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THE CONTINUING SEARCH FOR WIEFERICH PRIMES

JOSHUA KNAUER AND JÖRG RICHSTEIN

Abstract. A prime p satisfying the congruence

2p−1 ≡ 1 (mod p2)

is called a Wieferich prime. Although the number of Wieferich primes is
believed to be infinite, the only ones that have been discovered so far are 1093
and 3511. This paper describes a search for further solutions. The search was
conducted via a large scale Internet based computation. The result that there
are no new Wieferich primes less than 1.25 · 1015 is reported.

1. Introduction

One year prior to his early death in 1829, Niels Henrik Abel [1] was the first to
ask:

“Kann aµ−1 − 1, wenn µ eine Primzahl und a eine ganze Zahl und
kleiner als µ und größer als 1 ist, durch µ2 theilbar sein?”

In other words: Given a prime p not dividing an integer a, is it possible that
the integer (ap−1 − 1)/p is again divisible by p? Although one can immediately
construct solutions to the corresponding congruence

(1) ap−1 ≡ 1 (mod p2)

when the exponent p is fixed and a is variable (see, e.g., [18]), it is not yet known
how to locate a matching prime p for a fixed base a. Many connections between
these solutions and other problems in number theory have been uncovered ([8],
[25]). Probably the most famous one is due to Arthur Wieferich [29], connecting
(1) with Fermat’s last theorem:

Theorem 1.1 (Wieferich, 1909 [29]). If for an odd prime p not dividing xyz it
follows that

xp + yp + zp = 0,

then (1) must be satisfied for a = 2.

Today, Wieferich’s theorem is known to be true for all prime bases a less than and
including 103 ([13], [28]). Solutions to (1) where a = 2 are called Wieferich primes.
Although there have been numerous searches for Wieferich primes (a believed to
be complete list of references to published historical computations can be found in
the bibliography), only two solutions have been discovered so far: 1093 [22], and
3511 [3].
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After a large scale Internet based search it turns out that there are no other
Wieferich primes below 1.25 · 1015.

In the following two sections the methodology used in the computation and a
more in-depth examination of the results will be presented.

2. Searching for Wieferich primes

Due to a lack of algorithmic advances, there is currently no alternative to a
brute force search. The use of computers has pushed the search limit from 16000 in
1940 [4] to 4.6 ·1013 in 2001 [6], later extended to 2 ·1014 [9]. Increasing this limit by
a factor of 6 was achieved by distributing the computation over as many computers
as possible through the Internet.

On each client machine an efficient implementation of a binary powering ladder
was run. The implementation was based on the GNU multiple precision arith-
metic library GMP [12]. Previous searches for Wieferich primes have made use of
optimizations such as base-p arithmetic and steady-state division as described in
[23], [8], and [7]. Neither of these optimizations was used in this search. In order
to include as many computers as possible, only a 32-bit processor was presumed
when constructing the client code. To realize the benefits of base-p arithmetic,
intermediate values in the computation must be stored in registers on the client
machine’s processor. A standard 32-bit processor does not have large enough reg-
isters to contain the intermediate values encountered when dealing with primes
in the range searched. A preliminary C language version of the client code that
made use of steady-state division did see a performance enhancement. However,
this version was out-performed by the highly optimized assembly language based
GMP library. The GMP library made it possible to construct efficient versions
of the client code for Linux-, Solaris-, and Windows-based platforms. The basic
enhancement of only computing 2

p−1
2 mod p2 (as (1) is equivalent to a

p−1
2 ≡ ±1

mod p2) was employed. A segmented sieve of Eratosthenes as described in [26] was
used to extract the prime numbers from a given range of integers (see also [8]).

The client and server machines used the hypertext transfer protocol (HTTP) to
communicate with one another. The processes of distributing ranges of numbers
to be checked and collecting results were implemented through common gateway
interface (CGI) scripts. This made the construction of both client and server pro-
grams simpler. Pre-built HTTP library code was used for the client and a basic
system of Perl scripts turned out to be sufficient for the server.

3. Results

As stated, the primary result of this search is that other than 1093 and 3511,
there are no Wieferich primes smaller than 1.25 · 1015.

In [7] a probabilistic argument for the existence of more Wieferich primes is pre-
sented. The result of computing 2

p−1
2 mod p2 can be written as ±1+Ap mod p2,

for some integer A. If we assume the event of A taking on some particular value
(A = 0 indicates a Wieferich prime) as being random and independent with prob-
ability 1

p , we can expect the number of Wieferich primes in an interval [x, y] to be
around

(2) ln(ln y/ lnx).
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Table 1. Near Wieferich primes in [4 · 1012, 1.25 · 1015].

p 2
p−1
2 mod p2 p 2

p−1
2 mod p2

4006528141163 −1 + 17p 68132247624521 +1 − 55p
4169357937293 −1 − 27p 92226580839683 −1 − 76p
5216344035949 −1 + 93p 118485210646981 −1 − 90p
5240305919047 +1 − 95p 134257821895921 +1 + 10p
7355288787229 −1 − 68p 153332502585091 −1 + 59p
7876427903107 −1 − 48p 181841793213263 +1 + 90p
8851776421399 +1 − 81p 205250817470827 −1 − 78p
11344191252809 +1 − 92p 259990715684839 +1 − 12p
12456646902457 +1 + 2p 339258218134349 −1 + 2p
15056776355693 −1 − 19p 342092449620191 +1 + 90p
23639424831877 −1 − 48p 346412396858131 −1 − 48p
24990087401551 +1 + 16p 362061154308767 +1 − 64p
28506780213511 +1 − 28p 694936752678643 −1 + 75p
28785529445977 +1 + 33p 696740841781447 +1 + 61p
29230410915073 +1 + 96p 734180764265903 +1 + 37p
30189412701163 −1 − 37p 739507312099561 +1 − 78p
30309769394167 +1 + 28p 765760560131939 −1 + 38p
63735899194511 +1 − 16p 1140417231387373 −1 − 82p
63918629031731 −1 + 38p 1170553064286511 +1 − 84p
67961346537659 −1 − 49p

Formula (2) predicts approximately 0.0998 Wieferich primes in our search range
[4.6 · 1013, 1.25 · 1015], putting the chance of finding one at approximately 1 in
10. So the result was not unexpected. As the probability of encountering a new
Wieferich prime is relatively low, it has been the practice of the last few searches
to report “near Wieferich” primes, defined as instances of

2
p−1
2 ≡ ±1 + Ap (mod p2)

where |A| ≤ 100. Table 1 gives a listing of all such exponents greater than 4 · 1012

encountered during the search. The last 13 entries in bold font are the new near
Wieferich primes uncovered.

As in [7], formula (2) can be applied to predict the number of near Wieferich
primes in an interval to be around

201 · ln(ln y/ lnx).

From this we would expect approximately 10.88 near Wieferich primes in [2 ·
1014, 1.25 · 1015], a close correspondence to the 13 uncovered.

During the course of the search the system was able to incorporate more than 250
client computers of varying configurations. At peak speed the system was capable
of running through approximately 1.6 million primes per second, with individual
machines running through 1000 to 30000 primes per second. The largest inter-
val covered in one day was approximately 3 · 1012, but average performance was
approximately 1.5 · 1012 a day.
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