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The Hat Matrix in Regression and ANOVA 
DAVID C. HOAGLIN AND ROY E. WELSCH* 

In least-squares fitting it is important to understand the influence 
which a data y value will have on each fitted y value. A projection 
matrix known as the hat matrix contains this information and, 
together with the Studentized residuals, provides a means of 
identifying exceptional data points. This approach also simplifies 
the calculations involved in removing a data point, and it requires 
only simple modifications in the preferred numerical least-squares 
algorithms. 

KEY WORDS: Analysis of variance; Regression analysis; Projec- 
tion matrix; Outliers; Studentized residuals; Least-squares compu- 
tations. 

1. Introduction 

In fitting linear models by least squares it is very 
often useful to determine how much influence or 
leverage each data y value (yj) can have on each fitted 
y value (si). For the fitted value ySi corresponding to 
the data value yi, the relationship is particularly 
straightforward to interpret, and it can reveal multi- 
variate outliers among the carriers (or x variables) 
which might otherwise be difficult to detect. The 
desired information is available in the hat matrix, 
which gives each fitted value 3' as a linear combina- 
tion of the observed values yj. (The term "hat ma- 
trix" is due to John W. Tukey, who introduced us to 
the technique about ten years ago.) The present 
article derives and discusses the hat matrix and gives 
an example to illustrate its usefulness. 

Section 2 defines the hat matrix and derives its 
basic properties. Section 3 formally examines two 
familiar examples, while Section 4 'gives a numerical 
example. In practice one must, of course, consider 
the actual effect of the data y values in addition to 
their leverage; we discuss this in terms of the resid- 
uals in Section 5. Section 6 then sketches how the hat 
matrix can be obtained from two accurate numerical 
algorithms used for solving least-squares problems. 

2. Basic Properties 

We are concerned with the linear model 

y = X + E, (2.1) 
nXl nXp pXl nXl 

which summarizes the dependence of the response y 

on the carriers X1, ..., X, in terms of the data 
values yi and xi,, . . ., xip for i = 1, . . ., n. (We 
refrain from thinking of X1, . . ., Xp as independent 
variables because they are often not independent in 
any reasonable sense.) In fitting the model (2.1) by 
least squares (assuming that X has rank p and that 
E(E) = 0 and var(E) = oaIJ), we usually obtain the 
fitted or predicted values from y = Xb, where b = 
(XTX)-lXTy. From this it is simple to see that 

y = X(XTX)-'XTy. (2.2) 

To emphasize the fact that (when Xis fixed) each 9i is 
a linear function of the yj, we write (2.2) as 

y = Hy, (2.3) 

where H = X(XTX)-lXT. The n x n matrix H is 
known as the hat matrix simply because it maps y 
into y. Geometrically, if we represent the data vector 
y and the columns of X as points in euclidean n space, 
then the points X,8 (which we can obtain as linear 
combinations of the column vectors) constitute a p 
dimensional subspace. The fitted vector y is the point 
of that subspace nearest to y, and it is also the 
perpendicular projection of y into the subspace. Thus 
H is a projection matrix. Also familiar is the role 
which H plays in the covariance matrices of y and of 
r = y - y: 

var() = c2H, (2.4) 

var(r) = -2 - H). (2.5) 

For the data analyst, the element hij of H has a 
direct interpretation as the amount of leverage or 
influence exerted on 9i by yj (regardless of the actual 
value of y3, since H depends only on X). Thus a look 
at the hat matrix can reveal sensitive points in the 
design, points at which the value of y has a large 
impact on the fit (Huber 1975). In using the word 
"design" here, we have in mind both the standard 
regression or ANOVA situation, in which the values 
of X1, . . ., Xp are fixed in advance, and the situation 
in which y and X1, . . ., Xp are sampled together. The 
simple designs, such as two-way analysis of variance, 
give good control over leverage (as we shall see in 
Section 3); and with fixed X one can examine, and 
perhaps modify, the experimental conditions in ad- 
vance. When the carriers are sampled, one can at 
least determine whether the observed X contains 
sensitive points and consider omitting them if the 
corresponding y value seems discrepant. Thus we use 
the hat matrix to identify "high-leverage points." If 
this notion is to be really useful, we must make it 
more precise. 

The influence of the response value yi on the fit is 
most directly reflected in its leverage on the corre- 
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sponding fitted value yi, and this is precisely the 
information contained in hii, the corresponding diago- 
nal element of the hat matrix. We can easily imagine 
fitting a simple regression line to data (xi, yi), making 
large changes in the y value corresponding to the 
largest x value, and watching the fitted line follow 
that data point. In this one-carrier problem or in a 
two-carrier problem a scatter plot will quickly reveal 
any x outliers, and we can verify that they have 
relatively large diagonal elements hii. When p > 2, 
scatter plots may not reveal multivariate outliers, 
which are separated in p space from the bulk of the x 
points but do not appear as outliers in a plot of any 
single carrier or pair of carriers, and the diagonal of 
the hat matrix is a source of valuable diagnostic 
information. In addition to being somewhat easier to 
understand, the diagonal elements of H can be less 
trouble to compute, store, and examine, especially if 
n is moderately large. Thus attention focuses primar- 
ily (often exclusively) on the hii, which we shall 
sometimes abbreviate hi. We next examine some of 
their properties. 

As a projection matrix, H is symmetric and 
idempotent (H2 = H), as we can easily verify from 
the definition following (2.3). Thus we can write 

n 

hi= i = h + E hg, (2.6) 
j=l joi 

and it is immediately clear that 0 c hii ' 1. These 
limits are helpful in understanding and interpreting 
hii, but they do not yet tell us when hii is large. We 
know, however, that the eigenvalues of a projection 
matrix are either zero or one and that the number of 
nonzero eigenvalues is equal to the rank of the 
matrix. In this case, rank(H) = rank(X) = p, and 
hence trace(H) = p, i.e., 

n 

E hi = p. (2.7) 

The average size of a diagonal element of the hat 
matrix, then, is p/n. Experience suggests that a 
reasonable rule of thumb for large hi is hi > 2p/n. 
Thus we determine high-leverage points by looking at 
the diagonal elements of H and paying particular 
attention to any x point for which hi > 2p/n. Usually 
we treat the n values hi as a batch of numbers and 
bring them together in a stem-and-leaf display (as we 
shall illustrate in Section 4). For a more refined 
screening when the model includes the constant car- 
rier and the rows of X are sampled from a (p - 1) 
variate Gaussian distribution, we could use the fact 
that (for any single hi) [(n - p)(hi - 1/n)]/[(p - 1)(1 
- hi)] has an F distribution on p - 1 and n - p 
degrees of freedom. 

From (2.6), we can also see that whenever h-1 = 0 
or h = 1, we have hij = 0 for all j # i. These two 
extreme cases can be interpreted as follows. First, if 
h = 0, then 9i must be fixed at zero by design- it is 

not affected by yi or by any other y3. A point with x = 
0 when the model is a straight line through the origin 

provides a simple example. Second, when hii = 1, we 
have )i = y1-the model always fits this data value 
exactly. In effect, the model dedicates a parameter to 
this particular observation (as is sometimes done 
explicitly by adding a dummy variable to remove an 
outlier). 

Now that we have developed the hat matrix and a 
number of its properties, we turn to three examples, 
two designed and one sampled. We then discuss (in 
Section 5) how to handle yi when hii indicates a high- 
leverage point. 

3. Formal Examples 

To illustrate the hat matrix and develop our intui- 
tion, we begin with two familiar examples in which 
the calculations can be done by simple algebra. 

The usual regression line, 

Yi Io + 013Xi + Ei, 

has 

)T 

and a few steps of algebra give 

hij = - + [(Xi - )j- & ,)] E (xk - x)2] (3.1) 

Next we examine the relationship between struc- 
ture and leverage in a simple balanced design: a two- 
way table with R rows and C columns and one 
observation per cell. (Behnken and Draper (1972) 
discuss variances of residuals in several more compli- 
cated designs. It is straightforward to find H through 
(2.5).) The usual model for the R X C table is 

Yij = AL + ai + 8j + Ej, 

with the constraints a1 + . . . + aR = 0 and /31 + ... 
+ f3c = 0; here n = RC and p = R + C - 1. We 
could, of course, write this model in the form of (2.1), 
but it is simpler to preserve the subscripts i and j and 
to denote an element of the hat matrix as hij,kl. When 
we recall that 

yij = Yi. + Y.j - Y.. (3.2) 

(a dot in place of a subscript indicates the average 
with respect to that subscript), it is straightforward to 
obtain 

hijij = 1/C + (1/R) - (1/RC) = (R + C - 1)/RC; 
(3.3) 

hijil = (R - 1)/RC, 1 /j; (3.4) 

hijkj = (C - 1)/RC, k # i; (3.5) 

hj = -(1/RC), k #i, 1 j. (3.6) 

From (3.3) we see that all the diagonal elements of H 
are equal, as we would expect in a balanced design. 
Further, (3.3) through (3.6) show that gi% will be 
affected by any change in Ykl for any values of k and 1. 

18 > The American Statistician, February 1978, Vol. 32, No. 1 



4. A Numerical Example 

In this section we examine the hat matrix in a 
regression example, emphasizing (either here or in 
Section 5) the connections between it and other 
sources of diagnostic information. We use a ten-point 
example, for which we can easily present H in full. In 
a larger data set, we would generally work with only 
the diagonal elements, hi. Welsch and Kuh (1977) 
discuss a larger example. 

The data for this example come from Draper and 
Stoneman (1966); we reproduce it in Table 1. The 
response is strength, and the carriers are the con- 
stant, specific gravity, and moisture content. To 
probe the relationship between the nonconstant car- 
riers, we plot moisture content against specific grav- 
ity (Figure A). In this plot, point 4, with coordinates 
(0.441, 8.9), is to some extent a bivariate outlier (its 
value is not extreme for either carrier), and we should 
expect it to have substantial leverage on the fit. 
Indeed, if this point were absent, it would be consid- 
erably more difficult to distinguish the two carriers. 

1. Data on Wood Beams 

beam specific moisture 
number gravity content strength 

1 0.499 11.1 11.14 
2 0.558 8.9 12.74 
3 0.604 8.8 13.13 
4 0.441 8.9 11.51 
5 0.550 8.8 12.38 
6 0.528 9.9 12.60 
7 0.418 10.7 11.13 
8 0.480 10.5 11.70 
9 0.406 10.5 11.02 

10 0.467 10.7 11.41 

The hat matrix for this X appears in Table 2, and a 
stem-and-leaf display (Tukey 1972b, 1977) of the 
diagonal elements (rounded to multiples of .01) is as 
follows: 

0 
1 559 
2 456 
3 2 
4 22 
5 
6 0 

Moisture 
content 

11 

7 10 

9 8 

10 
6 

9 
4 2 

5 3 
. I ~~~~~~~~~~~~~~~~~~I I 

.4 .5 .6 
Specific gravity 

Figure A. The Two Carriers for the Wood Beam Data (Plotting 
symbol is beam number.). 

We note that h4 is the largest diagonal element and 
that it just exceeds the level (2p/n = 6/10) set by our 
rough rule of thumb. Examining H element by ele- 
ment, we find that it responds to the other qualitative 
features of Figure A. For example, the -relatively high 
leverage of points 1 and 3 reflects their position as 
extremes in the scatter of points. The moderate 
negative value of h1,4 is explained by the positions of 
points 1 and 4 on opposite sides of the rough sloping 
band where the rest of the points lie. The moderate 
positive values of h1,8 and h11lo show the mutually 
reinforcing positions of these three points. The cen- 
tral position of point 6 accounts for its low leverage. 
Other noticeable values of hij have similar explana- 
tions. 

Having identified point 4 as a high-leverage point in 
this data set, it remains to investigate the effect of its 
position and response value on the fit. Does the 
model fit well at point 4, or should this point be set 
aside? We turn to these questions next. 

2. The Hat Matrix for the Wood Beam Data (lower triangle omitted by symmetry) 

i 

i 1 2 3 4 5 6 7 8 9 10 

1 .'418 -.002 .079 -.274 -.046 .181 .128 .222 .050 .242 
2 .242 .292 .136 .243 .128 -.041 .033 -.035 .004 
3 .417 -.019 .273 .187 -.126 .044 -.153 .004 
4 .604 .197 -.038 .168 -.022 .275 -.028 
5 .252 .111 -.030 .019 -.010 -.010 
6 .148 .042 .117 .012 .111 
7 .262 .145 .277 .174 
8 .1514 .120 .168 
9 .315 .148 

1 0 .187 
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5. Bringing in the Residuals 

So far we have examined the design matrix X for 
evidence of points where the data value y has high 
leverage on the fitted value I. If such influential 
points are present, we must still determine whether 
they have had any adverse effects on the fit. A 
discrepant value of y, especially at an influential 
design point, may lead us to set that entire observa- 
tion aside (planning to investigate it in detail sepa- 
rately) and refit without it, but we emphasize that 
such decisions cannot be made automatically. As we 
can see for the regression line, with hij given by (3.1), 
the more extreme design points generally provide the 
greatest information on certain coefficients (in this 
case, the slope), and omitting such an observation 
may substantially reduce the precision with which we 
can estimate those coefficients. If we delete row i, 
that is, xi = (xi, . ., xi), from the design matrix X 
and denote the result by X(>), then (Rao 1965, p. 29), 
except for the constant factor oT2, the covariance 
matrix of b is 

MX(i))- 1= (XTX)-' (5.1) 
+ (XTX)'lXiTxi(XTX) 1/(1 - hi). 

The presence of (1 - hi) in the denominator shows 
how removing a high-leverage point may increase the 
variance of coefficient estimates. Alternatively, the 
accuracy of the apparently discrepant point may be 
beyond question, so that dismissing it as an outlier 
would be unacceptable. In both these situations, 
then, the apparently discrepant point may force us to 
question the adequacy of the model. 

In detecting discrepant y values, we always exam- 
ine the residuals, ri = yi - 9i, using such techniques 
as a scatterplot against each carrier, a scatterplot 
against 9, and a normal probability plot. (Anscombe 
(1973) has discussed and illustrated some of these.) 
When there is substantial variation among the hi 
values, (2.5) indicates that we should allow for differ- 
ences in the variances of the ri (Anscombe and Tukey 
1963) and look at ri/(1 - hi)1)2. This adjustment puts 
the residuals on an equal footing, but it is often more 
convenient to use the standardized residual, ri/(s(1 - 
hi)"2), where S2 is the residual mean square. 

For diagnostic purposes, we would naturally ask 
about the size of the residual corresponding to yi 
when data point i has been omitted from the fit. That 
is, we base the fit on the remaining n - 1 data points 
and then predict the value for Yi. This residual is yi - 
xif(i), where 8(i) is the least-squares estimate of f8 
based on all the data except data point i. (These 
residuals are also the basis of Allen's (1974) PRESS 
criterion for selecting variables in regression.) Simi- 
larly S2) is the residual mean square for the "not-i" 
fit, and the standard deviation of yi - XJJ8(1) is esti- 
mated by s(i)[1 + Xl(X(T)X(l))-lXlT]lI2. We now define the 
Studentized residual: 

-. =( )[ - X2/(2)_lT12 52 
S()[1+ (5.2))() 

X 

Since the numerator and denominator in (5.2) are 
independent, ri* has a t distribution on n - p - 1 
degrees of freedom, and we can readily assess the 
significance of any single Studentized residual. (Of 
course, ri* and rj* will not be independent.) In 
actually calculating the Studentized residuals we can 
save a great deal of effort by observing that the 
quantities we need are readily available. Straightfor- 
ward algebra using (5.1) turns (5.2) into 

ri* = ri/(s(i)(1 - hi)1)2), (5.3) 

and we can obtain s(1) from 

(n - p - 1)sU) = (n -p)s2 - r2/(1 - hi). (5.4) 

Once we have the diagonal elements of H, the rest is 
simple. 

Our diagnostic strategy, then, is to examine the hi 
for high-leverage design points and the ri* for discre- 
pant y values. These two aspects of the search for 
troublesome data points are complementary; neither 
is sufficient by itself. When hi is small, ri* may be 
large because ri is large, but the impact of yi on the fit 
or on the coefficients may be minor. And when hi is 
large, r4* may still be moderate or small because yi is 
consistent with the model and the rest of the data. 

Just how to combine the information from hi and ri* 
is a matter of judgment. We prefer the more detailed 
grasp of the data which comes from looking at the hi 
and the ri* separately. For diagnostic purposes, a 
practice which we recommend is to tag as exceptional 
any data point for which hi or ri* is significant at the 
10 percent level. To decide whether an exceptional 
point is actually damaging, one would then use a 
criterion which is appropriate in the context of the 
data. Two likely criteria are the change in coeffi- 
cients, f3 - /3(j) easily calculated from 

p i =/3() = (XTX)-xiTri1/(1 - hi); (5.5) 

and the change in fit at point i, xi - f3o), which 
simply reduces to hiri/(l - hi). (The size of such 
changes would customarily be compared to some 
suitable measure of scale.) For both of these criteria 
it is easy to determine the effect of setting aside an 
exceptional point without recalculation. 

To continue our diagnosis of the wood beam exam- 
ple, we plot strength against specific gravity in Figure 
B and strength against moisture content in Figure C. 
With the exception of beam 1, the first of these looks 
quite linear and well-behaved. In the second plot we 
see somewhat more scatter, and beam 4 stands apart 
from the rest. Table 3 gives ri, (1 - hi)1)2, s(i), and the 
Studentized residuals ri*. Among the ri*, beam 1 
appears as a clear stray (p < .02), and beam 6 also 
deserves attention (p < .1). Since beam 4 is known to 
have high leverage (hi = .604), we continue to investi- 
gate it. 

The fit for the full data is 

y3 = 10.302 + 8.495(SG) -0.2663(MC), (5.6) 

with s = 0.2753; and when we set aside beams 1, 4, 

20 ? The American Statistician, February 1978, Vol. 32, No. 1 



Strength 

3 
13 

2 
6 

5 

12 

8 

4 
10 

7 1 
11 9 

I ~ ~~~I I 
.4 .5 .6 

Specific gravity 

Figure B. Strength versus Specific Gravity for the Wood Beam 
Data (Plotting symbol is beam number.). 
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Figure C. Strength versus Moisture Content for the Wood Beam 
Data (Plotting symbol is beam number.). 

and 6 in turn, we find j8 - 8(j) to be (2.710, -1.772, 
-0.1932) T, (-2.109, 1.695, 0.1242) T, and (-0.642, 
0.748, 0.0329)T, respectively. The estimated standard 
errors for 30, ,11, and 12 are 1.896, 1.784, and 0.1237, 
so that setting aside either beam 1 or beam 4 causes 
each coefficient to change by roughly 1.0 to 1.5 in 
standard-error units. Thus we should be reluctant to 
include these data points. By comparison, removing 
beam 6 leads to changes only about 25 percent as 
large. 

Similarly, the change in fit at point i, xi(f - fJ(i), is 
-0.3 19 for beam 1, -0.256 for beam 4, and 0.078 for 

3. Studentized Residutals and Related Quiantities for 
the Wood Beam Data 

i r. h. (1-h. )1/2 s 1 1 j ( 1) 

1 -.444 .418 .763 .179 -3.254 
2 .069 .242 .871 .296 .267 
3 .041 .417 .764 .297 .182 
4 -.167 .604 .629 .277 -.961 
5 -.250 .252 .865 .273 -1.058 
6 .450 .148 .923 .221 2.203 
7 .127 .262 .859 .291 .509 
8 .117 .154 .920 .293 .436 
9 .066 .315 .828 .296 .270 

10 -.009 .187 .902 .298 -.033 

beam 6. Dividing each of these by the estimated 
standard error of 9j (s h1 from (2.4)) yields -1.790, 
-1.196, and 0.737, respectively. On the whole these 
are not as substantial as the coefficient changes, but 
beam 1 and (to a lesser extent) beam 4 are still fairly 
damaging. 

We have used two sources of diagnostic informa- 
tion, the diagonal elements of the hat matrix and the 
Studentized residuals, to identify data points which 
may have an unusual impact on the results of fitting 
the linear model (2.1) by least squares. We must 
interpret this information as clues to be followed up 
to determine whether a particular data point is discre- 
pant, but not as automatic guidance for discarding 
observations. Often the circumstances surrounding 
the data will provide explanations for unusual behav- 
ior, and we will be able to reach a much more 
insightful analysis. Judgment and external sources of 
information can be important at many stages. For 
example, if we were trying to decide whether to 
include moisture content in the model for the wood 
beam data (the context in which Draper and Stone- 
man (1966) introduced this example), we would have 
to give close attention to the effect of beam 4 on the 
correlation between the carriers as well as the corre- 
lation between the coefficients. Such considerations 
do not readily lend themselves to automation and are 
an important ingredient in the difference between 
data analysis and data processing (Tukey 1972a). 

6. Computation 

Since we find the hat matrix (at least the diagonal 
elements hi) a very worthwhile diagnostic addition to 
the information usually available in multiple regres- 
sion, we now briefly describe how to obtain H from 
the more accurate numerical techniques for solving 
least-squares problems. Just as these techniques pro- 
vide greater accuracy by not forming XTX or solving 
the normal equations directly, we do not calculate H 
according to the definition. 

For most purposes the method of choice is to 
represent X as 

X =Q R, (6.1) 
flxp nxn n xp 

(with Q an orthogonal transformation and R = LRT, 
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on T, where R is p x p upper triangular) and obtain Q 
as a product of Householder transformations. Substi- 
tuting (6.1) and the special structure of R into the 
definition of H, we see that 

H= Q[0P O]QT (6.2) 

With a modest increase in computation cost, a simple 
modification of the basic algorithm yields H as a by- 
product. If n is large, we can arrange to calculate and 
store only the hi 

Finally we mention the singular-value decomposi- 
tion, 

X= U E VT, (6.3) 
nXp nxp pXp pXp 

where UTU = Ip, E is diagonal, and V is orthogonal. 
If this more elaborate approach is used (e.g., when X 
might not be of full rank), we can calculate the hat 
matrix from 

H = UUT. (6.4) 

These and other decompositions are discussed by 
Golub (1969). For a recent account of numerical 
techniques in solving linear least-squares problems, 
we recommend the book by Lawson and Hanson 
(1974). 

[Received October 18, 1976. Revised June 9, 1977.] 

References 

Allen, D. M. (1974), "The Relationship Between Variable Selec- 
tion and Data Augmentation and a Method for Prediction," 
Technometrics, 16, 125-127. 

Anscombe, F. J. (1973), "Graphs in Statistical Analysis," The 
American Statistician, 27, 17-21. 

, and Tukey, J. W. (1963), "The Examination and Analysis 
of Residuals," Technometrics, 5, 141-160. 

Behnken, D. W., and Draper, N. R. (1972), "Residuals and Their 
Variance Patterns," Technometrics, 14, 101-111. 

Draper, N. R., and Stoneman, D. M. (1966), "Testing for the 
Inclusion of Variables in Linear Regression by a Randomisation 
Technique," Technometrics, 8, 695-699. 

Golub, G. H. (1969), "Matrix Decompositions and Statistical 
Calculations," in Statistical Computation, eds. R. C. Milton and 
J. A. Nelder, New York: Academic Press. 

Huber, P. J. (1975), "Robustness and Designs," in A Survey of 
Statistical Design and Linear Models, ed. J. N. Srivastava, 
Amsterdam: North-Holland Publishing Co. 

Lawson, C. L., and Hanson, R. J. (1974), Solving Least Squares 
Problems, Englewood Cliffs, N.J.: Prentice-Hall. 

Rao, C. R. (1965), Linear Statistical Inference and Its Applica- 
tions, New York: John Wiley & Sons. 

Tukey, J. W. (1972a), "Data Analysis, Computation and Mathe- 
matics," Quarterly of Applied Mathematics, 30, 51-65. 

(1972b), "Some Graphic and Semigraphic Displays," in 
Statistical Papers in Honor of George W. Snedecor, ed. T. A. 
Bancroft, Ames, Iowa: Iowa State University Press. 

(1977), Exploratory Data Analysis, Reading, Mass.: Addi- 
son-Wesley Publishing Co. 

Welsch, R. E., and Kuh, E. (1977), "Linear Regression Diagnos- 
tics," Working Paper 173, Cambridge, Mass.: National Bureau 
of Economic Research. 

22 ? The American Statistician, February 1978, Vol. 32, No. 1 


	Article Contents
	p. 17
	p. 18
	p. 19
	p. 20
	p. 21
	p. 22

	Issue Table of Contents
	The American Statistician, Vol. 32, No. 1 (Feb., 1978), pp. 1-44
	Front Matter [pp. ]
	Quantitative Graphics in Statistics: A Brief History [pp. 1-11]
	Variations of Box Plots [pp. 12-16]
	The Hat Matrix in Regression and ANOVA [pp. 17-22]
	A Probability Model for Forced Binary Choices [pp. 23-25]
	Measurement Error and Statistical Significance of an Independent Variable [pp. 26-27]
	The Teacher's Corner
	A Simplified Approach to the Maximum Likelihood Estimation of the Covariance Matrix [pp. 28-29]
	Some Easily Found Minimum Variance Unbiased Estimators [pp. 29-34]
	Some Examples of the Weak and Strong Laws of Large Numbers for Averages of Mutually Independent Random Variables [pp. 34-36]
	Accent on Teaching Materials
	Review of Probability Device [pp. 37]


	Henry Laurence Lucas, Jr., 1916-1977 [pp. 38]
	Letters to the Editor [pp. 39]
	Back Matter [pp. ]



