
Early Unix Culture at Coach House Press

John W. Maxwell

Canadian Centre for Studies in Publishing

Simon Fraser University

jmax @ sfu.ca

In the early 1970s, the Coach House Press, a tiny literary publisher and fine-art

printing house in Toronto drove headlong into the digital era, anticipating by three or

four decades the moves that their peers in the book industry are beginning to make only

now. How did this small press manage this, given marginal capitalization (indeed,

much of it was funded through arts grants), immature technologies, and the apparent

divide between the arts and sciences? The answers to this question offers numerous

insights into a cultural history of computing in the 1970s—which, by way of Internet

culture, still underpins much of our media ecology today.

A Call for Software Enthography

In his 2004 ACM Turing Lecture, computing pioneer Alan Kay remarked that the terms “computer

science” and “software engineering” are at best premature if not entirely regrettable attempts to

exhalt the intellectual status of computing. Of engineering, Kay went so far as to suggest that the

contemporary state of the art in computing is comparable to the construction of pyramids in

ancient Egypt. Kay’s concern was not to criticize the field, but to find a proper place from which to

approach computing education.

While computing may indeed lack the ‘rigorous’ intellectual backbones of science or engineering to

which it aspires, what it certainly does have is culture—or cultures, plural. This is an aspect well

recognized and represented in the study of “cybercultures” and “online communities” but still

nearly entirely effaced in the context of software development communities. Surely, in order to

engage in any kind of critical inquiry into digital technology, we need to be properly aware of

cultural forms and distinctions and of the meaning-making that cultures enable. In short there is a

needs for software ethnography. At the very least, there is a need for more cultural history of

software. Such is the orientation of the current paper. [1]

In this paper I will be (mis)representing two groups—the early Unix community of the 1970s and

early 1980s, and the people associated with a small, Toronto-based literary publisher and printer

called the Coach House Press during the same period. My relationship to both is marginal: I am not

old enough to have much direct experience with the old Unix world, but as a sometime software

developer and system administrator, I am among the generation who directly inherit the traditions

initiated by the early Unix users and developers—one of the strongest and most influential software

cultures in existence, whose traditions underlie practically everything we do with computers today.

My relationship to the Coach House Press is not so different; the firm exists today (under the name

Coach House Books), and a number of the principals have been in place for forty years or more, but

most of the story I tell here took place when I was still in elementary school. As such, my access to

the details of the story have been by way of interviews with the people who were there—on both

sides I have found plenty of old-timers happy to talk about their work. The collected traces of both

communities are for the most part readily available, this a significant byproduct of the virtues of

openness and documentation shared by both communities—and of course made much more

accessible by the Internet and free software.

For its part, the Coach House itself is still standing—just a block from Innis College on the

University of Toronto campus. In addition to housing the present operations of the publisher and

the contemporary printing operation, the premises are themselves a living—if somewhat crumbling

—museum of printing technology. Though I had been investigating Unix and other computing

cultures for years, [2] I began a series of pilgrimages to the Coach House in 2007, with the aim of

piecing together the story of how a tiny Canadian literary publisher managed to be at the forefront

of so many innovations in digital media.

The Early Unix Community

To speak of computing culture at all is to step out on a limb; there is precious little ethnography

documenting the rituals, kinship structures, and worldviews of various computing communities. [3]

Homi Bhabha once suggested (1994) that culture is knowable only in the encounter with difference,

and if this is the case, then the moment of encounter with something like Linux makes the point:

here is something very different than we are used to in our quotidian desktop environments.

Alternatively, if we treat culture (methodologically) as history, then we can note that today’s Linux

and the free/open source projects surrounding it are extensions of the much more venerable Unix

tradition.

Unix was originally developed by hackers Ken Thompson and Dennis Ritchie at AT&T Bell Labs

around 1970. It was something of an unofficial project that gathered momentum as programmers

both within AT&T and beyond came to appreciate its virtues. In 1973, Ritchie and Thompson

publicly unveiled it at an ACM conference, and Thompson took it with him when he went to teach

at UC Berkeley in 1974. Unix spread almost despite any formal efforts through the 1970s—AT&T

had been judged a monopoly by the US Justice Department in the 1950s, and the regulations which

followed this ruling effectively prevented AT&T from bringing software to market directly. Unix

spread, largely unofficially, by individual contact: Thompson, Ritchie, and their colleagues sharing

tapes with people they encountered, mostly at Universities—we might call this an early form of

‘peer to peer’ file sharing. Steven Weber (2004) writes:

Before an AT&T researcher wrote the first Unix-to-Unix copy program (UUCP) in

late 1976, it was almost impossible to send files over the Internet from one Unix

machine to another. So Unix spread in the most traditional of ways—scholars on

sabbatical and research fellows going back and forth between BTL, Xerox PARC, and

university departments. There was a physical community of Unix users long before

anything like a virtual community could have been imagined. (p 29)

Unix found an interested audience among computer researchers in the 1970s for a number of

reasons: it was small, modular, elegant in design, and portable from one kind of hardware to

another. It had little of the baggage of larger systems with corporate or large-project agendas. Most

importantly, it was open to a significant degree; Thompson and his collection of colleagues moved

the software forward by distributing tapes with bug fixes and updates, and the community

responded in kind, contributing their own fixes and patches and additional components. AT&T

corporate had little idea what to do with it for the first several years, and so they enabled a liberal

licensing scheme with a good deal of leakage.

John Unsworth (1995) noted the apparent paradox in the ‘open,’ ‘public,’ even ‘democratic’

technologies springing from the pure research divisions of American monopoly capital—the

Pentagon’s ARPA project, AT&T Bell Labs, Xerox PARC—and their relative insulation from

quarterly results and other real world economic pressures that collossal institutions could uniquely

provide. The ARPA community in the 1960s widely shared the fruits of their efforts, seeing their

work as an extension of the scientific/academic tradition of publishing research so that other

researchers could build upon it. The underlying technologies of the Internet and most of the

computing architecture surrounding it were developed and disseminated according to these ideals.

The Unix operating system and the community and tradition surrounding it also clearly embodied

this model of development, since it meant that the development community was distributed,

consisting of programmers and researchers from a number of different sites and institutions, some

corporate and some academic, contributing to a larger, common good.

By the mid 1980s, Richard Stallman’s articulation [4] of the rationale and ethics of of “free” software

put a formal face on a practice that had been widespread, though informal, for decades. By turns, [5]

Unix became the dominant computing platform by the 1980s—and ultimately the key platform for

the Internet—because of this development and distribution ethic. Its dominance continues today,

both in its obvious incarnation in the free-licensed Linux software, and in its less visible

manifestation behind the scenes in countless systems (Apple’s OS X a notable example). Unix’

cultural impact, however, is a deeper and more complex story.

To know Unix well is to come to appreciate its history—much moreso than in any other computer

system in widespread use today. Although many Unix and Unix-like systems today have familiar-

looking windows and menu-driven graphical interfaces, the “Unix way” is to type interactively in a

command shell, and the commands one issues are in many cases understandable only by reference

to the historical contexts that produced them. Eric Raymond’s (2003) Art of Unix Programming is a

contemporary case in point, a work of cultural ethnography at least as much as a guide to software

development, which proceeds by tracing the virtues and values emergent within this now venerable

culture of computing. Novelist Neal Stephenson wrote that “Unix is not so much a product as it is a

painstakingly compiled oral history of the hacker subculture” (Stephenson 1999). A better

characterization—and one that avoids the clichéd, pith-helmet anthropologist trope—comes from

software philosopher Ward Cunningham, who observed that “Unix is the Latin of computer

science,” to which some wag replied, “Except it ain’t dead yet.” [6]

When we consider that Unix and its direct descendants (like Linux) are the visible and lasting fruits

of J.C.R. Licklider’s ARPA vision from the early 1960s (almost literally kept alive through the dark

ages by monks) and that they serve as the foundation stones of the Internet, the Web, and the

free/open source software movement, one begins to appreciate Unix’s pervasiveness

and—significantly—its resilience in the face of wave after commercial wave of ‘innovation’ designed

to make it obsolete. Nikolai Bezroukov wrote that “Unix Renaissance OSS proved to be the most

important democratic movement in software development in the 20th century” (Bezroukov 1999).

That said, there is no doubt that the tradition which comprised Unix and the bulk of the free

software movement is a curriculum par excellence, that it constitutes a literacy in the richest sense

of the word. In his excellent work on the culture of free software, anthropologist Chris Kelty notes

that Unix’s long term survival is partly due to its existence as a pedagogical system in addition to

being a functional computing system. Kelty notes that John Lions’ seminal 1977 document, A

Commentary on the Sixth Edition UNIX Operating System was essential to the development of

community ownership of Unix—making Unix a pedagogical text rather than it being proprietary

code. Lions, an Australian professor, produced a document which both exposed and annotated the

Unix source code—a tremendous boon to students and researchers working with the system. Lions’

Commentary was illicitly photocopied repeatedly and passed hand to hand, as Unix itself had

passed, by tape, from lab to lab. Kelty writes,

Lions’ commentary ... shows how UNIX was ported not only to machines (which were

scarce) but also to the minds of young researchers and student programmers (which

were plentiful). (2008 p 133)

“Four remarkable things were happening at the same time. One, we had discovered the

first piece of software that would inspire rather than annoy us; two, we had acquired

what amounted to a literary criticism of that computer software; three, we were

making the single most significant advancement of our education in computer science;

and four, we were breaking the law.” (Peter Reintjes, quoted in Kelty p 134)

Lions’ Commentary was not the only pedagogical text in circulation among this new community.

Another key text was Brian Kernighan & P.L. Plauger’s 1976 book, Software Tools, a book about

Unix for people who didn’t have access to Unix itself. The book introduced core Unix ideas and

structured programming methods but implemented them in the older and relatively ubiquitous

Fortran language by way of a preprocessor. “RATFOR provided C-like control structures to

Fortran.” [7] Software Tools extended the Unix community and its virtues well beyond the still-small

installed base of the software itself.

Even more fundamentally, the Unix system documentation—the collection of “man pages”—was

distributed within the system itself, and a supporting collection of documentation tools allowed

them to be viewed, formatted, and printed. In fact, Unix’s first real “application” at AT&T was text

processing; this document-handling functionality should be seen as a key part of Unix’ appeal as a

portable programmer’s toolkit, containing everything required to make the system maintainable. It

also underscores the idea that Unix is and was a text.

Meanwhile, in Toronto...

The Coach House Press was founded in Toronto in 1966 by printer Stan Bevington and has

remained a central fixture of the literary scene in Canada ever since, having published work by the

likes of Margaret Atwood, Michael Ondaatje, bpNichol, George Bowering, and more recently Guy

Maddin, Sean Dixon, and Christian Bök. The firm has traditionally operated on two fronts: a

printing operation based on the ground floor and a publishing operation upstairs; these two were

separated briefly in the mid-1990s as the firm faced financial difficulties, but were re-united in 1998

under the name Coach House Books.

Always an innovator in the way he ran the printing operation, Bevington became acquainted in

1972 with Professor Ron Baecker, who ran the Dynamic Graphics Project at the University of

Toronto. Baecker, an MIT Media Lab alumnus, was working on advanced computer graphics and

set up a lab run in similar fashion to the ARPA-funded labs he had seen in the 1960s. Baecker’s grad

students were exploring a variety of graphics and imaging applications, including typesetting.

Baecker’s lab and grad students—and in particular, a grad student named David Tillbrook, whose

thesis was on an automated newspaper layout system—had a major influence on the people at the

Coach House.

Bevington, Baecker, Tilbrook, and ex-Globe & Mail computer programmer David Slocombe, along

with Ed Hale from Mono Lino Typesetting began exploring the state of the art of computer-driven

typesetting. In the early 1970s, this meant producing punched paper tape that could automatically

drive a linotype machine to produce lines of lead type. But the Coach House group stretched far

beyond this relatively straightforward technique, directly connecting an early minicomputer (a

Datapoint 2200) to a Mergenthaler V-I-P (Variable Input Phototypesetter). A computer-driven

phototypesetter meant that the process could be manipulated and fine-tuned at both ends: both in

the composition of the set type, and in the typographic image itself, as this was generated entirely

photographically instead of being cast in metal.

About the same time, Baecker’s lab at the University of Toronto brought in one of the first Unix

installations in Canada, running on a PDP-11/45 with a high-end Three Rivers “Graphic Wonder”

display. Not only did this allow the group to explore digital typesetting, but also brought the new

Unix technology and culture directly to the Coach House. [8]

Unix concepts preceded real UNIX at Coach House. In the late 1970s, Unix and C were unavailable

to Coach House programmer David Slocombe on the Datapoint 2200. The bridge came from

Kernighan & Plauger’s book Software Tools, which inspired Slocombe to create his own

preprocessor, not for Fortran but for the 2200’s 8008 assembler. Based on the preprocessor,

Slocombe next created a recursive macro processor that became a typesetting language for driving

the Mergenthaler V-I-P. The macro processor’s syntax was influenced by contemporary

developments in GenCode and (S)GML by Charles Goldfarb at IBM, which they had seen at a GCA

conference.

Stan Bevington reported incorporating real Unix into the Coach House production workflow via a

leased line to a University of Toronto machine, [9] possibly the UTZoo host which was a key Usenet

node in the 1980s. A 1984 map of Canadian Usenet hosts shows 68 nodes; 64 of them were

university-based; 3 were at software companies, and one at Coach House Press. [10]

By the early 1980s, Unix-based workstations became available. In 1984, Bevington put together arts

grant money (~$30k) to buy a Pixel Systems workstation. The arrival of Unix in various forms

meant a move away form David Slocombe’s preprocessor, and moving to Unix tools.

Troff and the Documentor’s Workbench

One of the earliest and most successful applications for the Unix operating system was troff, a

text-formatting and printing program which could drive a Graphic Systems C/A/T typesetter at

AT&T Bell Labs. Troff (roughly, “typesetter runoff”) was developed in the early 1970s at Bell Labs

by Joe Ossanna, one of the early Unix team. Troff became the core of a suite of Unix tools called The

Documentor’s Workbench, which played a key part in the evolution of the Unix community: from

almost the very beginning, the Unix “man” pages were essential to the system and its adoption.

Troff and related tools were required to make the documentation system work: they were part of

the self-reflective nature of the software, in that one used Unix to learn Unix.

Troff proved to be a popular tool. By 1979, AT&T’s Brian Kernighan had created “ditroff” or device-

independent” troff, to enable use with devices other than the C/A/T typesetter. It was good, but not

good enough for the trade printers at the Coach House. Coach House programmer David Slocombe

noted that though ditroff supported proportional fonts, “it was woefully deficient in quality from a

commercial typesetting perspective. It was good enough for academics and grad students ... but not

good enough for commercial book publishing.” [11]

Slocombe’s work at Coach House in the early 1980s further extended the troff package such that a

significant amount of troff development was happening in Toronto. In 1984, with the goal of

making troff into a typesetting tool capable of passing muster with professional printers (e.g.

kerning, hyphenation and justification), Bevington, Slocombe, Patrick Dempster, and the

writer/impresario Yuri Rubinsky spun off a new company, SoftQuad, to develop and market an

enhanced version called sqtroff.

SoftQuad set out to make production quality typesetting software for UNIX.

“Production quality typesetting’’ in this regard means the type of type (so to speak)

that would be acceptable in an old-style craft printing house. There is quite literally

nothing available that is up to these typographer’s standards. Not Scribe. Not TeX.

Not AT&T’s ditroff. Not Mac-Anything. Not PageMaker. All these are fine products in

their own field, have been used to typeset many papers and theses and a small

mountain of books. But none of them will stand up in a job printing shop with high

standards and commercial pressures. (Ian Darwin, UseNet comp.text newsgroup,

6-Feb-87)

By the mid- to late-1980s, SoftQuad’s focus began to fall in line with a new international standard

for text and document processing: Standard Generalized Markup Language (SGML). Seeing the

opportunity, Peter Sharpe at SoftQuad created software called Author/Editor, which was the first

dedicated authoring environment for SGML. At the Coach House Yuri Rubinsky went so far as to

train the Coach House authors—Margaret Atwood among them—to use the Author/Editor

software to mark up their own manuscripts in SGML, an otherwise unheard-of merging of talent

and technique. In a sense, the Coach House led Unix culture well out of its native habitats and into

the literary establishment, finding common political and ethical ground there.

SoftQuad became one of the world’s leading SGML software developers, a position it would hold

for decades. SoftQuad itself branched out into Web-editing software with their pioneering

HotMetal program (the web’s HTML being a direct application of SGML). HotMetal later evolved

into the industry-leading XMetal software for editing XML content.

By the early 1990s, Macintosh-based desktop publishing technology had become mainstream, and

the World-Wide Web was born. At the Coach House, SGML-marked manuscripts were used to

feed the more contemporary QuarkXPress layout program (Alschuler 1995, 152ff). But with the

advent of maturing desktop publishing software, the point of a computer-driven typesetting system

faded in favour of of an integrated imaging model based on Adobe’s Postscript technology—the

paradigm still dominant there today. At the Coach House, the old Unix machines are still there,

sharing space with the collection of linotype and letterpress equipment. But working,

contemporary Unix systems of course run the company’s online presence.

Metanarratives: Innovation and Resilience

Today, in a period when book publishers worldwide are facing the challenges of “digitization”

—often involving making heady investments in XML-based ‘workflows,’ the story of the Coach

House’s early experience stands out: here was a small art printer and poetry house that not only

adopted this technology but innovated and indeed owned a good chunk of the state of the art for a

time. The Coach House had no large capital base to draw on (unless one counts the Canada Council

for the Arts) and no computer science PhDs (except those numbered among their friends), but

certainly had no trouble innovating.

But innovation is not the only theme in the Coach House story. Resilience is another—for the

professional printers at Coach House Press, this massive importation of technological culture and

technique was unambiguously for the purpose of producing fine printing work, a tradition and

aesthetic with a far deeper roots, and, arguably, far more stable virtues and ideals. The Coach House

was not interested in transformation for transformation’s sake; the books and posters and

broadsheets that came out of the press through these years were not recognizably digital, neither

nor aesthetic sensibility nor origin (cf. the easily identifyable ‘DTP’ look that proliferated in the late

1980s when Macs and laser printers became affordable). Far from it; the edge that Stan Bevington

and his collegues sought was to be a better fine printer, to be able to achieve levels of quality and

efficiency that either gave them a competitive advantage or satisfied their brocoleur natures.

We are at this point in history accustomed to celebrating the transformative potential of digital

technoculture. But there is also a range of expression that includes the hybridization of cultural

moments; I believe the Coach House Press story demonstrates this, and it may be that a relatively

mature digital culture like Unix more readily reveals such examples. I believe also that this

underscores the democratic potential of open systems and free software (though these are both

terms applied retroactively to the Unix phenomenon). That a system can spawn both large- and

small-scale promethian stories (as with the Internet and cyberculture in general) as well as more

craft-oriented and almost conservative movements—without internal contradiction—speaks to the

enormity of its scope. My hope is that this serves as an invitation for a good deal more inquiry into

the software culture.

Notes

[1] Cultural histories of software are few and far between; Christopher Kelty’s

(2008) Two Bits: The Cultural Significance of Free Software is an exceptionally

good one. The appearance of this text bodes well for this field of study.

[2] See my PhD Dissertation (University of British Columbia, Curriculum and

Instruction): Tracing the Dynabook: A Study of Technocultural

Transformations, available at: http://thinkubator.ccsp.sfu.ca/Dynabook

/dissertation

[3] Notable works that might be called ethnography include Peter Salus' (1994) A

Quarter Century of Unix and (2008) The Daemon, the Gnu, and the Penguin;

Eric Raymond’s (2003) The Art of Unix Programming; and his Jargon File at

http://catb.org/jargon/

[4] See the GNU Project and Free Software Foundation: http://www.gnu.org

[5] The story of Unix' survival through the 1980s is too long and complex to

recount here. See Kelty 2008 for an excellent treatment.

[6] See the entry for "UnixCulture" at the Portland Pattern Repository:

http://www.c2.com/cgi/wiki?UnixCulture

[7] David Slocombe, personal interview, Toronto ON, June 17, 2008.

[8] Salus’ A Quarter Century of Unix notes that several of the Bell Labs Unix

team had been alumni or otherwise associated with the University of

Toronto. Ron Baecker’s colleague Mike Tilson received the Unix tapes

directly from Ken Thompson in 1974.

[9] Stan Bevington, personal interview, Toronto ON, June 14, 2007.

[10] Henry Spencer, "CanNet map" post to can.general Usenet group, May 14,

1984.

[11] Slocombe, interview.

References:

Alschuler, Liora. ABCD . . . SGML: A User's Guide to Structured Information. Boston: International

Thomson Computer Press.

Bezroukov, Nikolai. 1999. “Open Source Software Development as a Special Type of Academic

Research: Critique of Vulgar Raymondism.” First Monday 4 (10).

Bhabha, Homi. 1994. “The Commitment to Theory,” in The Location of Culture. London: Routledge.

Coffee, Clark & Daniel Haagens. n.d. “Graphion Museum: Old Phototypesetter Tales.” Available at

http://www.geocities.com/danhaag/oldtype.tpl.html

Darwin, Ian F. & Geoffrey Collyer. 1984. “A History of UNIX before Berkeley: UNIX Evolution:

1975-1984.” Available at http://www.darwinsys.com/history/hist.html

Kelty, Christopher. 2008. Two Bits: The Cultural Significance of Free Software. Duke University

Press.

Kernighan, Brian W. 1982. “A Typesetter-independent TROFF.” Computer Science Technical

Report No. 97. AT&T Bell Laboratories.

Kernighan, Brian & P.L. Plaugher. 1976. Software Tools. Addison-Wesley.

Lions, John. 1977. A Commentary on the Sixth Edition of the UNIX Operating System. Unpublished

paper. Available at http://www.lemis.com/grog/Documentation/Lions/

Powers, Shelley & Jerry Peek. 2002. UNIX Power Tools, 3rd Edition. Sebastopol: O’Reilly.

Raymond, Eric S. 2003. The Art of Unix Programming. Reading: Addison-Wesley.

Salus, Peter H. 1994. A Quarter Century of UNIX. Reading: Addison-Wesley.

Salus, Peter H. 2008. The Daemon, the Gnu, and the Penguin. Reed Media.

Stephenson, Neal. 1999. In the Beginning was the Command Line. New York: Avon.

Weber, Steven. 2004. The Success of Open Source. Cambridge: Harvard University Press.

Wershler-Henry, Darren. 2000, Jan. “Coach House and Technology.” Coach House Books website,

circa 2000–2001.

Many thanks to David Slocombe, Stan Bevington, Ron Baecker, and Darren Wershler-Henry for their

time and input in the preparation of this piece.

