as shown in Figure 4 is now insignificantly positive. Further,
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(a) Two-Quarter Average Inflation
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(b) Four-Quarter Average Inflation
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(c) Six-Quarter Average Inflation
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(d) Eight-Quarter Average Inflation
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Figure 5: Inflation Projections: Shading indicates periods of NBER-dated recessions.

Figure 6 points to the reason that the gap is becoming less of a factor in forecasting inflation.

Inflation has become much less volatile and less persistent, while the gap has continued to

fluctuate and the fluctuations are persistent. The relative stability of inflation makes it less

likely that other economic variables will have significant explanatory power with respect to

its behavior.

The results in Table 1 and Figures 4 and 5 are suggestive regarding the unconditional test

proposed by Giacomini and White (2006). The explanatory power of the gap seems not to be

that significant and appears to be becoming less so, and the forecasting differences between

the benchmark models and the Phillips curve models do not appear especially large. These

observations, however, are not overly informative about the conditional tests. We do see

periods where the gap is large and its contribution to the inflation forecast is helpful relative

to the benchmark forecast. It remains to be seen if that help is statistically significant.
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(a) Two-Quarter Average Inflation
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(b) Four-Quarter Average Inflation
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(c) Six-Quarter Average Inflation
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(d) Eight-Quarter Average Inflation
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Figure 6: Effect of Unemployment Gap on Phillips Curve Forecasts: The real-time unemployment
gap is aligned at the date when the forecast was made. The contribution term is plotted at the date forecasted.
Shading indicates periods of NBER-dated recessions.

6 Statistical Comparisons

We now examine the relative forecasting performance of the various models in a precise

statistical sense. To do this, we use the unconditional and conditional tests for comparing

forecasts developed by Giacomini and White (2006).

6.1 Unconditional Comparison

First, we investigate whether the results concerning forecast accuracy in Table 1 are statisti-

cally significant. The unconditional forecasting performance is shown in Table 2, where the

left portion of the table refers to our entire sample and the right portion of the table refers
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to results over the more recent sample. Each row of the table corresponds to a particular

benchmark model. For example, in the second row of each panel the IMA(1,1) model is the

benchmark. The columns indicate the alternative model. So the second column indicates

that the basic Phillips curve model is the alternative. Thus, the (2,2) element of the left

half of panel (a) compares the IMA(1,1) model’s forecast to that of the Phillips curve. In

comparing forecasts we use both a 5% and 15% significance level. Over the entire sample,

there is no statistically significant differences in forecast ability between the naive models

and the two Phillips curve specifications, although the constant in (7) is generally negative.

With regard to the more recent sample, the AO specification is preferred to both Phillips

curve specifications at the two-quarter horizon, and the TAR specification at the four-quarter

horizon, but not significantly preferred at longer horizons, while the IMA(1,1) forecast is sig-

nificantly preferred to the Phillips curve model at the eight-quarter horizon. Thus, from

the unconditional tests, there is little to suggest the use of a Phillips curve specification for

forecasting core-PCE inflation.

6.2 Conditional Forecasting Tests

In light of the Stock and Watson (2008) findings, we first tried conditioning on the absolute

value of the unemployment gap. This is a symmetric test because it analyzes whether con-

ditioning on both large and small values of the gap affect the relative forecasting properties

of two models. Similarly in spirit, we also condition on a threshold dummy that equals one

when the absolute value of the gap is greater than 1.19. Alternatively, it may be that the

unemployment gap may affect the conditional forecasting properties asymmetrically. For ex-

ample, the forecasts of the Phillips curve model may improve conditional on the output gap

being large and positive. To test this type of hypothesis, we conditioned on two measures

of the unemployment gap: its level and its four-quarter change. Along these lines, we also

condition on recession dates and the estimated recession probabilities from the SPF. The

behavior of these conditioning variables is depicted in Figure 7.

The results of our conditional forecast comparison tests are given in Tables 3 through

8. The tables are laid out as follows. The row variable refers to the reference model and

the columns refer to the alternative model. We report the p-values of the GW chi-square

test statistic and we report the adjusted R2 and the estimates of the constant and slope

coefficient on the conditioning variable in equation (8). To help highlight the salient features
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(a) Absolute Value of Real-Time Gap
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(e) Real-Time Unemployment Gap
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(f) Four-Quarter Change in Real-Time Gap
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Figure 7: Conditioning Information for Giacomini-White Tests: Each plot shows our GW con-
ditioning information. The data are aligned (using the timing conventions discussed in the paper) at the
forecast date (not the date forecasted). Shading shows periods of NBER-dated recessions.

of the exercise, we use three different shadings. The darkest shading indicates that the slope

coefficient on the conditioning variable is positive and significant and the GW χ2 statistic is

significant, indicating that the two forecasts are significantly different. The middle shading

includes cases in which the slope coefficient is positive and statistically significant but the

GW χ2 is not, and the lightest shading is where the slope coefficient has a positive sign but is

not significant and where the GW χ2 statistic went from being significant unconditionally to
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insignificant conditionally. When the conditioning variable is the lagged recession dummy,

a positive coefficient implies that the alternative model is now the better forecast. With

respect to the probability of a recession, when the regression coefficient is positive it means

that the higher the probability of recession, the better are Phillips curve forecasts. In terms

of the conditioning variables using the unemployment gap, a positive coefficient implies that

high unemployment gaps improve the Phillips curve forecasts, but negative unemployment

gaps worsen the Phillips curve forecasts. When assessing the conditional performance of the

absolute value of the gap, a positive coefficient means that both high and low gaps tend

to improve the Phillips curve forecasts. For the three continuous conditioning variables, we

compute the cutoff value of the variable that implies that the alternative forecast outperforms

the reference model.

6.2.1 Basic Results

The first basic result is that conditioning on gap type measures in a symmetric way does not

generally improve the forecast performance of Phillips curve models. Table 3 presents the

results when the absolute value of the unemployment gap is used as a conditioning variable.

Over the full sample, we found no cases in which conditioning on this variable improved

Phillips curve forecasts relative to those of our two benchmarks. Over the more recent

sample, conditioning on this variable did improve the PC-TAR specification relative to both

the AO and IMA(1,1) models, but only at the two-quarter horizon. Similarly, conditioning

on the threshold dummy does not improve the forecast performance of the Phillips curve

models relative to the benchmarks (Table4).

The second basic result is that when the conditioning tends to be asymmetric, we find

that in recessions there is a tendency for improvement in inflation forecasts from the Phillips

curve models, especially over the more recent sample period. With regard to the recession

dummy, there are some notable changes in the later forecast period (see Table 5). Namely

both Phillips curve models provide better longer-term forecasts of inflation, and the PC-

TAR model provides a better forecast relative to AO at the two-quarter horizon. For the

full sample, there is no evidence of any statistically significant difference in the forecasts

where previously, in the unconditional tests, the IMA(1,1) model was preferred at the two-

quarter and eight-quarter forecast horizons. The results conditioning on the SPF probability

of recession also indicate that this variable significantly improves both of our Phillips curve

longer-term forecasts over both the entire and the later sample (see Table 6).
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Using the real-time gap series, ũt−1 has even larger repercussions for both Phillips curve

forecasts (Table 7). Over the later period, it significantly improves them relative to the two

benchmark models at almost all forecast horizons, and for the entire sample it improves

the basic Phillips curve forecast relative to AO at all but the shortest horizon, but not

relative to the preferred IMA(1,1) benchmark. Table 8 presents the results when the four-

quarter change in the real-time gap is used as a conditioning variable. These results further

strengthen the preference for the Phillips curve forecasts. In particular, over the full sample,

the significant improvements of the Phillips curve forecasts are identified at almost all forecast

horizons when compared with the AO forecasts. For the later sample, the improvements of

Phillips curve forecasts, relative to both AO and IMA(1,1) forecasts, continue to be observed,

particularly at longer horizons.

However, it is important to point out that these findings reflect the average forecast

behavior over the sample periods of the GW regressions. As we discussed with respect to

Figure 4, coefficients on the unemployment gap in the Phillips curve model are close to

zero and not statistically significant in recent years, which implies little statistical difference

in recent years between the Phillips curve forecasts and AO or IMA(1,1) forecasts. This

suggests that the presence of a large unemployment gap in recent years does not contribute

to the superior forecast performance of the Phillips curve models.

6.2.2 When Should One Rely on the Phillips Curve?

It is also important to go beyond a classification of statistical inference and examine when

the use of a Phillips curve model is preferred. For example, we saw in the later sample

that the slope coefficient on the recession dummy is significant for the Phillips curve model

at the six-step-ahead and eight-step-ahead forecast horizons when compared with AO and

that this is also true at the eight-step-ahead horizon when comparing the forecasts from

the IMA(1,1) model and the threshold model. Table 9 selects the cases from Table 5 in

which both constant and slopes are statistically significant and calculates the squared error

difference conditional on the recession dummy being zero or one. The implication is that in

these cases, the reference model is preferred when the dummy is turned off and the alternative

model is preferred when the dummy is turned on. Of particular interest is the case involving

the eight-step-ahead forecast results comparing AO and both Phillips curves. In this case,

during expansions the AO model is preferred, while during recessions one is better off using

the Phillips curve models for forecasting.
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When a continuous conditioning variable is used in the regression, we can calculate

the cutoff value for each conditioning variable that turns the squared error difference from

negative to positive. Tables 10 through 12 present the cutoff values for the three continuous

conditioning variables, focusing on the cases with the darkest shading and middle shading

in the earlier tables.

The fourth and fifth rows of Table 10 indicate that the cutoff value on the SPF down-

turn probability, above which the Phillips curve models are producing lower forecast errors

relative to the AO model, are 23.7% for the basic Phillips curve model and 22.6% for the

threshold Phillips curve model at the eight-quarter forecast horizon over the post-1984 sam-

ple period. When SPF downturn probabilities exceed these numbers, one should carefully

consider Phillips curve predictions of inflation.

Looking at results when conditioning on our two gap variables (Tables 11 and 12) lend

support to using Phillips curve forecasts in even more circumstances. Concentrating on the

situation that is indicated by the darkest shading, i.e., the cases in which both the GW

test statistic is significant at the 15% level and the slope coefficients are also significantly

positive, we see that for the real-time gap it pays to look at the Phillips curve forecasts

over the later sample period at four-, six-, and eight-quarter-ahead horizons when compared

with AO even when the unemployment gap is only slightly positive. Regarding the PC-TAR

model over the later sample and two-, six-, and eight-quarter-ahead horizons, we draw a

similar conclusion when AO is the benchmark.

These results are reinforced when conditioning on the four-quarter change in the real-

time gap. When looking at the later sample and at four-quarter, six-quarter, and eight-

quarter-ahead forecast horizons, we see that there exist cutoff values below which the re-

spective benchmark is the preferred specification and above which the respective Phillips

curve model is preferred. First consider the case when the AO model is the benchmark.

At the four-quarter horizon, the Phillips curve is the preferred model when the change in

the unemployment gap exceeds 0.155. At the six-quarter-ahead horizon, the Phillips curve

becomes the preferred model when the change in the unemployment gap exceeds 0.014. For

the eight-quarter-ahead horizon, the cutoff values are 0.036 and 0.012, respectively. Thus,

when analyzing the later sample period, when the unemployment gap is rising, inflation fore-

casts at most horizons using the Phillips curve improve, and we are struck by the relatively

small values of the gap that imply improvement. The conclusion when comparing IMA(1,1)

forecasts and Phillips curve forecasts are roughly the same. Thus, although Phillips curve
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(a) AO vs. Phillips Curve
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(b) AO vs. Threshold Phillips Curve
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Figure 8: Squared Error Difference and Gap Measures: eight-quarter-ahead forecasts. Shading
shows periods of NBER-dated recessions. The squared error difference is aligned at the date forecasted, and
the observations for the gap measures at that date are the ones used in the GW regression.

forecasts do not generally outperform the benchmark forecasts, there do exist situations

when they prove useful. These situations are much more prevalent over the most recent

sample period.

6.2.3 Inspecting the Mechanism

We inspect the mechanism for these results in Figure 8, where we graph: (i) the squared

forecast error differences for the AO and Phillips curve model and the AO and threshold

Phillips curve model at the eight-quarter-ahead forecast horizon, (ii) the real-time unem-

ployment gap, and (iii) the four-quarter change in the gap. In the figure, the squared error

difference is associated with the date forecasted, and the gap measures at that date are the

ones used in the GW regressions. We are thus plotting the left- and right-hand sides of (8).

There are several interesting observations in this figure. First, Phillips curve forecasts tend

to be better than the AO benchmark around 1983−84 and 1993−95. Both are periods where

rising unemployment helped forecast a decline in inflation.6 Thus, in these periods, the gap

is large and tends to improve the relative forecasting accuracy of the Phillips curve. Sec-

ond, recall our earlier finding that the improvement of the conditional forecast ability of the

Phillips curve models was largely concentrated in the post-1984 sample. Both panels of Fig-

6These dates are similar to the ones over which Stock and Watson (2008) also indicate that their Phillips
curve models forecast relatively well.
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ure 8 clearly illustrate that this result comes from the stronger positive correlations between

the squared error differences and the gap series between 1984 through the mid-1990s. It is

not surprising that including the observation prior to 1984 only weakens the result. Third,

the 1989−91 period is one of the periods that contributes to the positive coefficient of the

GW regression. Note, however, that during this period, the negative gap is associated with

a worsening of the Phillips curve forecasts, implying that the usefulness of Phillips curve

models is asymmetric.

7 Results Using Latest Vintage Data

In this section, we look at whether and to what extent the use of latest vintage data for

the unemployment gap influences our conclusions. To do this, we re-estimate the Phillips

curve using final estimates of the unemployment gap, compute new forecasts, and re-run our

forecast evaluation tests using the revised unemployment gaps to construct our conditioning

variables. We first characterize the relative unconditional forecasting ability of the two

benchmark specifications and the Phillips curve model. As shown in Table 13, using final

revised data does not change our perception regarding the accuracy of Phillips curve inflation

forecasts, and the changes are not large enough to overturn the relative ranking of the

forecasting models that were examined earlier in Table 1 using the real-time data.

We now examine GW tests comparing the forecasting performance of the AO, IMA(1,1),

and Phillips curve models using the latest vintage of unemployment gaps. The overall

message is the same as in the real-time results, but there are a few notable differences. The

results of the GW tests are given in Table 14. With regard to the unconditional forecast

evaluation presented in the first two columns of that table, there are no qualitative changes

in results. The AO specification is still preferred over the later sample period for the two-

step-ahead forecast horizons. Also, the IMA(1,1) forecast remains statistically better for

eight-quarter horizon forecasts over the later sample.

Examining the conditional forecast results with respect to the recession dummy, there is

no longer any evidence that this variable conditionally improves Phillips curve forecasts as it

did over the later sample at six- and eight-quarter horizons when using real-time data. On

the other hand, there is qualitatively little change in forecast evaluation when we condition on

the SPF downturn probability. Over the entire sample, there is now a statistical distinction

between the quality of the forecasts between the AO benchmark model and the Phillips curve
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model, but only at the four-quarter forecast horizon. Over the later sample, the results of the

forecast comparison are little changed. As in the real-time analysis, the recession probability

improves the Phillips curve forecast relative to AO at the eight-quarter-ahead forecast horizon

and now additionally at the six-quarter horizon. The comparisons with respect to IMA(1,1)

are nearly identical. With respect to the gap variables, either final revised gaps or four-

quarter changes in the gap, using the latest revised data does not appreciably change any

of the conclusions. Thus, replacing real-time data with the latest vintage data does not

substantially alter any of the conclusions drawn from our earlier analysis.

8 Summary and Conclusion

In this paper, we have explored in a formal statistical way the inflation forecasting properties

of Phillips curve models relative to the naive model of Atkeson and Ohanian (2001) and an

IMA(1,1) model. Our results comparing the forecasts support the preponderance of evidence

indicating that, if anything, Phillips curve models are not relatively good at forecasting

inflation on average. For the 1975−2010 sample, we find, as did Stock and Watson (2007,

2008), that an IMA(1,1) model outperforms Phillips curve models but not in a statistically

significantly way. For the 1984−2010 sample, the AO model is the preferred forecast model

and significantly so at the two-quarter-ahead forecast horizon. Using the latest revised

output gaps as opposed to final time output gaps does not appreciably change the thrust of

our results.

Of note, however, is that conditional on variables that capture the state of the econ-

omy, the Phillips curve model can prove useful for forecasting. Importantly, we find that

its usefulness is asymmetric helping in times when the economy is weak and hurting the

accuracy of inflation forecasts when the economy is growing. The variables that provide the

biggest improvement pertain to unemployment gaps themselves both in their level and rate

of change. The statistically significant improvement tends to be concentrated over the later

sample period, which is in stark contrast to the general perception one obtains from the

existing literature. It is important to note that this result refers largely to our conditional

forecast exercises, so it is not directly comparable to results based on unconditional forecast

comparisons.

Finally, we have focused our analysis strictly on core-PCE inflation because it is thought

by many to be the most relevant inflation measure for monetary policy in the U.S. We have
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also confined our Phillips curve analysis to unemployment gaps, and it would be interesting

to see if our results carry over to other inflation and gap measures. Our reading of the

literature, in which many inflation and gap measures have been explored, leads us to believe

our results will turn out to be general, but that conjecture awaits confirmation.
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Table 1: Forecast Error Comparisons for the Inflation Rate

Forecast 75Q3−10Q3 84Q1−10Q3
horizon AO IMA PC PC-TAR AO IMA PC PC-TAR

(a) Mean Absolute Errors
2 0.524 0.515∗ 0.552 0.545 0.404∗ 0.429 0.466 0.456
4 0.531 0.493∗ 0.506 0.558 0.374∗ 0.413 0.411 0.459
6 0.567 0.532∗ 0.573 0.606 0.391∗ 0.422 0.434 0.486
8 0.632 0.587∗ 0.659 0.652 0.446∗ 0.447 0.516 0.513

(b) Root-Mean-Square Errors
2 0.716 0.697∗ 0.727 0.709 0.540∗ 0.573 0.612 0.598
4 0.756 0.692 0.690∗ 0.744 0.492∗ 0.534 0.547 0.601
6 0.826 0.756∗ 0.806 0.845 0.528∗ 0.555 0.557 0.632
8 0.909 0.840∗ 0.917 0.928 0.616 0.591∗ 0.684 0.689

Notes: MAEs and RMSEs are calculated by estimating each model with a fixed window size of 60 quarters. The model that gives the smallest
MAE or RMSE is indicated by the asterisk.

28



Table 2: GW Unconditional Test

75Q3−10Q3 84Q1−10Q3
IMA PC PC-TAR IMA PC PC-TAR

(a) 2-Step-Ahead Forecast

AO
P-Value 0.756 0.853 0.922 0.266 0.026∗∗ 0.118∗

R2 0.000 0.000 0.000 0.000 0.000 0.000
Const. 0.027 −0.016 0.010 −0.037 −0.083∗∗ −0.066∗

IMA
P-Value 0.385 0.779 0.263 0.509

R2 0.000 0.000 0.000 0.000
Const. −0.043 −0.017 −0.046 −0.030

PC
P-Value 0.597 0.473

R2 0.000 0.000
Const. 0.026 0.017

(b) 4-Step-Ahead Forecast

AO
P-Value 0.406 0.413 0.903 0.156 0.250 0.076∗

R2 0.000 0.000 0.000 0.000 0.000 0.000
Const. 0.093 0.096 0.018 −0.043 −0.057 −0.120∗

IMA
P-Value 0.962 0.460 0.775 0.225

R2 0.000 0.000 0.000 0.000
Const. 0.003 −0.075 −0.014 −0.077

PC
P-Value 0.248 0.158

R2 0.000 0.000
Const. −0.078 −0.063

(c) 6-Step-Ahead Forecast

AO
P-Value 0.326 0.812 0.849 0.254 0.680 0.253

R2 0.000 0.000 0.000 0.000 0.000 0.000
Const. 0.110 0.033 −0.032 −0.029 −0.031 −0.121

IMA
P-Value 0.357 0.298 0.968 0.341

R2 0.000 0.000 0.000 0.000
Const. −0.077 −0.142 −0.003 −0.092

PC
P-Value 0.583 0.169

R2 0.000 0.000
Const. −0.065 −0.089

(d) 8-Step-Ahead Forecast

AO
P-Value 0.352 0.926 0.858 0.558 0.372 0.570

R2 0.000 0.000 0.000 0.000 0.000 0.000
Const. 0.120 −0.014 −0.035 0.030 −0.088 −0.095

IMA
P-Value 0.098 0.366 0.094∗ 0.329

R2 0.000 0.000 0.000 0.000
Const. −0.134 −0.155 −0.118∗ −0.125

PC
P-Value 0.872 0.937

R2 0.000 0.000
Const. −0.021 −0.007

Notes: Entries in each block present the p-value for the GW χ2 test statistic and, for the
GW regressions, the adjusted R2 and the coefficient estimate from the regression specified in
(7). The dependent variable is the time-t squared forecast error differential between the model
listed in the row and model listed in the column. * (**) indicate statistical significance at the
15% (5%) level. P-values and test statistics use HAC standard errors.
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Table 3: GW Conditional Test: Absolute Value of Initial Gap

75Q3−10Q3 84Q1−10Q3
IMA PC PC-TAR IMA PC PC-TAR

(a) 2-Step-Ahead Forecast

AO

P-Value 0.645 0.583 0.569 0.537 0.071∗ 0.085∗

R2 0.021 0.006 0.016 0.001 −0.009 0.006
Const. −0.147 −0.140 −0.166 0.002 −0.071∗ −0.125∗∗

Slope 0.194 0.138 0.196 −0.052 −0.016 0.079∗

IMA

P-Value 0.661 0.956 0.130∗ 0.102∗

R2
−0.002 −0.007 −0.006 0.031

Const. 0.008 −0.019 −0.073∗ −0.127∗∗

Slope −0.057 0.001 0.036 0.131∗

PC

P-Value 0.761 0.288
R2

−0.001 0.063
Const. −0.026 −0.054
Slope 0.058 0.095∗∗

(b) 4-Step-Ahead Forecast

AO

P-Value 0.597 0.610 0.758 0.362 0.344 0.195
R2 0.042 0.039 0.013 0.022 −0.009 −0.006

Const. −0.211 −0.179 −0.190 0.025 −0.062 −0.080
Slope 0.354 0.319 0.241 −0.092 0.006 −0.055

IMA

P-Value 0.934 0.648 0.434 0.263
R2

−0.006 −0.002 0.009 −0.008
Const. 0.032 0.021 −0.086 −0.104
Slope −0.034 −0.112 0.098 0.038

PC

P-Value 0.464 0.280
R2 0.000 0.001

Const. −0.011 −0.018
Slope −0.078 −0.061

(c) 6-Step-Ahead Forecast

AO

P-Value 0.475 0.494 0.653 0.521 0.415 0.137∗

R2 0.052 0.014 0.007 −0.008 0.031 0.005
Const. −0.236 −0.195 −0.237 −0.015 −0.160 −0.231
Slope 0.416∗ 0.274 0.246 −0.019 0.177 0.151

IMA

P-Value 0.620 0.523 0.537 0.155
R2 0.000 −0.001 0.039 0.010

Const. 0.041 −0.001 −0.146 −0.216
Slope −0.142 −0.170 0.196 0.170

PC

P-Value 0.855 0.343
R2

−0.007 −0.009
Const. −0.042 −0.071
Slope −0.028 −0.026

(d) 8-Step-Ahead Forecast

AO

P-Value 0.411 0.504 0.765 0.624 0.387 0.307
R2 0.049 0.005 0.001 0.027 −0.006 0.036

Const. −0.236∗ −0.199 −0.227 −0.082 −0.141 −0.410∗

Slope 0.429∗ 0.223 0.232 0.150 0.071 0.422

IMA

P-Value 0.207 0.564 0.233 0.295
R2 0.005 −0.002 −0.005 0.012

Const. 0.037 0.009 −0.059 −0.328∗

Slope −0.206∗ −0.197 −0.079 0.272

PC

P-Value 0.987 0.390
R2

−0.008 0.033
Const. −0.028 −0.269∗

Slope 0.009 0.350∗∗

Notes: Entries in each block present the p-value for the GW χ2 test statistic and, for the GW
regressions, the adjusted R2 and the coefficient estimates from the regression specified in (8). The
dependent variable is the time-t squared forecast error differential between the model listed in the
row and model listed in the column. *(**) indicate statistical significance at the 15% (5%) level.
P-values and test statistics use HAC standard errors. See Subsection 6.2 for explanations of the
shading.
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Table 4: GW Conditional Test: Threshold Dummy

75Q3−10Q3 84Q1−10Q3
IMA PC PC-TAR IMA PC PC-TAR

(a) 2-Step-Ahead Forecast

AO

P-Value 0.828 0.909 0.968 0.533 0.066∗ 0.282
R2

−0.002 −0.006 −0.006 0.001 −0.008 −0.004
Const. −0.012 −0.033 −0.010 −0.020 −0.075∗ −0.081∗

Slope 0.144 0.062 0.071 −0.083 −0.041 0.072

IMA

P-Value 0.645 0.906 0.287 0.297
R2

−0.004 −0.005 −0.008 0.013
Const. −0.021 0.002 −0.055∗ −0.062
Slope −0.082 −0.073 0.043 0.155

PC

P-Value 0.847 0.211
R2

−0.007 0.030
Const. 0.023 −0.006
Slope 0.009 0.112∗

(b) 4-Step-Ahead Forecast

AO

P-Value 0.639 0.673 0.983 0.357 0.510 0.158
R2 0.003 0.001 −0.007 0.001 −0.009 −0.007

Const. 0.022 0.035 −0.003 −0.027 −0.058 −0.104
Slope 0.273 0.232 0.078 −0.079 0.006 −0.075

IMA

P-Value 0.955 0.653 0.714 0.478
R2

−0.007 −0.001 −0.003 −0.010
Const. 0.014 −0.024 −0.032 −0.078
Slope −0.041 −0.195 0.085 0.004

PC

P-Value 0.450 0.194
R2 0.003 −0.001

Const. −0.038 −0.046
Slope −0.154 −0.081

(c) 6-Step-Ahead Forecast

AO

P-Value 0.446 0.568 0.702 0.475 0.514 0.325
R2 0.009 0.002 −0.001 −0.009 0.008 −0.004

Const. 0.021 −0.043 −0.098 −0.025 −0.065 −0.149∗

Slope 0.358 0.305 0.264 −0.019 0.166 0.138

IMA

P-Value 0.655 0.582 0.602 0.327
R2

−0.007 −0.007 0.011 −0.001
Const. −0.064 −0.119 −0.041 −0.124∗

Slope −0.053 −0.094 0.184 0.157

PC

P-Value 0.846 0.387
R2

−0.007 −0.009
Const. −0.055 −0.084
Slope −0.041 −0.027

(d) 8-Step-Ahead Forecast

AO

P-Value 0.352 0.652 0.651 0.572 0.398 0.229
R2 0.010 −0.002 0.004 0.023 −0.006 0.044

Const. 0.023 −0.072 −0.140 −0.014 −0.113 −0.240∗

Slope 0.395∗ 0.234 0.428 0.208 0.116 0.674

IMA

P-Value 0.253 0.657 0.241 0.253
R2

−0.005 −0.008 −0.007 0.020
Const. −0.094 −0.163 −0.099 −0.225∗

Slope −0.162 0.033 −0.092 0.466

PC

P-Value 0.873 0.419
R2

−0.005 0.040
Const. −0.069 −0.127
Slope 0.194 0.558

Notes: See notes to Table 3. The threshold dummy takes 1 when the absolute value of real-time
gap is larger than 1.19 and otherwise takes 0.

31



Table 5: GW Conditional Test: Recession Dummy

75Q3−10Q3 84Q1−10Q3
IMA PC PC-TAR IMA PC PC-TAR

(a) 2-Step-Ahead Forecast

AO

P-Value 0.266 0.978 0.300 0.092∗ 0.079∗ 0.038∗∗

R2 0.002 −0.007 0.011 0.015 −0.009 0.013
Const. −0.008 −0.018 −0.043 −0.054∗ −0.085∗∗ −0.087∗

Slope 0.269∗ 0.014 0.412∗ 0.169∗∗ 0.019 0.202∗∗

IMA

P-Value 0.560 0.602 0.190 0.796
R2 0.013 −0.003 0.003 −0.009

Const. −0.011 −0.036 −0.031 −0.033
Slope −0.255 0.143 −0.149∗ 0.034

PC

P-Value 0.169 0.230
R2 0.041 0.050

Const. −0.025 −0.002
Slope 0.398∗∗ 0.183∗∗

(b) 4-Step-Ahead Forecast

AO

P-Value 0.426 0.713 0.895 0.234 0.514 0.195
R2

−0.003 −0.007 −0.005 −0.001 −0.008 −0.008
Const. 0.063 0.095 −0.006 −0.053∗ −0.064 −0.126∗

Slope 0.225 0.009 0.180 0.094 0.064 0.061

IMA

P-Value 0.653 0.740 0.794 0.414
R2 0.002 −0.007 −0.009 −0.009

Const. 0.031 −0.069 −0.011 −0.073
Slope −0.216 −0.046 −0.030 −0.033

PC

P-Value 0.348 0.369
R2 0.000 −0.010

Const. −0.100 −0.062
Slope 0.170 −0.003

(c) 6-Step-Ahead Forecast

AO

P-Value 0.457 0.965 0.809 0.290 0.158 0.230
R2 0.002 −0.006 −0.001 0.004 0.050 0.018

Const. 0.067 0.015 −0.077 −0.040∗ −0.076 −0.164∗

Slope 0.346 0.148 0.358 0.105 0.396∗ 0.384

IMA

P-Value 0.655 0.581 0.427 0.328
R2

−0.004 −0.007 0.022 0.006
Const. −0.052 −0.144 −0.035 −0.123
Slope −0.198 0.012 0.291 0.279

PC

P-Value 0.705 0.383
R2

−0.004 −0.009
Const. −0.091 −0.088
Slope 0.210 −0.012

(d) 8-Step-Ahead Forecast

AO

P-Value 0.479 0.696 0.446 0.181 0.103∗ 0.089∗

R2 0.008 0.001 0.025 0.136 0.052 0.114
Const. 0.063 −0.060 −0.147 −0.034 −0.155∗ −0.244∗

Slope 0.504∗ 0.411 0.999 0.573∗ 0.597∗ 1.331∗∗

IMA

P-Value 0.246 0.526 0.209 0.133∗

R2
−0.007 −0.001 −0.009 0.037

Const. −0.124 −0.210 −0.121∗ −0.210∗

Slope −0.093 0.495 0.024 0.758∗

PC

P-Value 0.261 0.221
R2 0.007 0.041

Const. −0.087 −0.089
Slope 0.588∗∗ 0.734∗

Notes: See notes to Table 3.
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Table 6: GW Conditional Test: SPF Downturn Probability

75Q3−10Q3 84Q1−10Q3
IMA PC PC-TAR IMA PC PC-TAR

(a) 2-Step-Ahead Forecast

AO

P-Value 0.151 0.355 0.188 0.249 0.082∗ 0.174
R2 0.041 0.017 0.050 0.006 −0.002 −0.009

Const. −0.143∗ −0.140∗ −0.197∗ −0.070∗ −0.057∗ −0.074∗

Slope 0.009∗∗ 0.007 0.011∗ 0.002∗ −0.002 0.000

IMA

P-Value 0.615 0.741 0.243 0.718
R2 0.001 −0.004 0.023 −0.004

Const. 0.003 −0.054 0.013 −0.004
Slope −0.002 0.002 −0.004∗∗ −0.002

PC

P-Value 0.279 0.455
R2 0.020 0.023

Const. −0.057 −0.017
Slope 0.004∗ 0.002∗

(b) 4-Step-Ahead Forecast

AO

P-Value 0.269 0.465 0.382 0.283 0.465 0.207
R2 0.042 0.043 0.030 −0.007 −0.005 −0.006

Const. −0.126 −0.112 −0.183 −0.056∗ −0.082 −0.092
Slope 0.011∗ 0.011 0.011 0.001 0.002 −0.002

IMA

P-Value 0.983 0.746 0.875 0.448
R2

−0.007 −0.007 −0.008 −0.001
Const. 0.014 −0.058 −0.026 −0.036
Slope −0.001 −0.001 0.001 −0.003

PC

P-Value 0.512 0.357
R2

−0.007 0.023
Const. −0.072 −0.010
Slope 0.000 −0.003

(c) 6-Step-Ahead Forecast

AO

P-Value 0.349 0.644 0.566 0.309 0.129∗ 0.520
R2 0.046 0.018 0.006 −0.002 0.020 −0.008

Const. −0.123 −0.145 −0.173 −0.049∗ −0.103 −0.097
Slope 0.012∗ 0.009 0.007 0.001 0.004 −0.001

IMA

P-Value 0.654 0.518 0.083∗ 0.612
R2

−0.004 −0.002 0.005 −0.004
Const. −0.022 −0.050 −0.054 −0.049
Slope −0.003 −0.005 0.003∗ −0.003

PC

P-Value 0.858 0.342
R2

−0.006 0.037
Const. −0.028 0.006
Slope −0.002 −0.006

(d) 8-Step-Ahead Forecast

AO

P-Value 0.437 0.401 0.262 0.226 0.051∗ 0.038∗∗

R2 0.049 0.020 0.013 0.046 0.043 0.028
Const. −0.138 −0.209 −0.245 −0.065∗ −0.237∗∗ −0.294∗

Slope 0.014∗ 0.011 0.012∗ 0.006∗ 0.010∗ 0.013∗∗

IMA

P-Value 0.211 0.637 0.192 0.063∗

R2
−0.004 −0.007 −0.002 0.002

Const. −0.071 −0.107 −0.172∗ −0.229∗

Slope −0.004 −0.003 0.003 0.007∗

PC

P-Value 0.964 0.558
R2

−0.007 −0.006
Const. −0.036 −0.057
Slope 0.001 0.003

Notes: See notes to Table 3.
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Table 7: GW Conditional Test: Real-Time Gap

75Q3−10Q3 84Q1−10Q3
IMA PC PC-TAR IMA PC PC-TAR

(a) 2-Step-Ahead Forecast

AO

P-Value 0.560 0.229 0.318 0.538 0.069∗ 0.064∗

R2 0.017 0.018 0.023 0.004 0.004 0.029
Const. 0.009 −0.035 −0.012 −0.046 −0.073∗∗ −0.048
Slope 0.121 0.126 0.150 −0.039 0.044 0.083∗∗

IMA

P-Value 0.561 0.767 0.123∗ 0.096∗

R2
−0.007 −0.005 0.031 0.070

Const. −0.044 −0.022 −0.028 −0.002
Slope 0.005 0.029 0.083 0.123∗

PC

P-Value 0.867 0.568
R2

−0.005 0.018
Const. 0.022 0.026
Slope 0.023 0.039

(b) 4-Step-Ahead Forecast

AO

P-Value 0.483 0.306 0.383 0.341 0.134∗ 0.130∗

R2 0.047 0.079 0.040 −0.001 0.057 0.026
Const. 0.069 0.068 −0.006 −0.050 −0.027 −0.092
Slope 0.243 0.287∗ 0.241 −0.031 0.128∗ 0.116

IMA

P-Value 0.783 0.737 0.162 0.122∗

R2
−0.003 −0.007 0.106 0.053

Const. −0.001 −0.075 0.024 −0.042
Slope 0.044 −0.002 0.158∗∗ 0.146∗∗

PC

P-Value 0.506 0.292
R2

−0.001 −0.009
Const. −0.074 −0.066∗

Slope −0.047 −0.012

(c) 6-Step-Ahead Forecast

AO

P-Value 0.356 0.120∗ 0.310 0.349 0.112∗ 0.082∗

R2 0.058 0.039 0.031 −0.007 0.220 0.121
Const. 0.094 0.018 −0.047 −0.025 0.034 −0.050
Slope 0.284∗ 0.266∗ 0.264 0.017 0.272∗∗ 0.295∗∗

IMA

P-Value 0.604 0.548 0.188 0.092∗

R2
−0.007 −0.007 0.189 0.117

Const. −0.076 −0.141 0.059 −0.025
Slope −0.018 −0.020 0.255∗∗ 0.278∗∗

PC

P-Value 0.843 0.385
R2

−0.007 −0.008
Const. −0.065 −0.084
Slope −0.002 0.023

(d) 8-Step-Ahead Forecast

AO

P-Value 0.294 0.078∗ 0.362 0.291 0.065∗ 0.076∗

R2 0.055 0.034 0.021 0.066 0.067 0.107
Const. 0.107 −0.026 −0.047 0.061 −0.038 0.002
Slope 0.295∗ 0.261∗ 0.271 0.139∗ 0.224∗ 0.437∗∗

IMA

P-Value 0.235 0.650 0.129∗ 0.086∗

R2
−0.007 −0.007 0.003 0.054

Const. −0.133∗ −0.154 −0.099 −0.059
Slope −0.034 −0.024 0.086 0.298∗∗

PC

P-Value 0.976 0.329
R2

−0.008 0.028
Const. −0.021 0.040
Slope 0.010 0.212∗

Notes: See notes to Table 3.
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Table 8: GW Conditional Test: Four-Quarter Change in Real-Time Gap

75Q3−10Q3 84Q1−10Q3
IMA PC PC-TAR IMA PC PC-TAR

(a) 2-Step-Ahead Forecast

AO

P-Value 0.239 0.278 0.097∗ 0.073∗ 0.069∗ 0.022∗∗

R2 0.071 0.028 0.099 0.019 −0.006 0.026
Const. 0.004 −0.032 −0.021 −0.037 −0.083∗∗ −0.066∗

Slope 0.951∗ 0.649 1.233∗ 0.224∗∗ 0.085 0.316∗∗

IMA

P-Value 0.505 0.309 0.348 0.678
R2 0.011 0.004 −0.002 −0.007

Const. −0.036 −0.024 −0.047 −0.030
Slope −0.302 0.282 −0.139 0.091

PC

P-Value 0.042∗∗ 0.222
R2 0.062 0.052

Const. 0.011 0.017
Slope 0.584∗∗ 0.230∗∗

(b) 4-Step-Ahead Forecast

AO

P-Value 0.398 0.345 0.266 0.283 0.042∗∗ 0.083∗

R2 0.072 0.082 0.088 −0.008 0.024 −0.002
Const. 0.071 0.074 −0.007 −0.043 −0.055 −0.119∗

Slope 1.248∗ 1.244∗ 1.447∗ 0.052 0.354∗ 0.207

IMA

P-Value 0.999 0.695 0.084∗ 0.285
R2

−0.007 −0.005 0.018 −0.005
Const. 0.003 −0.079 −0.012 −0.076
Slope −0.004 0.200 0.302∗∗ 0.155

PC

P-Value 0.414 0.360
R2

−0.001 0.000
Const. −0.082 −0.064
Slope 0.204 −0.147

(c) 6-Step-Ahead Forecast

AO

P-Value 0.379 0.239 0.300 0.072∗ 0.049∗∗ 0.075∗

R2 0.078 0.053 0.075 0.009 0.251 0.062
Const. 0.104 0.027 −0.040 −0.026 −0.017 −0.110
Slope 1.427∗ 1.338∗∗ 1.700∗ 0.183∗∗ 1.199∗∗ 0.907

IMA

P-Value 0.603 0.516 0.099∗ 0.136∗

R2
−0.007 −0.005 0.173 0.040

Const. −0.077 −0.143 0.009 −0.084
Slope −0.090 0.273 1.016∗∗ 0.724

PC

P-Value 0.643 0.387
R2

−0.002 0.004
Const. −0.067 −0.093
Slope 0.363 −0.292

(d) 8-Step-Ahead Forecast

AO

P-Value 0.386 0.139∗ 0.165 0.129∗ 0.087∗ 0.147∗

R2 0.068 0.105 0.174 0.078 0.220 0.364
Const. 0.126 −0.006 −0.022 0.041 −0.062 −0.042
Slope 1.491∗ 1.967∗∗ 3.125∗∗ 0.672∗∗ 1.744∗∗ 3.501∗∗

IMA

P-Value 0.196 0.335 0.139∗ 0.190
R2 0.000 0.034 0.084 0.273

Const. −0.132∗ −0.148 −0.102 −0.082
Slope 0.476 1.634∗ 1.072∗ 2.829∗∗

PC

P-Value 0.281 0.279
R2 0.025 0.117

Const. −0.016 0.020
Slope 1.158∗∗ 1.757∗∗

Notes: See notes to Table 3.
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Table 9: Squared Forecast Error Differences Conditional on the Recession Dummy

Reference Alternative Forecast
Sample

Squared Error Diff.
Model Model Horizon D = 0 D = 1
AO PC-TAR 2 Post 84 −0.087 0.115
AO PC 8 Post 84 −0.155 0.442
AO PC-TAR 8 Post 84 −0.244 1.087
IMA PC-TAR 8 Post 84 −0.210 0.548

Notes: This table considers the cases in which both constant and slope terms are statistically

significant in the GW regression (see Table 5) within the comparisons between each of the

two Phillips curve models and either AO or IMA models. The last two columns calculate the

squared error difference when the recession dummy is zero and one, respectively.

Table 10: Cutoff Value of the SPF Recession Probability

Reference Alternative Forecast
Sample

Cutoff Values
Model Model Horizon (%)
AO PC-TAR 2 Full 18.0
IMA PC 6 Post 84 18.0
AO PC-TAR 8 Full 20.4
AO PC 8 Post 84 23.7
AO PC-TAR 8 Post 84 22.6
IMA PC-TAR 8 Post 84 32.7

Notes: The last column reports the cutoff value of the SPF recession probability above

(below) which the alternative (reference) model gives the smaller forecast error. This

table includes only the cases with the dark and middle shadings in Table 6 within the

comparisons between each of the two Phillips curve models and either AO or IMA

models.
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Table 11: Cutoff Values of Real-Time Gap

Reference Alternative Forecast
Sample Cutoff Value

Model Model Horizon
AO PC-TAR 2 Post 84 0.578
IMA PC-TAR 2 Post 84 0.016
AO PC 4 Full −0.237
AO PC 4 Post 84 0.211
IMA PC 4 Post 84 −0.152
IMA PC-TAR 4 Post 84 0.288
AO PC 6 Full −0.068
AO PC 6 Post 84 −0.125
AO PC-TAR 6 Post 84 0.169
IMA PC 6 Post 84 −0.231
IMA PC-TAR 6 Post 84 0.090
AO PC 8 Full 0.100
AO PC 8 Post 84 0.170
AO PC-TAR 8 Post 84 −0.005
IMA PC-TAR 8 Post 84 0.198

Notes: The last column reports the cutoff value of the real-time unemployment

gap above (below) which the alternative (reference) model gives the smaller forecast

error. This table includes only the cases with the dark and middle shadings in Table

7 within the comparisons between each of the two Phillips curve models and either

AO or IMA models. The cutoff values are in the units of the unemployment gap

(expressed in percentage points).
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Table 12: Cutoff Values of the Four-Quarter Change in Real-Time Gap

Reference Alternative Forecast
Sample Cut-off Value

Model Model Horizon
AO PC-TAR 2 Full 0.017
AO PC-TAR 2 Post 84 0.209
AO PC 4 Full −0.059
AO PC-TAR 4 Full 0.005
AO PC 4 Post 84 0.155
IMA PC 4 Post 84 0.040
AO PC 6 Full −0.020
AO PC-TAR 6 Full 0.024
AO PC 6 Post 84 0.014
IMA PC 6 Post 84 −0.009
AO PC 8 Full 0.003
AO PC-TAR 8 Full 0.007
AO PC 8 Post 84 0.036
AO PC-TAR 8 Post 84 0.012
IMA PC-TAR 8 Full 0.091
IMA PC 8 Post 84 0.095
IMA PC-TAR 8 Post 84 0.029

Notes: The last column reports the cutoff value of the real-time unemployment gap

above (below) which the alternative (reference) model gives the smaller forecast error.

This table includes only the cases with dark and middle shadings in Table 8 within

the comparisons between each of the two Phillips curve models and either AO or

IMA models. The cutoff values are in the units of the four-quarter change in the

unemployment gap (expressed in percentage points).
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Table 13: Phillips Curve Forecast Using Real-Time and Final Unemployment Gaps

Forecast 75Q3−10Q3 84Q1−10Q3
horizon Real Time Final Real-Time Final

(a) Mean Absolute Errors
2 0.552 0.552 0.466 0.450
4 0.506 0.504 0.411 0.403
6 0.573 0.547 0.434 0.433
8 0.659 0.638 0.516 0.520

(b) Root-Mean-Square Errors
2 0.727 0.737 0.612 0.611
4 0.690 0.696 0.547 0.552
6 0.806 0.767 0.557 0.573
8 0.917 0.906 0.684 0.705
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Table 14: GW Test Results Using Final Revised Gap: Phillips Curve vs. AO and IMA

Conditioning None Recession Dummy SPF Downturn Prob. Final Revised Gap 4Q-Change in Gap
Full Sub- Full Sub- Full Sub- Full Sub- Full Sub-

Sample sample Sample sample Sample sample Sample sample Sample sample

(a) 2-Step-Ahead Forecast

AO

P-Value 0.739 0.046∗∗ 0.728 0.133∗ 0.449 0.135∗ 0.266 0.042∗∗ 0.147∗ 0.079∗

R2 0.000 0.000 −0.004 −0.008 0.007 −0.006 0.019 0.031 0.043 −0.003
Const. −0.031 −0.082∗∗ −0.054 −0.086∗ −0.131 −0.061∗ −0.039 −0.072∗ −0.048 −0.082∗∗

Slope − − 0.179 0.045 0.005 −0.001 0.137 0.077∗ 0.816∗ 0.125

IMA

P-Value 0.233 0.300 0.491 0.221 0.273 0.255 0.277 0.065∗ 0.492 0.463
R2 0.000 0.000 −0.005 −0.002 0.008 0.014 −0.001 0.057 −0.006 −0.006

Const. −0.058 −0.045 −0.046 −0.032 0.012 0.009 −0.060 −0.032 −0.056 −0.045
Slope − − −0.090 −0.124 −0.004 −0.003∗∗ 0.043 0.103∗ −0.082 −0.094

(b) 4-Step-Ahead Forecast

AO

P-Value 0.424 0.274 0.704 0.527 0.380 0.542 0.381 0.169 0.374 0.054∗

R2 0.000 0.000 −0.007 −0.009 0.044 −0.008 0.041 0.047 0.074 0.018
Const. 0.087 −0.063 0.080 −0.065 −0.111 −0.081 0.084 −0.047 0.072 −0.061
Slope − − 0.055 0.021 0.010∗ 0.001 0.203∗ 0.117∗ 1.099∗ 0.352∗

IMA

P-Value 0.926 0.708 0.475 0.626 0.831 0.932 0.935 0.129∗ 0.909 0.119∗

R2 0.000 0.000 −0.002 −0.007 −0.006 −0.009 −0.006 0.078 −0.007 0.015
Const. −0.006 −0.020 0.017 −0.012 0.015 −0.024 −0.006 −0.002 −0.005 −0.019
Slope − − −0.170 −0.072 −0.001 0.000 0.022 0.133∗∗ −0.061 0.300∗∗

(c) 6-Step-Ahead Forecast

AO

P-Value 0.437 0.541 0.716 0.617 0.485 0.223 0.221 0.081∗ 0.270 0.039∗∗

R2 0.000 0.000 −0.001 −0.003 0.064 0.015 0.049 0.116 0.070 0.146
Const. 0.094 −0.049 0.063 −0.065 −0.140 −0.120 0.100 −0.025 0.093 −0.040
Slope − − 0.247 0.142 0.012 0.004∗ 0.231∗∗ 0.185∗∗ 1.172∗∗ 0.966∗∗

IMA

P-Value 0.830 0.763 0.861 0.934 0.977 0.240 0.974 0.114∗ 0.893 0.077∗

R2 0.000 0.000 −0.006 −0.009 −0.007 0.003 −0.007 0.082 −0.006 0.093
Const. −0.017 −0.020 −0.004 −0.025 −0.017 −0.071 −0.017 0.000 −0.017 −0.013
Slope − − −0.099 0.037 0.000 0.003∗ −0.001 0.158∗∗ −0.177 0.781∗∗

(d) 8-Step-Ahead Forecast

AO

P-Value 0.962 0.293 0.605 0.355 0.488 0.110∗ 0.606 0.265 0.239 0.102∗

R2 0.000 0.000 0.015 0.000 0.025 0.035 0.010 0.006 0.079 0.095
Const. 0.006 −0.117 −0.058 −0.145 −0.172 −0.266∗ 0.013 −0.105 0.019 −0.101
Slope − − 0.567 0.249 0.010 0.010∗ 0.145 0.097 1.457∗∗ 1.235∗∗

IMA

P-Value 0.358 0.132∗ 0.654 0.281 0.492 0.245 0.511 0.241 0.638 0.209
R2 0.000 0.000 −0.007 0.007 −0.003 −0.003 0.000 −0.009 −0.008 0.016

Const. −0.114 −0.147∗ −0.121 −0.111 −0.034 −0.201∗ −0.119 −0.148 −0.114 −0.139
Slope − − 0.064 −0.323 −0.004 0.003 −0.111 −0.011 0.016 0.586
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