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Symmetry is a powerful tool in solid-state physics. All crystals can be clas-
sified by symmetry. The following is a summary of the theory of symmetry in
crystals. A complete discussion of finite point groups and crystal systems is
presented, plus a brief overview of space groups and the representations of the
symmetry groups.

1 Point Groups

A point group is a group of symmetries that leaves at least one point in space
fixed, that is, a subgroup of the orthogonal group O(N), where N is the di-
mension of the space. The elements of a point group are usually called point
symmetries. Point symmetries are useful in chemistry in describing molecules.
Although molecules are not our interests here, the following sections are devoted
to thorough discussion of the theory of point groups because it is indispensable
for the classification of crystal lattices. We shall only consider finite point groups
since a lattice cannot possess infinite point symmetries.

1.1 Point Symmetry Operations

We will use the Schoenflies notation to indicate the symmetry elements. Every
point symmetry operation belongs to one of the following categories:

E. Identity.
Cn. Rotation by an angle 2π/n about an axis (called an n-fold axis and usu-

ally denoted by just n). In 2 dimensions the axis should be taken perpendicular
to the plane. Note that C1 is the same as identity (C1 = E).

σ. Reflection about a plane (called the mirror and denoted by m). In 2
dimensions the mirror should be taken perpendicular to the plane.

i. Inversion with respect to a point (called the inversion center). Note that
in 2 dimensions inversion is the same as rotation by π (i = C2), and that in 3
dimensions an inversion is the same as a rotation by π followed by a reflection
about a plane perpendicular to the axis (i = S2, see below).

Sn. Improper rotation, defined to be a rotation Cn (sometimes called a
proper rotation) followed by a reflection about a plane perpendiculat to the axis
(so Sn is only defined in 3 dimensions). See Figure 1. It is easy to see that the
two operations commute, so Sn = Cn · σ = σ · Cn. As noted above, S2 is the
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Figure 1 Improper Rotations. •’s represent points above the plane and ◦’s
represent points below the plane.

same as inversion (S2 = i). Also, since C1 is identity, S1 is the same as pure
reflection (S1 = σ).

1.2 Conbinations of Point Symmetry Operations

We show some important results of two successive operations. Here we focus on
3 dimensions. The 2-D case is a simplification of the following discussion.

Combination of two rotations. Since point symmetries must leave one
point in space fixed, we only consider rotations with intersecting axes. The
combination of such rotations is another rotation. This can be easily seen by
looking at the motion of points on the unit sphere centered at the intersection
O of the axes (Figure 2). In the figure, a rotation by α about OA followed by
a rotation by β about OB yields a rotation by γ about OC. If we define the
positive directions of α, β, γ properly, then in a shorthand way, we can write
Bβ ·Aα = C−γ , or

Cγ ·Bβ · Aα = E.

This relation should be read in the sense that whenever two of the operations
are given, the third follows.

By elementary spherical trigonometry, it can be proved that the angles sat-
isfy the following formula:

cosw =
cos γ

2 + cos α
2 cos β

2

sin α
2 sin β

2

(1)

where w is the angle between OA and OB. Since cosw should be between −1
and 1, the angles α, β, γ cannot take arbitrary values. Furthermore, for finite
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Figure 2 Combination of two rotations.

point groups α, β, γ must all be 2π divided by some integers, so there is an even
stronger restriction on the rotational symmetries a system can simultaneous
have. For example, a system cannot have a 4-fold axis and a 3-fold axis in
perpendicular, for if we take α = π/2, β = 2π/3, and w = π/2 in (1), we get
γ = cos−1(−3/4), which is not commensurable with 2π and thus will generate
an infinite group.

Combination of two reflections. A reflection about the mirror m1 fol-
lowed by a reflection about the mirror m2 yields a rotation by 2μ about the line
of intersection A of m1 and m2, where μ is the angle between the two mirrors
(Figure 3). In a shorthand way, we write σ2 · σ1 = A2μ, or

A−2μ · σ2 · σ1 = E.

Again, this relation should be read in the sense that whenever two of the op-
erations are given, the third follows. Thus the combination of a rotation and
a reflection about a mirror containing the axis of rotation is a reflection about
another mirror containing the axis such that the angle between the mirrors is
half the angle of rotation.

Combination of a rotation and an inversion. Due to the requirement
that a point in space is fixed, the axis of rotation must pass through the inversion
center. The result is an improper rotation (Figure 4). By comparing Figure 4
and Figure 1, we have the relations i · Cn = S−1

2n if n is odd, i · Cn = S−1
n
2

if

n = 4k + 2 for some k ∈ N, and i · Cn = Sn if n = 4k for some k ∈ N, or

S2n · i · Cn = E if n is odd

Sn
2
· i · Cn = E if n = 4k + 2 for some k ∈ N

Sn · i · Cn = E if n = 4k for some k ∈ N
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Figure 3 Combination of two reflections.

As before, these relations should be read in the sense that whenever two of the
symmetry elements are given, the third follows. Note that by taking n = 1,
we see that the combination of an inversion and a reflection (S1) such that
the mirror contains the inversion center is a rotation by π (C2) about the line
passing through the inversion center and perpendicular to the mirror.

1.3 Classification of Finite 2-D and 3-D Point Groups

The relations derived in 1.2 reduce the work of classifying finite point groups
significantly. The complete classification is recorded here.

All finite 2-D point groups belong to one of the two infinite series Cn and

Figure 4 Combination of a rotation and an inversion.
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Dn. The cyclic group Cn consists of elements E,Cn, C
2
n, ..., C

n−1
n (note that Cn

denotes both the group and the symmetry operation.) The dihedral group Dn

is generated by the rotation Cn and a reflection σ. Note that given a mirror
containing an n-fold axis, there must be n−1 other mirrors, each one separated
from the neighboring mirrors by an angle π/n. Hence in Dn there are totally n
reflections. The Dn thus contains 2n elements.

In three dimensions, up to conjugacy all of the finite point groups belong
to one of the eight infinite series Cn, Cnh, Cni, Cnv, Sn, Dn, Dnh, Dnd except for
seven high symmetry groups T, Td, Th, O,Oh, I, Ih. These families are charac-
terized as follows. (Note that the meaning of Dn is different from that in the
2-D case.)

Cn is the cyclic group of order n, consisting of E,Cn, C
2
n, . . . , C

n−1
n .

Cnh is obtained by adding to Cn a mirror perpendicular to the n-fold axis.
It has 2n elements. Note that when n is even, the group automatically contains
an inversion center (because the combination of a reflection and a rotation by
π about the axis perpendicular to the mirror is an inversion.) When n = 1, it
is usually denoted by Cs rather than C1h.

Cni is obtained by adding to Cn an inversion center (which must lie on the
axis of rotation). As we see above, Cnh already contains an inversion center
when n is even, so in this case Cni and Cnh are the same. When n is odd,
they are different. The Cni group has 2n elements. When n = 1, it is usually
denoted by Ci.

Cnv is obtained by adding to Cn n mirrors containing the n-fold axis. It has
2n elements. When n = 1, it is easy to see that C1v = C1h = Cs.

Sn is the group generated by the improper rotation Sn. Note that the group
Sn does not necessarily contain Cn as a subgroup. The group Sn is the same
as Cnh when n is odd and the same as Cn

2
i when n = 4k + 2 for some k ∈ N

(cf. Figure 1). When n divides 4, however, Sn is different form any of the
above groups. The group Sn has [2, n] (the least common multiple of 2 and n)
elements.

Dn is obtained by adding to Cn n 2-fold axes perpendicular to the n-fold
axis. It has 2n elements.

Dnh is obtained by adding to Dn a mirror perpendicular to the n-fold axis.
It has 4n elements. Note that the combination of the n 2-fold axes and the
mirror containing them gives n mirrors, each containing the n-fold axis and one
of the 2-fold axes, so equivalently we can say Dnh is obtained by adding to Dn

these n mirrors. Like Cnh, Dnh contains an inversion center if n is even.
Dnd is obtained by adding to Dn n mirrors, each containing the n-fold axis

and lying between two 2-fold axes. It has 4n elements. When n is odd, there
will be a mirror perpendicular to each 2-fold axis, and their combination yields
an inversion. Hence Dnd contains an inversion center if n is odd.

T is the group of the rotatinal symmetries of a regular tetrahedron. It
contains four 3-fold axes (each through a vertex) and three 2-fold axes (each
bisecting a pair of opposite edges). The group T has 12 elements.

Td is obtained by adding to T six mirrors, each containing an edge and
bisecting the opposite edge. It is the full tetrahedral symmetry group and has
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24 elements.
Th is obtained by adding to T an inversion center. It has 24 elements.
O is the group of the rotatinal symmetries of a regular octahedron or a cube.

It contains three 4-fold axes, four 3-fold axes, and six 2-fold axes. The group O
has 24 elements.

Oh is obtained by adding to O an inversion center. It is the full octahedral
or cubic symmetry group and has 48 elements.

I is the group of the rotatinal symmetries of a regular icosahedron or a
regular dodecahedron. It contains six 5-fold axes, ten 3-fold axes, and fifteen
2-fold axes. The group I has 60 elements.

Ih is obtained by adding to I an inversion center. It is the full icosahedral
or dodecahedral symmetry group and has 120 elements.

2 Crystal Systems

2.1 Translational Symmetry

A crystal consists of atoms that repeat a translationally periodical pattern in
space. (We think of crystals ideally, of course. Any real crystal has a finite
size.) We say two points in the crystal are equivalent if their environment are
the same, i.e. if they are indistinguishable by their surroundings. Fix a point in
space. Then all points equivalent to this reference point form a lattice. Each of
these points is called a lattice point. If we connect the lattice points with straight
lines we will divide the space into infinitely many unit cells. The corners of the
unit cell are the lattice points. In 3 dimensions, the unit cell is a parallelepiped,
and thus can be specified by the length a, b, c of its edges and the angle α, β, γ
between the edges (Figure 5). The distances a, b, c are the units of translational
symmetry; that is, the system is invariant under translations of a, b, c along the
corresponding directions, or their combinations. A position inside the unit cell

Figure 5 The unit cell.
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(a) (b)

(c)

Figure 6 (a)(b) Different ways to choose the unit cell.
(c) A “double” unit cell.

can be described by a 3-tuple (x, y, z) where 0 ≤ x, y, z < 1, meaning that we can
get to that position by starting from the lattice point and moving the distances
xa, yb, zc parallel to the first, the second, and the third edges, respectively. Note
that given a lattice there are infinite many ways to choose the unit cell (Figure
6(a)(b)). It is even permissible to have lattice points inside the unit cell (Figure
6(c)). The unit cell is called primitive if it has no lattice point inside; otherwise
it is centered.

It should be expected that not all point symmetries can be satisfied by a
lattice since only a few of them are compatible with translational symmetry.
Consider the 2-D case. Suppose the 2-D lattice satisfies some rotational sym-
metry Cn. For convenience we choose our reference point to be the n-fold axis.
By translational symmetry the lattice points equivalent to this point are also
n-fold axes. In Figure 7 all points are n-fold axes. The two points B′, C′ are
obtained from B,C through a single rotation by an angle 2π/n about A,D,
respectively. The lattice structure requires AD = la and B′C′ = ma for some
l,m ∈ N, where a is the distance between A and B. From the geometry of the
figure we have

B′C′ = AD − 2a cos
2π

n
.

Hence

cos
2π

n
=

l −m

2
.

But cos 2π
n should be between −1 and 1, so the only valid values of l − m are

2, 1, 0,−1,−2, in which cases we get n = 1, 6, 4, 3, 2, respectively. Therefore
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Figure 7

the only rotational symmetries a lattice can satisfy are C1, C2, C3, C4, C6. The
corresponding dihedral symmetriesD1, D2, D3, D4, D6 are also permissible since
we can picture lattices satisfying these symmetries easily. These are the only 10
point groups that may be consistent with the 2-D lattice.

2.2 The 32 Crystal Classes

Now let’s turn to the 3-D case. Suppose the lattice has a rotational symmetry
Cn. Fix a point on the axis of rotation. It is easy to see that the plane perpen-
dicular to the axis and containing this point also contains infinitely many lattice
point equivalent to it. These points thus form a 2-D lattice. The 2-D lattice
in the plane has to be invariant under rotation about the axis. It is immedi-
ate then that in the 3-D case the possible values of n are also 1, 2, 3, 4, 6. The
only difference is that a 3-D lattice may possess multiple rotational symmetries.
Recall the cimbination of two rotational axis always yields the third and their
relation is restricted by Equation (1). We can use a set of three numbers to
denote different ways of combinations. For example, 234 means a 2-fold axis
and a 3-fold axis that yield a 4-ford axis. There are only six permissible combi-
nations: 222, 223, 224, 226, 233, 234 (Figure 8). The angles between the axes
are given by (1). The first four combinations generate the dihedral groups. The
combination 233 gives the tetrahedral group, and 234 gives the octahedral group
(Figure 9). The five cyclic groups C1, C2, C3, C4, C6 and the six combinations
D2, D3, D4, D6, T, O are the only point groups a lattice can satisfy that contain
only rotations. The first two rows of Figure 10 are these groups. The third row
has only one group S4, which is generated by the improper rotation S4. The
remaining groups can be found by adding mirrors or inversion centers to the
first 12 groups. These are the only possible point symmetries of a 3-D lattice.
There are 32 of them. They are called the crystallographic point groups or often
referred to as the “32 crystal classes” in crystallography.

2.3 Lattice Types—The 2-D Case

So far we have only discussed the possible symmetries of a lattice. It is useful
to know which shape of the unit cell are required for compatibility with cer-
tain symmetry. Different shapes of lattices are called the lattice types. In this
section we shall focus on the 2-D case. The 3-D case will be dealt with in the
next section. Although it might seem unnecessary here, let’s first study the
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Figure 8 The six permissible crystallographic combinations of rotations.

Figure 9 The six rotational symmetry groups based on Figure 8.
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Figure 10 The 32 crystal classes.
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Figure 11 Combination of a rotation and a translation perpendicular to the
axis of rotation.

combination of a rotation of the plane and a translation. It will be crucial in
the later discussion of the 3-D case.

Figure 11 shows that a rotation by α about the axis A followed by a trans-
lation which brings A to A′ yields a rotation by the same angle about the axis
B on the perpendicular bisector of the segment AA′. This result can be applied
directly to the lattice that has rotational symmetry. Choose the lattice points
to be the equivalent rotational axes on the plane, the above result assures that
there must be some nonequivalent axes inside the unit cell, as shown in the first
five diagrams of Figure 12. They also show the required shape of the unit cell to
be consistent with each symmetry. For C1 and C2 it can be any parallelogram,
for C3 and C6 it has to be a 120◦-rhombus, and for C4 it need to be a square.

Next let’s consider the lattice that possesses reflectional symmetry. Note
that the shape of the lattice which satisfies C3, C4, or C6 already has D3, D4, D6

symmetries, respectively. For D2 and D1, they are inherently the same, since
as far as the shape is concerned, a lattice consistent with reflectional symmetry
must have a 2-fold axis. It can be easily seen that the only shapes that satisfy
D2 symmetry are the rectangle (where the mirrors bisect the sides of the unit
cell) and the rhombus (where the mirrors contain the lattice points) as shown
in the last two diagrams of Figure 12. There are thus five 2-D lattice types in
total.

2.4 Lattice Types—The 3-D Case

For convenience let’s fix a point on the principal axis (the axis of rotation of the
highest order) and look at the lattice points equivalent to it. The 3-D lattice
can be thought of as a stack of infinite many layers of 2-D lattices. We choose
the layers to be perpendicular to the principal axis. Pick one of the layers and
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Figure 12 The distribution of axes of rotation and mirrors in the five 2-D
lattice types.
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call it the “ground layer” and one of its neighbering layers the “first layer.”
We can now describe the lattice by the position of the lattice point of the first
layer relative to the unit cell of the ground layer. There are only finitely many
possibilities because an n-fold axis of the ground layer must also be an n-fold
axis of the first layer. The shape of the 2-D lattice of each layer is one of those
given in the last section. We shall deal with them one by one.

1. The layers satisfy C1 (any parallelogram). There is no restriction. The
lattice point of the first layer can be at any position (x, y, z) relative to
the unit cell of ground layer. This gives the triclinic lattice.

2. The layers satisfy C2 (any parallelogram). The lattice point of the first
layer can be at positions (0, 0, z), (12 ,

1
2 , z), (0,

1
2 , z), or (12 , 0, z) relative

to the unit cell of the ground layer, because these positions are above
the nonequivalent 2-fold axes inside the unit cell of the ground layer (cf.
Figure 12) and there is no restriction on the seperation between the two
layers. The first possibility yields the primitive monoclinic lattice and the
other three yield the base-centered monoclinic lattice. The choice of the
unit cell for the base-centered lattice is not primitive. However, it has
the advantage that two of the angles α, β, γ are π/2. It is by virtue of
symmetry that there is always a way for a lattice satisfying C2 to choose
the unit cell so that two of the three angles are π/2.

3. The layers satisfy D2 (rectangle or rhombus). If the 2-D lattice is rect-
angular, the lattice point of the first layer can be at positions (0, 0, z),
(12 ,

1
2 , z), (0,

1
2 , z), or (

1
2 , 0, z) relative to the unit cell of the ground layer.

The first possibility yields the primitive orthorhombic lattice, the second
yields the body-centered orthorhombic lattice, and the other two yield the
base-centered orthorhombic lattice. If the 2-D lattice is diamond, the lat-
tice point of the first layer can be at positions (0, 0, z) or (12 ,

1
2 , z) relative

to the unit cell of the ground layer. The first possibility still gives the
base-centered orthorhombic lattice, and the second gives the face-centered
orthorhombic lattice.

4. The layers satisfy C4 (square). the lattice point of the first layer can be at
positions (0, 0, z) or (12 ,

1
2 , z) relative to the unit cell of the ground layer.

The first possibility yields the primitive tetragonal lattice, and the second
yields the body-centered tetragonal lattice.

5. The layers satisfy C3 (120◦-rhombus). The lattice point of the first layer
can be at positions (0, 0, z), (13 ,

2
3 , z), or (

2
3 ,

1
2 , z) relative to the unit cell

of the ground layer. The first possibility yields the hexagonal lattice and
the other two yield the rhombohedral lattice.

The C6 case coincides with the first possibility of the C3 case and so is omitted
here. The only cases we miss in the above discussion are lattices with high
symmetry (T and O). The extra symmetry puts restriction on the separation
between the two layers. Depending on the orientation of the layers and the
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position of the lattice point of the first layer relative to the unit cell of the ground
layer, the two symmetry groups give three possible lattices: the primitive, the
body-centered, and the face-centered cubic lattices.

All of the above gives a total number of 14 possible 3-D lattice types. These
are the so-called 14 Bravais lattices in crystallography.

2.5 The 7 Crystal Systems

The 14 lattice types discussed in the last section fall into 7 crystal systems:
triclinic, monoclinic, orthorhombic, tetragonal, rhombohedral (also called trig-
onal), hexagonal, and cubic. It is now an easy task to verify which point groups
each crystal system satisfies. The results are summarized in the following table.
The table thus contains the complete classification of 3-D lattices.

Crystal system Crystal classes Lattice types

Triclinic C1, Ci

Monoclinic C1h, C2, C2h

(primitive)

(base-centered)
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Orthorhombic C2v, D2, D2h

(primitive)

(base-centered)

(body-centered)

(face-centered)

Tetragonal
C4, C4h, C4v, S4,
D2d, D4, D4h

(primitive)

(body-centered)
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Trigonal
C3, C3i, C3v,
D3, D3d

Hexagonal
C3h, C6, C6h, C6v,
D3h, D6, D6h

Cubic
T, Td, Th,
O,Oh

(primitive)

(body-centered)

(face-centered)
Total:

7 32 14

3 Space Groups

The story about lattices is complete. However, there are more symmetries to
describe a crystal, for the pattern can repeat inside the unit cell. This can be
achieved by two types of symmetry operations which we haven’t discussed up
to this point: screws and glides.

A screw is the combination of a rotation and a translation along the axis of
rotation (called the screw axis). The notation of the screw axis is np, meaning
that each operation is the combination of a rotation by an angle 2π/n and a
translation of p/n times the distance of translational symmetry along the axis
(Figure 13). It is obvious that there is no screw operation in the 2-D case.
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Figure 13 Illustration of screws.

A glide is the combination of a reflection and a translation parallel with the
mirror (called the glide plane). Depending on the orientation of the glide plane,
the glide can be axial or diagonal. For certain lattice types there can be more
orientations.

Groups consisting of point symmetries, translational symmetries of the unit
cell, screws, glides, and their combinations are called the wallpaper groups in the
2-D case and the space groups in the 3-D case. There are totally 17 wallpaper
groups and 230 space groups. They can be studied and classified through lattice
types and point groups. Detailed discussion of the wallpaper groups and the
space groups can be found in Armstrong [1] and Buerger [3], respectively.
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4 Representations of Point Groups and Space
Groups

In practical applications the above information about the symmetry of the crys-
tal is not enough. In order to determine the physical properties of the crystal
we need to know the character tables of the symmetry groups. In Bradley
and Cracknell [2] all character tables of crystallographic point groups and space
groups are given, including all of the single-valued and double-valued represen-
tations.
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