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We analysed patterns of genetic variation at 26 isozyme loci across the area of two main forest-
forming spruce species in Eurasia, Norway spruce (Picea abies (L.) Karst.) and Siberian spruce (P.
obovata Ledeb.). Ten seed samples from distant parts of the P. abies-P. obovata area and from a
supposedly wide zone of introgressive hybridization between them were investigated. A very high
level of allozyme variation was found in populations of both species. As parameters of gene
diversity, the mean number of alleles per locus, percentage of polymorphic loci (95 per cent
criterion) and expected heterozygosity averaged 2.8, 61.5 and 0.252 for P. abies and 2.4, 61.5 and
0.213 for P. obovata, respectively. Norway and Siberian spruces turned out to be extremely similar
genetically. We did not find any fixed allele differences between them, i.e. there were no diagnostic
loci and only a few alleles could be characteristic of some populations. Cluster and multivariate
analyses have shown that these two species should be considered as two closely related subspecies
or two geographical races of one spruce species undergoing considerable gene exchange. Our
genetic data agree with morphological data and confirm the existence of a wide zone of introgres-
sive hybridization between Norway and Siberian spruces — perhaps the widest known among
plants. The samples which, according to morphological and geographical data, were taken from
presumably ‘hybrid’ populations showed ‘intermediate’ genetic characteristics. Clinal variation was
suggested for some alleles, and the ‘rare allele phenomenon’, i.e. higher frequencies of rare and
unique alleles, was observed in the ‘hybrid’ spruce populations.
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Introduction

Norway spruce, Picea abies {L.} Karst.,, and Siberian
spruce, P. obovata Ledeb., are traditional subjects of
forest genetic and breeding research. However, until
relatively recently, most investigations were limited to
the use of morphological, physiological and other
phenotypic traits with unclear modes of inheritance
and unknown genetic control. Studies of isozyme
genetic markers during the last two decades have
resulted in additional valuable information on the
genetic structure of Norway spruce (Tigerstedt, 1973,
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Gregorius, 1979; Bergmann & Ruetz, 1991; Lundkvist
& Rudin, 1977; Lundkvist, 1979; Brunel & Rodolphe,
1985; Altukhov et al., 1986a, 1989; Paule, 1986; Paule
& Gomory, 1973; Paule et al.,, 1990; Lagercrantz &
Ryman, 1990; Muona et al, 1990; Giannini ef al.,
1991a; Goncharenko & Potenko, 1991; Morgante &
Vendramin, 1991; Gomory, 1992; see also Miiller-
Starck et al, 1992 for review), the mating system in
natural populations (Miiller, 1977; Altukhov et al,
1989; Muona et al., 1990; Morgante et al., 1991), in
plantations (Xie & Knowles, 1992; Finkeldey, 1995)
and in seed orchards (Cheliak et al., 1987; Paule et al.,
1993), linkage between isozyme loci {(Lundkvist,
1974a; Altukhov er al, 1986a; Muona et al., 1987,
Geburek & von Wuehlisch, 1989), and spruce conser-
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vation strategy (Finkeldey, 1992). Such information is
necessary for the development of proper breeding,
reforestation and gene conservation programmes (i.e.
Bergmann, 1991; Wellendorf, 1991). Clinal genetic
variation (Bergmann, 1978), the effects of air pollution
on the genetic structure (Scholz & Bergmann, 1984;
Bergmann & Scholz, 1985, 1987, 1989), and correla-
tion between isozyme genotypes and morphological
traits (Altukhov et al, 1986b; Bergmann & Ruetz,
1991; von Wuehlisch & Krusche, 1991) have also been
studied in Norway spruce using isozyme loci.

However, most of the above-cited investigations
have dealt with populations from the Central European
part of the Norway spruce range, although this species,
combined with Siberian spruce, has one of the largest
parapatric areas among forest trees, covering nearly
the entire area of Northern Eurasia and comparable
only with Scots pine. Norway and Siberian spruces are
considered to be different but very closely related
species with a wide zone of introgressive hybridization
along both sides of the Ural Mountains (Pravdin, 1975;
Schmidt-Vogt, 1977). Both species have a great
economic and ecological significance and are the
subjects of intensive breeding programmes. In addition,
the study of genetic processes in the zones of contact
and introgression of these species may yield valuable
data on spruce adaptation and evolution, Large-scale
population genetic studies can also help to analyse the
postglacial spruce distribution and clarify the routes of
reinvasion. However, neither the eastern range of
Norway spruce nor introgressive hybridization and
phylogenetic relationships between Norway and
Siberian spruces have been sufficiently studied using
isozyme loci as genetic markers (Gomory & Paule,
1990; Goncharenko er al, 1990; Goncharenko &
Potenko, 1991}

Norway and Siberian spruce species have two main
distinguishing morphological taxonomic traits — the
shape and size of their cones and the shape of the cone
scales (Pravdin, 1975). Norway spruce has large cones
(10-15 cm) and egg-shaped serrated scales (Pravdin,
1975). In this paper we refer to this spruce type as
‘pure’ Norway spruce. According to Rubner (1953), it
is found in three more or less isolated main parts of the
P. abies area in Central Europe: (1) the Alpine south-
eastern European region (Italy, former Yugoslavia,
Austria, Switzerland and southern Germany); (2) the
Hercynic-Carpathian region (central and eastern
Germany, western Poland, the Czech Republic,
Slovakia, Rumania and Bulgaria); and (3) the North-
Baltic region (Scandinavian countries, eastern Poland,
Byelorussia, western and central Russia). In contrast to
Norway spruce, ‘pure’ Siberian spruce growing in
northern Asia has smaller cones (4-8 cm) with oval,
smooth scales (Pravdin, 1975). In the zone of intro-
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gressive hybridization, a range of ‘intermediate’ types
of cone can be found. In fact, these traits are highly
variable. However, if we ignore variation among high
altitude varieties and some specific ‘ecotypes’, the
‘pure’ Norway spruce cone type is nearly dominant in
Central Europe and the ‘pure’ Siberian spruce cone
type becomes dominant east of the Ural Mountains.
Whereas in trees from the extreme edges of the
Norway-Siberian spruce area the two cone types look
like qualitative species-diagnostic traits, in the zone of
introgressive hybridization the cone traits seem to vary
in a more quantitative way with clinal-like variation. It
would be interesting to study how this morphological
variation corresponds to other genetic variation.

Thus, the main objectives of our study are the
following:

(1) to obtain data on the large-scale geographical
distribution of allelic and genotype frequencies at 26
isozyme loci, and to estimate the levels of intra- and
interpopulation genetic variation by studying Norway
and Siberian spruce populations sampled from differ-
ent parts of their ranges;

(2) to study the genetic structure of populations
sampled from the zone of supposed introgressive
hybridization between Norway and Siberian spruce;
(3) to estimate the level of genetic differentiation
between Norway and Siberian spruces, as well as to
reveal phylogenetic relationships between them and to
find the most diagnostic species-specific alleles and
loci.

Material and methods

Plant material and sampling sites

Designations and geographical origins of the popula-
tions of both spruce species investigated in the study
are shown in Table 1. The samples consisted of ten
bulked seed lots randomly collected from hundreds
(Germany and Sweden) or even thousands of trees
growing in each of the ten different, large natural
populations. We suppose that these samples correctly
represent the alleles of the original populations. Six
samples were collected from the ‘pure’ Norway spruce
populations (Germany, Sweden, Byelorussia, Ukraine,
Russia-T and Russia-V), two samples from the
supposed zone of introgressive hybridization (Ural and
Komi), and two from the ‘pure’ Siberian spruce popula-
tions {Kazakhstan and Siberia). This sampling strategy
was designed to maximize the chances of finding the
most species- or population-characteristic or species-
specific alleles and loci.
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Table 1 List of ten bulked spruce seed samples, indicating their designations and geographical origins

Geographical origin (country and name of region and/or nearest city) Co-ordinate Designation
‘Pure’ Picea abies
Germany, Westerhof 51°40'N, 10°30'E Germany
Sweden, Sorliden 64°50'N, 19°50'E Sweden
Byelorussia, Vitebsk 55°20'N, 31°15'E Byelorussia
Ukraine, Chernigov 51°20'N, 31°10'E Ukraine
West-Central Russia, Tula 54°30'N, 37°40'E Russia-T
West-Central Russia, Vyatsk 58°40'N, 49°45'E Russia-V
‘Hybrid’ zone
Central Russia, Ekaterinburg (Ural Mountains) 56°50'N, 60°45'E Ural
North-Central Russia, Komi Republic (North of Ural Mountains) 63°20'N, 73°30'E Komi
‘Pure’ P. obovata
Eastern Kazakhstan, Leninogorsk 50°30'N, 83°50'E Kazakhstan
Eastern Russia, Krasnoyarsk (Eastern Siberia) 51°20'N, 92°40'E Siberia

Electrophoretic analysis

Isozyme seed haplotypes and, consequently, allele fre-
quencies in a sample were inferred from isozyme
phenotypes visualized after starch gel electrophoretic
separation of haploid endosperm extracts and subse-
quent enzyme-specific staining. Fourteen isozyme
systems encoded by 26 loci were employed. Refer-
ences to the inheritance and buffer systems used for
isozyme separation are listed in Table 2. Detailed
descriptions of electrophoretic conditions, specimen
preparation, genetic interpretation of zymograms,
designations of allozymes, alleles and loci have been
given elsewhere (Altukhov et al., 1986a; Muona et al.,
1987; Bergmann & Scholz, 1989, Goncharenko &
Potenko, 1991). More than 135 seeds per locus, on
average, were analysed for nearly every seed sample,
which allowed us to search effectively for rare and
unique alleles. We refer to alleles occurring in popula-
tions with a frequency less than 0.05 as rare ones, and
to those occurring in one population or only in ‘hybrid’
populations as unique alleles.

Data analysis

Calculation of parameters of intra- and interpopula-
tional genetic diversity (mean number of alleles per
locus, A, percentage of polymorphic loci, P, mean
heterozygosity expected from Hardy-Weinberg pro-
portions, H_), estimation of genetic differentiation (F;
by Wright, 1978, and Nei, 1977) and genetic distances,
clustering and construction of dendrograms of spruce
populations were carried out using the IBM PC version
1.7 of the computer program Biosys-1 (Swofford &
Selander, 1981). Mean effective number of alleles per

locus or gene pool diversity (v, Gregorius, 1987), total
population differentiation of the gene pool (d,
Gregorius, 1987) and subpopulation genetic differen-
tiation of the gene pool (D]- and o, Gregorius, 1984b;
Gregorius & Roberds, 1986) were computed using the
Gsep program by E. Gillet (unpublished). D; is speci-
fied as the amount of genetic differentiation of the gene
pool of one (sub)population compared to the
remainder of the total population for infinite popula-
tion size (Gregorius, 1984b; Gregorius & Roberds,
1986). D, is the proportion of alleles by which one
spruce population differs from the remaining popula-
tions of the total Norway-Siberian spruce complex.
This proportion is defined as

1 L 1 ny
D,== = =l
J L/g] (2i§1'pl/ pl/‘)

where n and L are the numbers of alleles and loci
studied in population j, and p; and j, are the frequen-
cies of the alleles in the population j and in the remain-
ing populations of the total Norway-Siberian spruce
complex, respectively. The subpopulation genetic
differentiation is then defined by

6=Z C/-‘D/-,
7

where the weight c; expresses the relative size of the jth
(sub)population

(Zc/:l).

With our data we estimated different measures of
genetic distance and used several methods of cluster-
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Table 2 Enzymes, loci, numbers of alleles and buffer systems
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Enzyme name (abbreviation, E.C. reference) Locus N  Buffersystem  Reference to the genetic control
Acid phosphatase (APH, 3.1.3.2) Aph-2 5 TCLiB, TC, Tigerstedt, 1973; Bergmann, 1974b;
TVB Lundkvist, 1975
Formate dehydrogenase (FDH, 1.2.1.2) Fdh 4 TC Authors’ data
Glutamate dehydrogenase (GDH, 1.4.1.3) Gdh 2 TCLiB, TC, Lundkvist, 1979; Brunel & Rodolphe,
TVB 19835; Altukhov et al., 1986a; Cheliak
etal., 1987
Glutamate-oxaloacetate transaminase Got-1 1 TCLIB, Lundkvist, 1979; Poulsen et al., 1983;
(GOT,2.6.1.1) Got-2 4 TVB Brunel & Rodolphe, 1985; Altukhov
Got-3 5 etal., 1986a
Glucose-6-phosphate dehydrogenase Go6pdh-1 4 TC Altukhov er al., 1986a
(G6PDH, 1.1.1.49)
Isocitrate dehydrogenase (IDH, 1.1.1.42) ldh-1 4 TC,TVB, Altukhov er al., 1986a; Muona ef al.,
Idh-2 4  TCLiB 1987
Leucine aminopeptidase (LAP, 3.4.11.1) Lap-1 0 TVB Bergmann, 1973; Lundkvist, 1974b
Lap-2 9
Malate dehydrogenase (MDH, 1.1.1.37) Mdh-1 2 TC Lundkvist, 1979; Brunel & Rodolphe,
Mdh-2 4 1985; Altukhov ef al., 1986a; Muona
Mdh-3 4 etal, 1987
Mdh-4 3
Mdh-m 2
Menadion reductase (MNR, 1.6.99.2) or Mnr-4 or 6 TCLIiB, TC, Authors’ data; Muona ef al., 1987
diaphorase (DIA, 1.6.4.3.) or NADH- Dia-4 or TVB
dehydrogenase (NDH, 1.6.99.1) Ndh-2
Phosphoenolpyruvate carboxylase Pepca 4 TC Authors’ data
(PEPC, 4.1.1.31)
6-Phosphogluconate dehydrogenase 6-Pgd-1 3 TC Poulsen et al., 1983; Altukhov et al.,
(6-PGDH, 1.1.1.44) 6-Pgd-2 6 1986a; Krutovskii & Gafarov, 1987,
6-Pgd-3 5 Morgante et al., 1989; Giannini et al.,
1991b
Phosphoglucose isomerase (PGIL, 5.3.1.9) Pgi-2 7 TCLiB Poulsen er al., 1983
Phosphoglucomutase (PGM, 2.7.5.1) Pgm-1 4 TVB Poulsen et al., 1983
Pgm-2 7
Shikimic acid dehydrogenase Skdh-1 3 TVB Authors’ data; Muona ez al., 1987,
(SKDH, 1.1.1.25) Skdh-2 6 Morgante et al., 1989

N, number of alleles observed. TC, Tris-citrate, pH 6.5-7.4 (Siciliano & Shaw, 1976, with modifications); TCLiB, Tris-citrate/
Li-borate, pH 8.1 (Ashton & Braden, 1961); TVB, Tris-EDTA-borate, pH 8.0 (Siciliano & Shaw, 1976, with modifications).

ing, but almost all dendrograms resulted in nearly the
same topology. Thus, we will present the most
commonly used measures: Nei’s (1972, 1978) genetic
distance D, Cavalli-Sforza & Edwards’s (1967) chord
distance, Gregorius’s (1974, 1978, 1984a) distance d,,,
and the uroMma-dendrogram based on the D matrix
(Sneath & Sokal, 1973). The last two distances are
metric ones and can be used in other clustering
methods, such as the Wagner tree method (Farris,
1972), which unlike upGMA does not require the
assumption of equality of evolutionary rates. Thus, we
will also present the phylogenetic tree obtained by the
Wagner tree method of clustering based on the d,
matrix. This method minimizes the total branch length
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at each stage of clustering of OTUs. Nei's (1972)
genetic distances matrix was also used for principal
coordinate analysis of spruce populations and for
analysis of correlation between geographical and
distance matrices (normalized Mantel statistic Z) with
the aid of the computer program Nrsys-pc (Rohlf,
1988). Pearson’s linear and Spearman’s rank correla-
tions of allozyme allele frequencies with latitude and
longitude of P. abies and P. obovata populations were
studied using the sysTAT statistical computer package
(Wilkinson, 1987).

Differences in rare and unique allele frequencies
between P. abies, P. obovata and ‘hybrid’ populations
were estimated by Fisher’s criterion statistics,
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NN,
F= —p P L7 ,
(@1~ @2) NN,
where @, =2 arcsin \/27—1 and ¢, =2 arcsin \/27—2, P, and
P, are the frequencies of rare or unique alleles, and N,
and N, are the total number of alleles studied in
populations 1 and 2, respectively.

Results and discussion

Levels of genetic diversity and intraspecific genetic
differentiation among populations

The genetic parameters estimated from allele frequen-
cies of 26 isozyme loci are presented in Table 3 (the
allele frequencies are available on request). Expected
heterozygosity (H,), calculated from corresponding
Hardy-Weinberg proportions, averaged 0.252, ranging
from 0.192 in the German population to 0.284 in the
Swedish population of Norway spruce (Table 3). The

with a minimum of 2.5 in the German population and a
maximum of 2.9 in several other populations
(Byelorussia, Ukraine and Russia-T). The average
percentage of polymorphic loci (P) was 61.5 and
ranged from 53.8 per cent (Germany) to 65.4 per cent
(Byelorussia, Ukraine and Sweden). The significantly
lower level of genetic diversity in the German popula-
tion compared to other Norway spruce populations
agrees with previous data indicating that central Euro-
pean populations have consistently less genetic varia-
bility than north-eastern and Scandinavian populations
(Lagercrantz & Ryman, 1990; Bergmann, 1991). This
may have resulted from a relatively recent decrease in
effective population size (‘bottleneck’ effect) during the
last glaciation, which is assumed for many Central
European populations. An artificial origin of the
German population cannot be completely excluded,
although specialists consider this Westerhof population
in the foothills of the Harz Mountains to be indigenous
(Schmidt-Vogt, 1977).

mean number of alleles per locus (A ) was 2.8, again

Table 3 Genetic variation in ten populations of Picea abies and P. obovata
determined at 26 isozyme loci

Population name N+ SE! AZSE? P, %  H,+SE* A DS
‘Pure’ Picea abies
Germany 1328467 2.5+£02 538 0.192+0.038 1.236 0.132
Sweden 1252479 28103 654 0.28410.047 1.393 0.084
Byelorussia 137572 29+03 654 0.255+0.042 1.340 0.081
Ukraine 14424102 29102 654 0.259+0.042 1.349 0.077
Russia-T 14701150 29104 577 0250+0.045 1.331 0.054
Russia-V 1427+£109 2.8+03 61.5 0.272+0.046 1.371 0.073
Mean 1382497 2.8+£03 61.5 0252+0.043 1.337 0.084
‘Hybrid’ zone
Ural 1414179 29103 654 027810.045 1382 0.072
Komi 1368+72 29+04 57.7 0274+0.050 1.375 0.106
‘Pure’ P. obovata
Kazakhstan 1378493 25203 61.5 020910040 1264 0.148
Siberia 1434+145 231202 615 0216+0.040 1274 0.134
Mean 1406+119 24+02 61.5 0213+0.040 1.269 0.141

' Mean seed sample size per locus studied and standard error (SE).

* Mean number of alleles per locus and standard error (SE).

* Percentage of polymorphic loci (a locus is considered polymorphic if the frequency
of the most common allele does not exceed 0.95).

* Mean heterozygosity expected from Hardy-Weinberg proportions (unbiased
estimate according to Nei, 1978) and standard error (SE). It equals total population
differentiation of the gene pool, é+, for large sample size (Gregorius, 1987).

* Mean effective number of alleles per locus or gene pool diversity (Gregorius,
1987).

¢ The amount of genetic differentiation of the gene pool of one subpopulation to the
remainder of the total population for infinite population size ( Gregorius, 1984b;
Gregorius & Roberds, 1986).
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Siberian spruce populations have less genetic diver-
sity than Norway spruce. However, our preliminary
data do not allow us to conclude whether it is a species-
specific phenomenon and we need to confirm this by
further studies.

Because of the differences in allele frequencies at
several loci between Norway and Siberian spruces the
‘hybrid’ populations have the highest levels of genetic
diversity among all populations studied.

The data obtained confirm the high level of intra-
population variation found in previous studies on
spruce species, including Norway and Siberian spruce
(Table 4), as well as in conifers in general (Miiller-
Starck et al., 1992). According to the published data on
Norway and Siberian spruce, our values of genetic
diversity exceed all previous estimates based on a
similar number of loci. However, such comparisons
should be made with caution because the sets of iso-
zyme loci used are not the same in every case. On the
whole, our data correspond quite well with previously
published data.

Some rare alleles of the loci Fdh and Mnr-4 were
specific to one or a few populations of Siberian spruce,
and some rare and unique alleles of loci Aph-2, Fdh,
Got-2, Got-3, G6pdh-1, Idh-2, Lap-2, Mnr-4, Pepca
and 6-Pgd-2 were specific to one or a few populations
of Norway spruce.

Allele frequencies of some loci vary clinally across
the whole Norway-Siberian spruce area (Table S). To
answer the question of whether this is the result of
gradient selection on these alleles or the result of
gradual gene flow between Norway and Siberian
spruce through incomplete isolation-by-distance, addi-
tional investigations are necessary.

Genetic differentiation among populations was
analysed using F-statistics (Nei, 1977; Wright, 1978)
and the J-measure (Gregorius, 1984b; Gregorius &
Roberds, 1986). In spite of the very wide distribution
of the populations studied, levels of intraspecific
genetic  differentiation among populations were
comparatively low — only about 1-4 per cent of the
total intraspecific isozyme gene variation resulted from
interpopulation variation (F¢r=0.044 for Norway
spruce and Fg;=0.011 for Siberian spruce) and the
overwhelming proportion of the total variation, over
95 per cent, belonged to intrapopulation variation
(Table 6). The loci Gdh, G6pdh-1 and Pgm-2 of
Norway spruce, and Pgm-2 of Siberian spruce make
the most significant contributions to the intraspecific
differentiation of these species (Table 6). Since these
same loci also show clinal variation (Table 5),
geographical variation in these loci should be studied in
detail in future searches for possible adaptive loci.

Genetic distances between populations were also
small (e.g. for Nei’s (1972) genetic distance between
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populations of Norway spruce, D averaged 0.020 and
ranged between 0.007 and 0.051 (Table 7)). These
values agree with the calculations carried out on three
other spruce species. Nei’s genetic distance averaged
0.012 among six populations of P. glauca (Yeh &
Arnott, 1986; Alden & Loopstra, 1987), 0.013 among
32 populations of P. mariana (O'Reilly et al., 1985;
Yeh et al, 1986; Boyle & Morgenstern, 1987), and
0.014 among 13 populations of P. sitchensis (Yeh &
El-Kassaby, 1980; Yeh, 1981; Yeh & Arnott, 1986).
We have also summarized data on interpopulation
genetic differentiation of these three spruce species
using F¢p or analogous Ggp parameters of differentia-
tion (Table 4). These values ranged from 0.010 to
0.079 (average 0.048) and are very similar to our data
(Table 6).

The parameter D; gives a good estimation of the
contribution of each population to the total differentia-
tion of the Norway-Siberian spruce complex (Table 3).
The populations of Germany (Norway spruce) and
Kazakhstan (Siberian spruce), from the remote parts of
the Norway-Siberian spruce area, made the greatest
contribution to the total genetic differentiation and
turned out to be the most divergent. On the other hand,
Russian populations exhibited the smallest differentia-
tion and their gene pools were the most ‘representative’
of the total gene composition, which, hypothetically,
can be explained by their geographical proximity to the
ancient refuge in the Central Russian area. From this
point of view, they can be considered as the most
original populations keeping most of the ‘ancient’
spruce variation. Gene flow from the extreme popu-
lations could be another explanation of the weak differ-
entiation of the Russian populations, taking into
account their central position. However, both consider-
ations are rather speculative because of the generally
low Fyr levels.

The low levels of interpopulation differentiation
obtained for allozyme loci of Norway-Siberian spruce
are usual for conifers. Such factors as outcrossing,
wind-pollination, seed dispersal by wind (most
conifers) or by birds (stone pines, some white pines and
pinyons), wide continuous ranges, high population
density and large effective size are expected to reduce
the influence of genetic drift and, therefore, decrease
heterogeneity of allele frequencies and interpopulation
genetic differentiation for allozyme alleles that are
largely equivalent selectively (Hamrick et al, 1981;
Hamrick, 1983; Loveless & Hamrick, 1984; Hamrick
& Loveless, 1986; Hamrick & Godt, 1989). On the
other hand, recent analysis of isozyme alleles in forest
tree populations suggests that isozymes of the primary
metabolism have been optimized during evolutionary
epochs and, therefore, are present in all populations,
and that major allozyme polymorphism (where there is
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Table 5 Correlations (r) of allozyme allele frequencies with latitude and longitude of ten Picea abies and P. obovata populations

Latitude Longitude
Pearson’ Spearman? Pearson Spearman
Allele r P r P Allele r p r P
Fdh* 0.699 0.025 0.815 <0.01 Aph-2% 0.672 0.033 0.503 NS
Fdh'™ -0.659 0.038 -0.614 NS Aph-2% 0.858 0.002 0.796 <0.01
Gdh™ 0.647 0.043 0.644 <0.05 Aph-2" =0.802 0.005 -0.758 <0.05
Gdh'™ -0.647 0.043 —0.644 <0.05 Gépdh-1%° 0919 0.000 0.939 <0.01
Got-2'% -0.697 0.025 -0.636 <0.05 Gépdh-1'% -0.921 0.000 -0.939 <0.01
Lap-1'® —0.752 0.012 -0.772 <0.05 Gor-3" -0.738 0.015 —0.600 NS
Lap-1'"2 0.922 0.000 0.863 <0.01 Gor-3™ 0.751 0.012 0.699 <0.05
Lap-27 0.632 0.050 0.720 <0.05 Lap-1'% -0.670 0.034 -0.673 <0.05
Lap-2'% -0.907 0.000 —0.857 <0.01 Lap-1'% 0.452 NS 0.902 <0.01
Lap-2/% 0.635 0.048 0.564 NS Mdh-3" 0.681 0.030 0.464 NS
Mdh-3™ 0.611 0.060 0.778 <0.05 Mnr-4'™ —0.833 0.003 -0.709 <0.05
6-Pgd-2" 0.645 0.044 0.736 <0.05 Mnr-4'12 -0.626 0.053 —0.491 NS
6-Pgd-2'% -0.627 0.053 —0.815 <0.01 Mnr-471 0.848 0.002 0.930 <0.01
Pgm-1"" -0.767 0.010 -0.677 <0.05 Pepca'™ 0.645 0.044 0.661 <0.05
Pgm-1'% 0.639 0.047 0.490 NS Pepca'’ —0.658 0.039 —0.661 <0.05
Pgm-2% 0.802 0.005 0.438 NS 6-Pgd-1* 0.746 0.013 0.784 <0.05
Pgm-2'% -0.923 0.000 -0.863 <0.01 6-Pdg-1'% —0.659 0.038 —0.288 NS
Skdh-1% —0.691 0.027 —0.829 <0.01 6-Pgd-2" -0.607 0.063 -0.333 NS
Skdh-1"% 0.722 0.018 0.829 <0.01 6-Pgd-2'* 0.627 0.052 0.273 NS
Skdh-25" 0.710 0.021 0.732 <0.05 6-Pgd-37 -0.820 0.004 —0.842 <0.01
6-Pgd-3'% 0.825 0.003 0.855 <0.01
Pgi-2!" 0.651 0.042 0.430 NS
Pgi-2% -0.762 0.010 —0.809 <0.01
Skdh-2% 0.900 0.000 0.952 <0.01
Skdh-2!% -0.851 0.002 -0.842 <0.01

! Pearson’s linear correlation.
2 Spearman’s rank correlation.

more than one prevalent allele in the population) is the
result of heterozygote advantage arising from onto-
genetic differentiation in enzyme function (Bergmann
& Gregorius, 1993; Gregorius & Bergmann, 1994).

In spite of a generally low differentiation among
spruce populations within species and the low values of
genetic distances (Table 7), dendrograms based on
these distances basically reflect the geographical origin
of the spruce samples (Fig. 1). Moreover, the genetic
similarity found between the Swedish population and
some Central Russian populations of Norway spruce
supports the hypothesis that this species immigrated
from the Central Russian area into Scandinavia during
the postglacial expansion (Schmidt-Vogt, 1977;
Lagercrantz & Ryman, 1990).

Principal coordinates analysis based on the matrix of
Ner’s genetic distances between spruce samples has
also been performed (Fig. 2). This multidimensional
analysis produced almost the same result as the cluster
analysis. Genetic relationships between spruce popula-

tions, graphically presented in the three-dimensional
space of the first three principal coordinates, clearly
reflected the actual geographical distribution of these
populations (Fig. 2).

A statistically significant positive correlation
between geographical and genetic distances has been
found for Norway spruce populations (r = 0.62-0.78;
Table 8) indicating that long-distance migration with
gene flow and gradually changing selection, at least at
several allozyme loci, could play a significant role in
genetic differentiation. Analogous results have also
been obtained for many other conifers (see for review
Krutovskii et al., 1994), including spruce (Lagercrantz
& Ryman, 1990; Giannini ez al., 1991a).

We also analysed the correlation between geo-
graphical and Nei’s distances for individual loci. Of the
26 loci studied only Aph-2, Fdh, Gdh, G6pdh-1, Lap-1,
Lap-2, Mnr-4, 6-Pgd-2, 6-Pgd-3, Pgi-2 and Skdh-2
exhibit significant correlation (Table 8). This may
suggest a selective influence on certain alleles. Patterns

© The Genetical Society of Great Britain, Heredity, 74, 464-480),
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Without two populations from ‘hybrid’ zone

Including two populations from ‘hybrid’ zone

Population/Total

Population/Species Population/Total
. . . L Fgr, Fsr d,
Picea Picea Species/ Wright, Nei, Population/ Species; Wright, Nei, Gregorius,
Locus abies  obovata Both Total 1978 1977 Species Total 1978 1977 1987
Aph-2 0.023 0.013 0.027 0.034 0.060  0.064 0.026 0.025 0.051  0.055 0.124
Fdh 0.027 0.019 0.036 0.010 0.026  0.036 0.032 0.093 0.121  0.130 0.130
Gdh 0.119 0011 0.117 0.029 0.091 0.094 0.099 0.001 0.099 0.102 0.133
Gor-2 0.016 0.000 0.023 0.004 0.019 0.022 0.015 0.001 0.014 0.017 0.017
Gor-3 0.020 0.017 0.028 0.178* 0201 0.204 0.027 0.141 0.164 0.167 0.180
Gépdh-1  0.162 0.011 0203 0.198* 0361 0.363 0.179 0.188 0333 0.335 0.267
Idh-1 0041 0.008 0044 0.005 0.039  0.042 0.069 0.010 0.060  0.063 0.076
1dh-2 0.006 0.003 0.008 0.003 0.005  0.009 0.008 0.003 0.005 0.008 0.009
Lap-1 0.056 0.003 0.060 0.012 0.071 0.075 0.055 0.012 0.066 0.070 0.240
Lap-2 0.048  0.000 0.052 0.008 0.045  0.051 0.071 0.001 0.071  0.077 0.181
Madh-1 0.007  0.000 0.008 0.003 0.006  0.009 0.009 0.003 0.006 0.010 0.005
Mdh-2 0.007 0.000 0.011 0.003 0.008 0.012 0.005 0.006 0.011 0.015 0.013
Madh-3 0.007 0.007 0.010 0.020 0.030 0.034 0.011 0.023 0.033  0.037 0.043
Mdh-m 0025 0019 0.035 0.005 0.030 0.042 0.034 0.008 0.026 0.036 0.094
Mdh-4 0.017  0.009 0023 0.004 0.018 0.022 0.023 0.005 0.018 0.022 0.024
Mnr-4 0.009 0010 0013 0.128* 0140 0.142 0.011 0.104 0.114 0.116 0.197
Pepca 0.029  0.000 0.039 0.005 0.043  0.049 0.035 0.002 0.037 0.044 0.047
6-Pgd-1  0.012  0.005 0.012 0.071* 0.082 0.087 0.012 0.074 0.085  0.090 0.061
6-Pgd-2 0011 0013 0.017 0092* 0107 0.110 0.014 0.077 0.090 0.093 0.139
6-Pgd-3  0.054  0.005 0.068 0.038 0.104 0.107 0.063 0.038 0.099 0.102 0.123
Pgi-2 0.006 0.022 0013 0.014 0.026  0.029 0.021 0.011 0.032 0.035 0.098
Pgm-1 0.010 0005 0.014 0.003 0.011  0.015 0.009 0.003 0.012 0015 0.023
Pgm-2 0074 0.034 0089 0015 0.076  0.079 0.087 0.010 0.078 0.082 0.146
Skdh-1 0.005 0.000 0.002 0.030 0.032 0.035 0.003 0.035 0.038  0.041 0.036
Skdh-2 0.004 0.000 0.003 0.048* 0.051 0.054 0.004 0.037 0.041 = 0.044 0.086
Mean 0.044 0011 0.050 0.051 0.099 0.103 0.048 0.048 0.095  0.099 0.096

*Most diagnostic loci (variation at these loci is mainly determined by allele frequency differences between P. abies and P.

obovata).

of spatial differentiation seem to be the result of
complex interaction of gene flow and selection. Distri-
bution of genetic variability may be also affected by
‘evolutionary footprints’, such as, for example, spruce
populations descendant from different refuges.

Genetic differentiation between Norway and Siberian
spruces and their phylogenetic relationships

Genetic distances estimated between Norway and
Siberian spruce were relatively small (Table 7). Nei’s
distance (1972) equalled 0.046-0.103 (average 0.072).
Such levels of differentiation correspond to that
between subspecies or geographical races. For
example, the genetic distance between two closely
related North American spruce species P. glauca and
P. sitchensis averaged 0.121 (Yeh & Arnott, 1986).

© The Genetical Society of Great Britain, Heredity, 74, 464-480.

Good crossability, high variation of morphological
traits used as diagnostic features, existence of a wide
zone of introgressive hybridization and the lack of
species-specific diagnostic loci between Norway and
Siberian spruce also suggest that they be considered as
two subspecies or races (see also Lindquist, 1948;
Schmidt-Vogt, 1974). The loci Got-3, G6pdh-1, Mnr-4,
6-Pgd-1, 6-Pgd-2 and Skdh-2 make the most significant
contribution to interspecific differentiation of these
spruces, but only 5 per cent of the whole
Norway-Siberian spruce genetic variation results from
interspecific differences (Table 6). According to 6-
values, Got-3, G6pdh-1, Lap-1, Lap-2, Mnr-4, and
Pgm-2 are, on the whole, the most diverged loci in the
Norway-Siberian spruce complex (Table 6).

A relatively low level of divergence between Norway
and Siberian spruce can be explained by the existence
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Table 7 Genetic distance between Picea abies and P. obovata populations and species

Measure of Number of
genetic distance Species populations P. abies ‘Hybrid’ P. obovata
Nei (1978) unbiased Picea abies 6 0.019
(0.005-0.049)
‘Hybrid’ 2 0.034 0.017
(0.011-0.084) (0.017-0.017)
P. obovata 2 0.071 0.048 0.007
(0.044-0.102) (0.033-0.061) (0.007-0.007)
Nei (1972) P. abies 6 0.020
(0.007-0.051)
‘Hybrid’ 2 0.035 0.019
(0.012-0.085) (0.019-0.019)
P. obovata 2 0.072 0.049 0.008
(0.046-0.103) (0.035-0.063) (0.008-0.008)
Gregorius (1974) P. abies 6 0.092
(0.061-0.151)
‘Hybrid’ 2 0.116 0.095
(0.077-0.181) (0.095-0.095)
P. obovata 2 0.173 0.159 0.068
(0.140-0.198) (0.134-0.180) (0.068-0.068)
Cavalli-Sforza P. abies 6 0.140
& Edwards (1967) (0.096-0.221)
chord distance ‘Hybrid’ 2 0.162 0.136
(0.113-0.263) (0.136-0.136)
P. obovata 2 0.235 0.207 0.114

(0.203-0.276)

(0.185-0.225) (0.114-0.114)

UPGMA __: Germany
Byelorussia
Ukraine Picea
Sweden abies
Russia-V
] Russia-T
Ural " . 1
Komi :I Hybrid
r— Kazakhstan
L Sheria | P- obovata
L1 | I B L 1 1 1 D
008 007 006 005 004 003 002 001 O
‘Wagner Tree Method
Germany
ia
Picea
abies
] I.Hybridll
——Kazakhstan
1 Siberia ]P. obavata
Ll | L1 1 L1 J da
0 003 006 009 0.12

1=0.49
F=2701
8SD=69.18

coph. corr. =0.80

=032
F=5."71
SD=8.05

coph. corr.= 0,973

Fig. 1 upoMa and Wagner Tree
dendrograms of ten Picea abies and P.
obovata populations based on 26 iso-
zyme loci and D (Nei, 1972)and d,,
(Gregorius, 1974, 1978, 1984a) genetic
distance matrices, respectively. Good-
ness of fit statistics: f, summarized
absolute difference between patristic
and genetic distances (Farris, 1972); F,
congruence measure by Prager &
Wilson (1976); SD, percent standard
deviation (Prager & Wilson, 1976);
coph. corr., cophenetic correlation
(Farris, 1972).

© The Genetical Society of Great Britain, Heredity, 74, 464-480.
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Fig. 2 Principal Coordinate Analysis
using D (Nei, 1972) genetic distance
matrix based on 26 isozyme loci allele
frequencies of ten P. abies and P.
obovata populations. ‘Pure’ Picea abies:
Germ, Germany; Bye, Byelorussia;
Ukr, Ukraine; Swe, Sweden; RusV and
RusT, West-Central Russia, ‘Hybrid’
zone: H-Ural, Central Russia {Ural
Mountains); H-Komi, North-Central
Russia (North of Ural Mountains).
‘Pure’ Picea obovata: Kazak, Eastern
Kazakhstan; Siber, Eastern Siberia (for
more details see Table 1).

of several or many large common refuges of ancient
spruce species which occupied a large area in Eurasia
in the past. During glaciation, these large refuges could
have conserved essential genetic variation and have
thereby decelerated divergence and speciation
processes. Subsequent reinvasion along with secondary
contacts and hybridization between different popula-
tions could have prevented the establishment of new
species if the duration of isolation was not sufficient to
develop reproductive isolation mechanisms and
genetic ‘incompatibility’. Thus, the low level of diver-
gence between Norway and Siberian spruce can be
explained by the incomplete isolation within large
refuges and the short duration of their existence.
Nevertheless, a considerable amount of genetic differ-
ence accumulated during that time, because genetic
distances between Norway and Siberian spruce are 3-4
times larger, on the average, than those between popu-
lations of the same species (Table 7) and are compar-
able with distances reported by other authors for
subspecies or very closely related conifer species with
introgressive hybridization (Dancik & Yeh, 1983;
Wheeler et al., 1983; Jacobs et al., 1984; Conkle et al.,
1988; Millar ez al., 1988).

Introgressive hybridization between Norway and
Siberian spruces

The genetic structure of ‘hybrid’ populations (Komi
and Ural) is quite different from that of other popula-
tions. The ‘hybrid’ populations have significantly
higher levels of genetic variation than populations from
the most remote parts of the Norway and Siberian
spruce area. It is interesting to note that ‘hybrid’ popu-

© The Genetical Society of Great Britain, Heredity, 74, 464-480.
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Siber

lations have 2-4 times more rare alleles and 4-10

times more unique alleles, than ‘pure’ P. abies and P.
obovata populations (Table 9). This observation is
well-known as the ‘rare allele phenomenon’ charac-
teristic of interspecific hybrid zones (i.e. Barton et al,,
1983; Barton & Hewitt, 1985; Harrison, 1986;
Cesaroni et al., 1992). Woodruff (1989) even intro-
duced the term ‘hybrizyme’ for these unexpected allo-
zymes occurring within hybrid zones.

One possible explanation of their origin may be
intragenic recombination which can create a ‘new’
genetic variant among the progeny from heterozygous
parents. Thus, new variants are more likely to arise in
the progeny of highly heterozygous populations.
Hybridization between populations with different allele
frequencies will obviously increase individual hetero-
zygosity.

Another explanation is connected with the pheno-
menon of ‘hybrid dysgenesis’. One of its characteristics
is an increase in mutability among hybrid progeny
obtained from mating between distantly isolated popu-
lations. Nuclear—cytoplasmic control of different
mobile genetic elements in the genome of such hybrids
can be disrupted, favouring insertion mutagenesis
(Woodruff, 1989).

Certainly, both of the above-mentioned mechanisms
could be responsible for the high frequency of unique
alleles in the hybrid populations. More investigations
are needed to clarify this phenomenon.

The genetic relationships between populations from
the zone of introgressive hybridization and other
spruce populations also prove the existence of wide
hybridization. According to dendrograms and multi-
variate analysis based on genetic distances, ‘hybrid’
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Table 9 Frequencies and statistics of rare and private alleles among Picea abies, P. obovata and ‘hybrid’ populations

Total number of Number of

Frequency of
rare alleles

Number of
unique alleles

Frequency of
unique alleles

Population studied alleles rare alleles
Picea abies 18964 225
P. obovata 6197 32
‘Hybrid’ 6095 131

0.01187 8 0.00042
0.00516 1 0.00016
0.02149 11 0.00181

Fisher’s criterion statistics, F

Rare alleles

Private or unique alleles

Compared populations F P F P
‘Hybrid’ vs. Picea abies 2595 <0.001 9.34 <0.01
‘Hybrid’ vs. P. obovata 70.06 <0.001 10.70 <0.01
Picea abies vs. P. obovata 26.98 <0.001 0.92 Nonsignificant

populations always occupy intermediate positions
between ‘pure’ Norway and Siberian spruce (Fig. 1 and
2).
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