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Abstract

Efforts to reduce peak electrical demand has led to the introduction of demand response
programs for residences. Demand response programs allow customers to reduce or shift
their electrical consumption from peak periods in response to dynamic prices of electricity.
Utility companies broadcasts the prices to the customers who then respond by reducing
consumption during peak periods or shift the consumption to off-peak periods. Similarly,
direct load control programs entice consumers with special rates or other incentives for
allowing the utility to control load (typically air conditioning) for a number of days per
year. Both uses require a ubiqituous and cost-effective communication network to allow
utilities to communicate with users and appliances. The Radio Data System (RDS) has
been identified as one strong candidate technology. However, security concerns arise due
to the wireless nature of the communication channel. Source authentication is crucial in
demand response to ensure that only authenticated messages are responded to.

This report presents evaluations of cryptographic methods that could be employed to
offer source authentication over the RDS network. Simulations are used to determine the
impact on the network performance by employing digital signatures to allow source au-
thentication. The simulations were calibrated with data collected in Ottawa, Canada, in
particular to model signal propagation characteristics. While different environments ex-
perience different path losses, the relative comparisons are not impacted by this difference,
however. The authentication schemes studied all provide strong authentication against
attackers who attempt to forge signatures without knowledge of private keys (which are
held at the transmitter). The information exposed in the transmitted messages will not
help an attacker in forging future messages. And as messages are time-sensitive and
the senders and receivers in the network coarsely time-synchronized, replay-attacks are
prevented as well. This is different from shared-key/secret-key schemes such as the one
employed in Zigbee, where exposure of the secret key on the receiver side (using bit sniff-
ing or other techniques to access the non-volatile memory on the receiver) compromises
the security/authentication of messages.

The report presents comparisons of the security offered by the protocols, the band-
width overhead, computational costs and message reception probability. Our simulation
results show that, up to a distance of 90 km, all authentication schemes do not affect
message reception by the receivers. Beyond that, all the schemes have an effect on mes-
sage reception due to increased message sizes and receiver bootstrapping for BiBa and
HORSE. ECDSA and HORSE outperform BiBa in terms of message reception beyond 90
km and the difference between the two is not significant. ECDSA however offers higher
security than HORSE and BiBa but at the cost of increased computational complexity,
in particular at the receivers. In addition, ECDSA has the highest bandwidth overhead.
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1 Introduction

The need to reduce peak electrical demand has resulted in plans to introduce demand
response programs for residences. Demand response programs allow customers to adjust
their electrical consumption in response to dynamic prices of electricity. In such programs,
the utility company informs the customers of a price event to which the customers choose
to respond. Price events alert customers of a change in the prices of electricity. Customers
would then minimize their consumption during periods with high prices, resulting in lower
power bills. Emergency events deal with issues concerning grid reliabilities. In the event
of a grid instability, the utility company issues emergency events which compel customers
to lower their consumption, thus reducing the load and alleviating the strained grid. The
use of demand response provides utility companies with another option to perform load
management in addition to load shedding and power purchase. Demand response uses
both the price events and emergency events to improve reliability and lower electricity
costs to customers.

The Programmable Communicating Thermostat (PCT) system is aimed at reducing
electrical power consumption during peak demand periods. The PCT system allows de-
mand response programs to be applied on the power consumed by air conditioning of
residences. The system allows thermostats to receive pricing events broadcast over a
wireless communication channel from the utility companies. The programmable ther-
mostats operate in an automated manner. A customer programs the thermostat and the
thermostat responds to event messages accordingly. The operation of the thermostats,
and consequently demand response programs over the PCT system, rely on successful
delivery of valid event messages. Therefore, there is a need to ensure the integrity of the
messages and authenticate their origin.

In addition to the above use of messages to enable users to respond to dynamic energy
prices in residences, direct load control that does not use dynamic energy prices. Instead,
consumers are provided special rates or other incentives for allowing the utility to control
load (typically air conditioning) for a number of days per year. Also, the original PCT
system concept has since been expanded to include a range of Programmable Communi-
cating Devices (PCDs), including PCTs, in-home displays, smart appliances and control
switches for air conditioning, water heaters and other high energy consuming devices. In
future extensions, plug-in hybrid vehicles could also be included. However, in all these
extensions of the original idea, the overall concept is the same: utilities send messages to
devices to inform users and to potentially directly control the load. Therefore, the same
need for reliable message delivery, message integrity, and proper authentication arises. In
the remainder of this report, we will use the PCT system as the example PCD system,
as this work was started with respect to the requirements identified for the PCT system.
But the key insights and solutions apply equally well to a more general definition of a
receiver device, be it a thermostat, in-home displays, or smart appliances.

The draft reference design for PCTs mandates a nation-wide wireless broadcast com-
munications network using either the Radio Broadcast Data Network (RBDS or RDS) or
the Paging system [1]. Later revisions identified the RDS as the communications infras-
tructure to be employed for the PCT system. The wireless nature of the communication
infrastructure puts the smart grid applications running over it at a security risk. The
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RDS network does not employ any security mechanisms on which the PCT or a PCD
system can rely. Therefore there is need to provide for secure means of communicating
PCD system messages over the RDS network. This report proposes solutions to address
the security over the RDS network. The solutions presented in this report can be em-
ployed to authenticate messages sent by any application using the RDS network as the
physical infrastructure. A PCD or PCT system is an immediate beneficiary to the ser-
vice, hence it is presented as a test case. In [2], the possible security threats to the PCT
system are studied and a risk management approach is used to propose mitigation steps
for the security concerns. This report provides an analysis of the security threats for
a communication protocol for use with PCTs. A literature survey of security issues in
similar networks is carried out to identify solutions that could be used or extended to
the PCT system. Of particular interest are sensor networks and RFID networks because
they face similar challenges of limited resources. The report also identifies possible solu-
tions that could be pursued to provide authentication over the RDS network and their
impact on the network. Three authentication schemes identified to be suitable for the
RDS network,(BiBa, HORSE, ECDSA) are investigated using simulations to determine
the impact on network resources.

A background on the security of the PCT system, RDS network and security implica-
tions is given in Section 2. The threat model as relevant to the PCT system employing the
RDS network for communication is presented in Section 3. A literature survey of security
schemes available is presented in Section 4. Section 5 gives detailed description of three
authentication schemes suitable for the RDS network and how they can be employed to
authenticate messages. Analysis of simulation results of the three authentication protocols
is then presented in Section 6. A conclusion is then presented in section 7.
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2 Background

An initial study of the security characteristics of the PCT system in [2] advocates
a tiered security solution. The solution defines the System Owner as responsible for
overseeing and controlling the PCT system. All the messages that the System Owner
sends to the PCTs go through the System Operator. The System Operator is responsible
for delivering the messages to the PCTs within its geographical or logical coverage area.
The goal of our study is to provide secure communication between the System Operator
and the PCTs using the Radio Broadcast Data System (RBDS or RDS) network.

The Radio Data System (RDS) was designed to carry small packets on the FM channel
in the range of 87.5MHz to 108.0MHz. It has been used to convey program informa-
tion and traffic information to radios in vehicles [3]. The Radio Broadcast Data System
(RBDS) is the North American equivalent of the Radio Data System (RDS) which is a
European standard. In this document the terms RBDS and RDS are used interchange-
ably. RDS is a broadcast one-way communication channel and has no security features
that the PCT system can rely upon. This leaves it to the application using the RDS
network to do the required security and authentication. This means that messages that
require security need to be encrypted to ensure security. In the PCT system, privacy
is not as much a priority as authentication. The event messages are to be broadcast to
alert everybody about events, therefore there is no need to make such messages secret.
Authentication however is necessary to ensure that only authenticated messages are re-
sponded to. As pointed out in [2], an attacker could cancel events prior to their intended
period elapses. The attacker in this and many other ways can cause distress and possi-
bly cause grid instabilities, effectively defeating the whole purpose of demand response.
Therefore, the PCTs have to authenticate the origin of the message and only respond to
an authenticated sender(s).

There is need to provide for security in the design of the communication protocol as
recommended by [2]. The security of such a system should be resilient to attacks and
be able to recover easily from a breach. Bono et al show in [4] that obscurity is not a
good measure for ensuring security. They advocate the use of standard cryptographic
algorithms employing keys of sufficient lengths. They demonstrate this by bypassing the
immobilizer of a vehicle which employs a cryptographically-enabled RFID tag. They
achieved this by reverse engineering, key-cracking and simulation. The immobilizer in
their study employed a Texas Instrument Digital Signature Transponder (DST). From
the knowledge of a rough schematic posted on the Internet, they were able to determine
the functional details of the cipher of the DST. The challenge/response authentication
messages between the reader and the tag were obtained and used to crack the key. The
40-bit shared secret key was extracted with the use of an array of FPGAs in less than an
hour. Then, using the extracted key, they were able to simulate the RF output to spoof
the reader. In their study, they were able to establish conditions for hot-wiring a car with
fairly modest resources.

Strong cryptographic algorithms add to the complexity and ultimately the cost of man-
ufacturing the devices. The price of the PCTs has to be minimized as they are expected
to retail at less than $50 [2]. Sensor networks and RFID networks face similar problems
with the need to provide security and still keeping the cost of the devices relatively low.

3



Carleton University, Technical Report SCE-09-06, April 2009

It could be expected that the PCTs may have slightly more computing resources, storage,
and power supply than RFID tags and sensor nodes. However, the PCTs are still ex-
pected to have modest computing and storage resources compared to today’s computers.
This limitation means that the security and authentication algorithms employed on these
devices be efficient and low cost.

Authentication poses more of a challenge in a one-way communication channel because
conventional authentication methods of challenge/response cannot be used. In a chal-
lenge/response authentication, a sender proves its identity to the receiver by responding
to a challenge from the receiver and vice versa. This cannot be done over the RBDS
network, since the PCTs do not have a communication channel to the System Operator
with which they can challenge the identity. Even if such a channel existed, the volume of
challenges coming from the PCTs would be too high to make this approach attractive.
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3 Threat Model

The characteristics of an adversary and the impact of the threat posed need to be estab-
lished before discussing mitigation strategies. The PCT system is subject to a number of
attacks as stated in [2]. The adversary that we discuss in our study is limited to one who
attacks the PCT system via the wireless communication channel. The motives of such
attackers could be anything from leisurely mischief to a terror attack targeting denial of
utility services to customers. According to [2], the attacks that an adversary could launch
on the PCT system include, but is not limited to, the following :

• An attacker could cause unanticipated loads on the grid causing instabilities by
sending false messages to customers. This could be done by canceling valid emer-
gency event messages aimed at alleviating existing grid instabilities thus preventing
the expected reduction in load.

• An attacker could send false time synchronization messages creating erroneous be-
havior of the PCTs.

• Customers could be deceived by false messages displayed by the PCTs if an attacker
can successfully send such messages to the PCTs.

• A successful breach of the communication can allow an attacker to shut down PCTs
or even install new software into the devices. An attacker who is able to shut down
PCTs remotely could cause irritation, discomfort and health problem to some users.
The installation of new software (potentially malicious) by an attacker may lead to
erroneous operation of the PCTs.

• An attacker could jam the signal to a subset of receivers from a ground station or
aircraft e.g. balloon.

A systematic risk analysis of the threat posed to the PCT system and counter measures
were fully described in [2]. For the purpose of this report we address the threat and
mitigation procedure for a PCT system employing the RDS network to communicate
messages.

The nature of the RDS network limits the way an attacker can launch attacks. The
lack of a reverse communication channel from the PCTs to the System Operator means
that the attacker should have physical access to a PCT to access information on it. We
assume that an attacker has unlimited access to PCTs, either from his/her own home
or he/she could break into someones home and access a networked PCT. Moreover, an
attacker could easily purchase the device at a retail store. This means that the data stored
on these devices can be retrieved by a determined attacker using any method at his/her
disposal. This setting does not bode well for security by obscurity of cryptographic keys.
We assume it would be fairly easy for an attacker to retrieve a decryption key(s) from
the PCT, thus the use of symmetric key cryptography should be avoided. Asymmetric
cryptographic methods are more favorable for this setting. If public-key cryptography is
used, an attacker would only retrieve public keys of the System Operator by attacking
the PCTs. An attacker would be forced to attack the Systems Operator to obtain the
private keys that would allow him/her to encrypt messages.
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Although the attacks on the PCTs are easy, as mentioned above, attacks on the sender
(System Operator) are not trivial. An attacker wishing to get information from the
sender is limited to eavesdropping or gaining direct (or indirect) access to the system
information database. The former method of attack means that the attacker is limited to
what is communicated and what is stored on the PCTs. Methods of communication that
reveal no information to an eavesdropper and store no critical information at the receiver
should be employed to lower the risks of this type of attack. Gaining physical access to
the system database is not easy but none-the-less possible. An adversary could break into
the premises and obtain critical cryptographic information that would allow him/her to
launch an attack. The critical information used for communication could also be leaked
out through employees to an adversary by negligence, blackmail, extortion or ignorance,
to mention a few. A decentralized method of storing cryptographical information should
be used to avoid a single point of compromise. To protect the cryptographical information,
[2] suggests that complementary pieces of cryptographic information should not be stored
in one place or exposed to one person.

Operation on the FM radio spectrum requires licensing from the radio spectrum man-
agement organization. An attacker operating unlawfully on a frequency without a license
would be stopped if detected. As part of their non-cryptographic solution to provide
security, [2] proposes the use of monitors placed to detect infringements. The monitoring
devices should be conveniently placed to receive the messages and compare them with
those sent by the System Operator. These devices, carefully placed in the coverage area,
will reflect what the PCTs receive from the network. With such measures in place, it
would be easy to detect if the messages are tempered with or if there are new unac-
counted messages showing up at the PCTs. The authorities then would be alerted of
the infringement. The use of a detection system cannot be relied upon to provide secu-
rity. The attacks on the PCTs can go unnoticed if they are targeted to a small subset
of customers who are in the blindspot of the monitors. Moreover, the attacker could be
mobile and operate for a short period and leave no trace. In such cases it would be very
difficult for authorities to stop future attacks by the same attacker even if such attacks
are detected.
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4 Literature Survey on Possible Mitigation Steps

Several symmetric and asymmetric cryptographic methods exist in the literature. A
survey that covers the technical problems faced by RFID security and privacy is presented
in [5]. Several cryptographic methods are proposed in the literature for RFID tags in
[6] and [7]. The methods of cryptography favored by the security experts consulted in
[2] is the use of Elliptic Curve Cryptography (ECC). The following methods have been
identified as promising to the application for electrical demand response in residential
devices. The cryptographical authentication methods presented here were designed for
networks different to the RBDS network. However, these could be extended or customized
to use on the RBDS network to offer the required security.

4.1 Secure SCADA using DNP3

Related developments in the power industry have been carried out to provide secure
communications for metering and Supervisory Control and Data Acquisition (SCADA)
services over the existing power-line infrastructure [8]. The Real-Time Energy Manage-
ment via Power-line and Internet (REMPLI) system was designed to permit remote and
autonomous control and monitoring of energy resources by utility companies at residences
[8]. The design requirements for the system were to allow various utility companies (e.g.
electricity and gas) to offer their services to customers over a shared distribution network.
The services required for support by REMPLI include load balancing, theft detection,
remote monitoring and control.

Mander et al in [9] discuss a distributed security architecture using the Distributed Net-
work Protocol (DNP3) to offer security for residential load-management devices. Their
solution protects Intelligent Electronic Devices (IEDs) networked to a SCADA network
from cyber attacks. The DNP3 protocol is used widely in the world for electricity and
water utilities for communications with field equipment [10]. DNP3 does not provide suf-
ficient security features, hence their solution extends DNP3 by adding a security layer and
using data object security [9]. The security extension to DNP3 provides authentication at
the data-link layer by using encryption. The security provides privacy to customers and
conceals the events that IEDs are experiencing, which an attacker can exploit to attack
and disrupt the system. Moreover, encryption prevent burglars from determining, based
on the energy consumption, if a house is occupied.

Figures 1(a) and 1(b) show how NDP3 is used for authenticating application messages
between two entities. DNP3 employs the challenge/response authentication method to
authenticate critical commands as shown in Figure 1(a). The receiver queries the iden-
tity of the sender upon receiving a critical command. The sender proves its identity
by demonstration of knowledge of shared cryptographic keys. The aggressive mode as
shown in Figure 1(b) is used to conserve bandwidth by eliminating the challenge and
response messages. In the aggressive mode, the authentication data is included in the
message. The aggressive mode is considered slightly less secure than the normal chal-
lenge/response mode [10]. For the aggressive mode to be used there has to be at least one
request/response authentication preceding it to establish trust between communicating
entities.
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(a) DNP3 challenge response mode (b) DNP3 aggressive mode

Figure 1: Modes of DNP3

The security extension to DNP3 in [9] uses two levels of security. The first level of secu-
rity is achieved by using symmetric operations, while the second level employs asymmetric
encryption operations. The asymmetric operations are used to exchange the keys used
for the symmetric operations. All the other data is encrypted by the symmetric operation
and carry no security layer header. This is efficient for bandwidth constrained links by
minimizing the overhead [9]. Each device uses different symmetric keys for transmission
and reception of messages. This ensures that if an attacker is able to crack the key in one
direction, they cannot access the data in the reverse direction. The security layer updates
the symmetric keys in an asynchronous manner i.e. there are no predefined times when
the keys are refreshed. When a new key is used, the receiving IED will try to decrypt
using the old key which results in a decryption error. When a decryption error results
from a decryption operation, the IED tries the next valid key. If the decryption is error
free, the new key is used as the current key. If however the decryption yields another
error, the old key is reinstated as the current key.

The key exchange for the asymmetric operation in a one-way communication network
such as the RDS network is a problem. The Diffie-Hellman algorithm as suggested in [9]
cannot be completed. A different approach is necessary for the exchange of the public
keys during initialization or in the event a private key is compromised. The authentication
of the symmetric operation relies on the asymmetric key exchange. As it is described in
[9], an adversary needs only the senders public key to extract the secret symmetric key
during key exchanges. With the symmetric key, an attacker is able to launch attacks. The
symmetric operations would fail to ensure authentication if the key and cypher are known
to the attacker. The attacker can encrypt messages using the secret key and the receiver
would perceive the attacker as authenticated based on the demonstration of knowledge of
the secret key.

To address the above shortcomings in the context of RDS, the symmetric operation
could be replaced with an asymmetric operation. Public key cryptography could be used
in place of the AES symmetric operation to minimize the threat if the attacker is able
to obtain the key from key exchanges. If public key cryptography is used in place of
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the symmetric operation, the key exchange would involve only the public key. Even if
the attacker is able to obtain the public key, he/she cannot authenticate him/herself to
the receiving device without knowledge of the private key. The key distribution issue
still persists with this approach. The initial set up of the session keys with which the
message keys are encrypted needs to be made seamless and easy to update in the case of
a compromised private key.

4.2 Authentication using RF fingerprints

The physical layer RF fingerprints can be used together with higher layer protocol
methods to provide authentication [11]. RF fingerprints identify an RF transmitter from
the properties of the received radio signals. They allow different transmitters to be distin-
guishable from one another. The authentication presented in [11] is for single-hop wireless
sensor networks. The application forms a network with authenticated hardware instead
of the users authenticating themselves. The nodes in the network have fingerprinting ca-
pabilities and are able to distinguish RF sources without knowing their fingerprints before
initialization. On initialization, the nodes perform a neighbor discovery protocol and form
a secure group of fully connected neighbors. The group members exchange the fingerprint
information and then build credentials for group members. The credentials of group mem-
bers are made up of RF fingerprints, RF identities and cryptographic identities. In this
way the network nodes authenticate their neighbors.

In the RDS network, a distributed approach as described in [11] is infeasible. However,
the devices could be enabled to do RF fingerprinting and use location in the credentials
of the sender (System Operator). In this way an attacker masquerading as the System
Operator would be forced to operate very close to the legitimate System Operator. If an
attacker is forced to operate near the legitimate System Operator, then his/her effective
radiated power would have to be comparable to the System Operator for his/her signal
to be detectable. The total effective radiated power for systems operating in the RDS
network are in the order of tens of kilowatts. The cost of equipment and operation should
serve as a deterrent for most attackers. Even if the attacker was able to obtain the equip-
ment and broadcast messages, the spectrum management regulation body monitoring the
use of the radio spectrum could be relied upon stop the unlawful operation.

The use of RF fingerprints alone does not provide absolute security and has to be used
with other cryptographic methods [11]. In the implementation described in [11], encryp-
tion keys and RF credential should be used to provide security. For authentication on
the RDS network, the RF fingerprints are sufficient to identify the authentic sender from
attackers. The PCTs should be able to learn the new fingerprints of the System Opera-
tor if the transmission RF equipment changes for any reason. The PCTs should be able
to distinguish an attacker from a legitimate System Operator with changed fingerprints.
Additional hardware and digital signal processing (DSP) units would have to be incorpo-
rated into the PCTs to enable RF fingerprinting. The extra hardware could potentially
drive the cost of the PCTs high. The cost of such additional hardware is unknown to the
author and requires investigation to determine if the solution is cost effective.
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4.3 Zero-knowledge device authentication

A method that allows pre-authenticated response between RFID tags and readers was
presented in [12]. The solution curbs divulging critical information by RFID tags to any
random tags upon interrogation. Engberg et al in [12] propose a solution where tags only
respond to authenticated readers . The method was developed to avoid customer tracking
using RFID tags that the customer may have on them. The method employs the use of
a ’zero-knowledge’ device authentication method. The method is not technically conven-
tional zero-knowledge, the authors claim zero-knowledge because the tags do not contain
any sensitive data. The tags relay the requests to the user/customer upon authenticating
a reader to which the customer responds.

The solution differs from the extension to DNP3 in that it does not use a chal-
lenge/response method to authenticate a sender. The solution involves a user sending
a combination of a non-encrypted nonce, and a second nonce using XOR and hash func-
tions. The receiver authenticates the sender on the grounds of knowledge of the shared
secret. A zero-knowledge authentication request (ZAR) is given by:

ZAR: [DT; (RSK XOR Hash(DT XOR SSDK)) ; Hash(RSK XOR SSDK)]

where DT is the first nonce, RSK is the random session key (second nonce) used to
encrypt messages within a given session and SSDK is the shared secret. From the message,
the receiver can obtain the hash value of (DT XOR SSDK) and use it to obtain the random
session key by an XOR operation with the second part of the message. The third part of
the message is used to verify the random session key and authenticate the sender. From
the ZAR, the RFID tag can authenticate the reader and only respond to authenticated
readers. The first nonce (DT) also serves to protect against replay attacks and the use
of Date Timestamp is advocated in [12]. The tag can then respond if the authentication
is valid. The protocol guards against fake acknowledgments by using a zero-knowledge
acknowledgment that is a function of the shared secret.

The implementation described above employs a shared secret key, but could be extended
to use asymmetric methods as well [12]. The zero-knowledge protocol appears to be
favorable for the one-way communication channel like the RDS network. Provided the
secret keys are distributed effectively, it requires only one ZAR to authenticate the sender.
The absence of a challenge/response operation for authentication favors deployment in a
one-way communication channel. The PCTs would be able to authenticate the System
Operator based on a single ZAR. Then the session key could be used to encrypt all the
messages of the session. The operation could be used in connection with that of the
DNP3 discussed earlier. RDS offers a relatively low bandwidth channel and the message
size of ZAR could be large depending on the sizes of the exchanged data (the two nonces).
Therefore, the frequency of sending such messages should be minimized to ensure efficient
use of network resources. A customized ZAR could be employed for use on the RDS
system to reduce the overhead. For the purpose of the PCT system, the RSK could be
excluded in the ZAR to reduce the communication overhead.
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4.4 The TESLA Broadcast Authentication Protocol

The Time Efficient Stream Loss-tolerant Authentication (TESLA) broadcast authentica-
tion protocol enables receivers to do source authentication on broadcast messages [13].
The use of symmetric algorithms for authentication fails if the secret key is compromised.
Asymmetric cryptographic protocols provide secure authentication but are computation-
ally extensive and have high overhead. The TESLA protocol achieves asymmetric perfor-
mance while employing purely symmetric cryptographic functions by using delayed key
exposure [13]. In the TESLA protocol, the sender attaches to each message a message
authentication code (MAC) created with a secret key only known to the sender. The
receiver buffers the message since it is unable to authenticate it. The sender at a later
time reveals the secret key used to create the MAC, so that the receiver can authenticate
the message.

The TESLA protocol requires that the nodes in the network be loosely synchronized.
That is, a receiver is only required to know the upper bound of the synchronization error
between itself and the sender. The protocol uses delayed key (produced from a one-way
chain) disclosure to achieve asymmetry by which the receivers are able to verify authenti-
cation information but not able to reproduce the authentication information. The TESLA
protocol uses four stages: sender setup, receiver bootstrap, sender transmission of authen-
ticated messages, and receiver authentication of broadcast messages. The sender, during
the setup, determines the length of the one-way chain, which determines the number of
time slots that the chain could be used for. The sender constructs the one-way chain using
a one-way function recursively. The sender divides time into intervals of equal duration,
each of which is assigned a single value from the one-way chain as shown in Figure 2.
The sender also determines the time at which the one-way chain values will be disclosed,
which is in the order of few time intervals. The receivers need to be loosely synchronized
to the sender and know the schedule for disclosing keys to be able to authenticate mes-
sages. During the receiver bootstrap, the receiver establishes the key disclosure schedule
by receiving the start time, interval duration, length of one-way chain, key disclosure
delay and a key commitment to the chain from the sender. Broadcasting authenticated
messages involves appending a MAC corresponding to the time interval on the messages
sent during the interval. The key used for creating the MAC remains secret for the entire
disclosure delay. The sender reveals the secret key after the disclosure delay elapses and
the receivers then authenticate the messages.

As shown in Figure 2, all messages sent during the a given interval are signed using
the associated one-way chain value (unknown to the receivers). The one-way chain is
used in reverse which means that any value associated with a time interval can be used
to derive values for previous intervals but not values used in subsequent time intervals.
The ability to retrieve previous keys is a good feature for lossy channels through which
encryption keys are sent. The sender creates a MAC using the contents of the message
and the one-way chain value associated with that time interval. The MAC is attached to
the message along with the most recent one-way chain value that can be disclosed. The
format of a message Pj sent in the ith interval is Pj = {Mj||MAC(K

′
i ,Mj)||Ki−d} where

Mj is the message, MAC(•) is the message authentication code and Ki−d is the secret
used to encrypt messages in the i− d interval.
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Figure 2: The TESLA protocol Dynamics[13]

The receiver knows the schedule of disclosing the keys and based on synchronized clocks
(albeit only loosely) can determine if the key used on the received message is unknown to
it. By extrapolating the expected interval that the sender is in, the receiver can determine
that the sender could not have reached the time interval for disclosing the key. If the
MAC key is still unknown, the receiver buffers the message otherwise it discards it. The
receiver then checks if the disclosed key is valid by using self-authentication and previously
disclosed keys. The receiver also checks if the MACs of all packets received during the
time interval associated with the key are valid. Only messages with valid MACs are
accepted, otherwise they are discarded. Any receiver with loose time synchronization and
an authentic key chain commitment can authenticate messages but not forge a message
with a valid MAC.

The TESLA protocol offers a good solution to the authentication problem over the
RDS network. Key distribution is addressed by the use of dynamic keys in the protocol.
There are uncertainties about bootstrapping the receivers, which, if done in-band, could
possibly allow an attacker to bootstrap all the receivers to an invalid sender. The initial
bootstrapping could be done at the time of deployment by a technician installing the
PCT (using an out-of-band channel). Attack opportunities arise when all the values of
the one-way chain are exhausted and a new chain is created which requires the receivers to
be bootstrapped again to distribute chain commitment (and possibly key exposure delay
if is different for the new chain). If a PCT is powered off (e.g. battery runs out) or resets,
it needs to be bootstrapped again when powered up. An ideal way of bootstrapping the
PCTs should be automated to avoid customer involvement. An adversary could learn how
bootstrapping is done by eavesdropping which would allow him/her to launch attacks on
the PCTs. If the attacker can successfully bootstrap receivers to a bogus key chain, the
PCTs will not respond to the legitimate messages. The values of the one-way chain are
verified by using previous values because of the recursive way the chain is generated.
When a new chain is used, there is need to communicate the key commitment value
securely to ensure that the receivers have the correct value. A partial solution to the
bootstrapping problem is to send the commitment value in the last time interval(s) of the
old chain. The last time intervals of an old chain could be set aside to communicate the
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bootstrapping information for the next chain to be used. This would solve the problem
of key exhaustion, but not of a rebooted (reset) device.

The TESLA protocol also has a possibility of a denial of service attack since the mes-
sages are buffered until the key is disclosed. If the disclosure delay is long, an adversary
could inject bogus messages into the network and fill up the buffers at the receivers while
they are waiting for the key to be disclosed in order to authenticate messages received in
a given interval. Such an attack would be to replay a message(s) that is not yet authenti-
cated at the receivers, which would be buffered and cause exhaustion of resources. Until
the key for a given interval is exposed, the receivers will buffer all the messages received
in a time interval. An attacker could possibly exploit this weakness and cause denial of
service.

Appending the MAC and the secret key to the message increases the size of the trans-
mitted message. The RDS networks offers limited bandwidth and initial studies on the
RDS suggest that larger messages have a lower chance of reception. The overall size
increase of the TESLA protocol should be studied more before deployment in the RDS
network. The security concerns of TESLA stated above also need to be studied further
and be addressed before implementing TESLA for the PCT system.
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5 Cryptographical Security Measures

The following authentication schemes have been identified as good candidates from the lit-
erature. The methods described in the previous section offer good authentication solutions
but have some drawbacks. The DNP3 solution presented employs a challenge/response
method of authentication which cannot be achieved over the RDS network. The RF
fingerprints require additional hardware/DSP for fingerprinting capabilities which could
increase the cost of receivers. The TESLA protocol suffers from a denial of attack as
mentioned previously.

5.1 BiBa Signature Protocol

The BiBa protocol as described in [14], is a general solution that can be applied to
sign broadcast data based on one-way functions without trapdoors. The BiBa signature
scheme is efficient, robust to packet loss and scales well to a large number of receivers.
However, the public keys used in the BiBa protocol are large and the time to generate
the signatures is long. For the purpose of the PCT system, the signature generation over-
head can be tolerated. We assume that the sender is equipped with powerful computing
resources to handle the signature generation overhead. The small signature sizes make
the BiBa protocol a good candidate for the PCT system which is to be deployed over a
bandwidth constrained network. Moreover, small signature verification overhead allows
the end devices (PCT’s) to be simple and cheap. The impact of the BiBa broadcast
protocol on the RDS network needs to be studied further before deployment.

Figure 3: The BiBa Broadcast Protocol dynamics[14]

Figure 3 shows the dynamics of the BiBa broadcast protocol. The sender divides time
into periods of equal duration. The sender then creates t chains of SElf Authenticating
vaLues (SEALs), S<1,i>, ...S<t,i>, and a Salt chain, Ki, associated with time interval i.
The SEAL and Salt chains are of length l, hence they last l time intervals. The Salt key
is used by the sender to create the SEALs and is required for authentication of SEALs at
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the receiver. The SEALs are generated recursively by applying a pseudo-random function
F as follows: S<i,j> = FS<i,j+1>

(Kj+1); for (1 ≤ i ≤ t) and (1 ≤ j ≤ l). The use of the
Salt key forces an attacker to obtain the pre-image of the Salt chain as a pre-requisite to
finding the pre-images of the SEAL chains. Therefore an attacker cannot precompute the
SEALs for subsequent time periods without knowledge of the Salt key [14].

At the beginning of each active interval, the sender broadcasts the value of the active
Salt (Ki) to the receivers. The dotted box in Figure 3 shows an active time interval with
the associated Salt key and SEALs. To sign a message m during the active interval i, the
sender creates a hash of the message h = H(m|c), which is used to seed a hash function
Gh() used to produce a signature; where c is a counter that is incremented when a signature
could not be obtained. The sender uses the hash function Gh() on the t SEALs and
observes any k-way collisions from distinct SEALs. That is, S<1,i> 6= S<2,i> 6= .. 6= S<k,i>
such that Gh(S<1,i>) = Gh(S<2,i>).. = Gh(S<k,i>). The k SEALs that result in a collision
form the signature and are then sent together with the message as (< S1, ..., Sk > ||m).
The receiver then authenticates the message if Gh(S1) = .. = Gh(Sk) and S1 6= .. 6= (Sk).
During signature generation, it is possible thatGh() applied on all t SEALs fails to produce
at least k collisions, in which case a signature cannot be formed. The counter c serves to
get a different hash value h in the event that Gh() fails to produce at least k collisions
from all t SEALs. The receiver is assumed to know the value k, the hash function H and
hash function family G.

The security of the BiBa protocol relies on the fact that a potential attacker knows
fewer SEALs than the sender with which to forge a signature. Therefore the sender only
reveals the SEALs that are used in creating a signature. The receiver is able to verify
that an adversary has a smaller number of SEALs with which to forge a false signature
by relying on time synchronization. The BiBa protocol requires loose synchronization
between the sender and receiver. When a receiver receives a signed message, it verifies
that the sender has not yet revealed r SEALs based on synchronization. If the sender
and receivers have a maximum synchronization error of δ, the sender can only send at
most br/kc messages within δ time without compromising the security [14]; where r is the
maximum number of active SEALs an attacker is allowed to know and k is the number
of SEALs revealed in one message. [14] presents a study on how the BiBa protocol
can be used in an application and how to determine the BiBa protocol parameters. A
receiver is bootstrapped to the sender by revealing all the SEALs and Salt key from one
active interval so that subsequent SEALs can be verified. During receiver bootstrapping,
the receiver receives the initial values of the SEAL and Salt chains. The receiver then
commits to the chains, which allows verification of subsequent SEAL and Salt values.
The bootstrap information, which consists of the initial values of the SEAL and Salt salt
chains (i.e. the commitment keys of the SEAL chains and the Salt chain), is referred to as
the public key in this document. There are extensions that allow efficient bootstrapping
of receivers in [14] by periodically sending the SEALs of a time period. The receivers then
use the information to verify subsequent SEALs that are used to sign messages.
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5.1.1 Authenticating PCT Messages using BiBa

The authentication of messages in the PCT system using the BiBa protocol involves
a tiered solution. A long-term BiBa instance is used to send short-term BiBa instance
commitment keys which serve as public keys. The long-term BiBa instance is conceptually
designed to last the entire lifetime of the PCT system. Multiple levels of BiBa instances
can be used as necessary to prolong the lifetime of the long-term BiBa instance. This
report uses only two levels to demonstrate the concept and evaluate the performance.
Extensions to multiple levels can be done easily following the definition presented here.
The long-term BiBa instance is made up of long SEAL chains with large SEAL sizes,
hence it is more secure and has a large public key (commitment key). The long-term
BiBa instance is used infrequently to bootstrap the receivers to new short-term BiBa
instances. The short-term SEAL chains are used to authenticate the application messages
using BiBa signatures.

Figure 4 shows the dynamics of our authentication construct using the BiBa one-time
signature and broadcast protocol. Initially the sender creates a long-term BiBa instance
by following the construct described above. The long-term BiBa commitment keys which
serve as a public key are then communicated to the receiver(s). The receiver(s) saves
the commitment keys to authenticate subsequent messages signed by the long-term BiBa
instance. The long-term BiBa instance should be bootstrapped offline or at the time of
installation in the case of the PCT system. To allow recovery in the event that the receiver
is rebooted, the commitment chain is stored in non-volatile memory. A receiver that is
shut down for long periods can synchronize to the short-term BiBa instances by receiving
the periodic short-term BiBa instance commitment chains signed by the long-term BiBa
instance. The only requirement is that such a device retains the initial commitment key
of the long-term BiBa instance.

An example illustrating how the protocol works is presented below:

• The receiver commits to the long-term BiBa instance, shown by label A in Figure 4.
In the PCT system this could be done offline at the time of installation. A technician
or home owner keys in the commitment key of the long-term BiBa instance, which
is then saved into non-volatile memory on the device. With the long-term BiBa
instance commitment keys, the device can authenticate short-term BiBa instance
commitment keys signed using the long-term BiBa instance.

• The home device receives the periodic short-term BiBa instance commitment in-
formation signed using the long-term BiBa instance, shown by label B in Figure 4.
The receiver can authenticate the commitment keys of a short-term BiBa instance
as described above. When the authentication is successful, the receiver commits to
the short-term BiBa instance. The short-term BiBa instance is used to authenticate
application messages.

• The home device receives application messages signed using the short-term BiBa
instance (shown by label C in Figure 4). The application messages are authenticated
as described in the definition of the BiBa protocol.
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Figure 4: Using the BiBa signature to sign messages
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• The short-term BiBa instance expires after l time intervals elapses. Then the long-
term BiBa instance creates a new short-term BiBa instance and sends the commit-
ment key to the receivers (illustrated by label D in Figure 4).

5.1.2 Protocol Messages

Figure 5 shows the structure of the messages sent by the BiBa protocol. A description
of the structure of the protocol messages sent to facilitate authentication using BiBa
instances is given below. Reference is made to Figure 5 to describe the different fields of
the messages.

Figure 5: Structure of BiBa messages

TYPE: Describes the type of data that is carried in the message.
0 : Application messages are carried in the KEY field
1 : Short-term BiBa instance commitment key is carried in the KEY field
2 : A Salt key is carried in the KEY field
3 : Long-term BiBa commitment key. This option is not used if the long-term BiBa
instance commitment is done off-line

KEY: The Data that is being sent in the message which is signed. Depending on the
value of the TYPE field it can either be a message sent by the application or Salt
key to be signed by the short-term BiBa instance, or short-term BiBa commitment
key.

S1...SK: Part of the signature formed by the k SEALs that resulted in a collision. The
size depends on the value of k.

C: The counter that is incremented when a signature is not obtained, which is part of
the signature

Figure 6 shows the actions applied to application messages as they traverse through
the different layers. The reverse operation is performed at the receiver. The application
generates messages as described in the Title-24 specification. The messages are then
delivered to the System operator who encrypts them for authentication purposes and sends
them over the RDS network. The messages are sent over the RDS network as type-11A
groups. Each RDS group can only carry 4 bytes of data, so the message is fragmented into
multiple RDS groups and sent over the network. The receiver reconstructs the messages
from the multiple RDS groups and sends it up the protocol stack to the security layer.
The security layer then authenticates the messages and present them to the application
layer if the authentication is successful.
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Figure 6: Operations on the application messages

5.1.3 Setting the BiBa Parameters

The parameters of the security layer are based on approximated application data rate.
A BiBa instance with 1024 SEAL chains (t = 1024), using 4-way collisions (k = 4) can
be used to sign 25 messages (ν = b tγ

k
c ), with γ = 0.10 ; where γ is the fraction of

SEALs that can be revealed to an adversary without compromising the security of the
protocol (typically γ = 10% [14]). An adversary is only allowed to learn r SEALs from one
active period; where r = tγ. Each signature reveals k SEALs to the adversary, hence only
(ν = b tγ

k
c ) messages can be signed within a single time interval. An adversary who knows

r SEALs needs to make 235 computations to forge a valid signature of a BiBa instance
with the above parameters according to [14]. If we assume that the application sends an
average of 20 event messages every day, a single time interval for the short-term BiBa
instance is sufficient to authenticate an entire day’s messages. Consequently, a short-term
BiBa instance with SEAL chain lengths of 50 (l = 50), can be used for 50 days before
it expires. If the long-term BiBa instance is designed with the same parameters as the
short-term instances (i.e. t = 1024, k = 4, γ = 10% ), then it can be used to commit
25 short-term BiBa instances in a single time interval. A single time interval for the
long-term BiBa instance can then be made to last up to 1250 days (3.4 years). The entire
long-term BiBa instance will then last 171 years.
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5.2 HORSE Authentication Protocol

The HORSE authentication protocol extends the HORS (Hash to Obtain Random Sub-
sets) protocol which is an extension of the BiBa protocol to provide broadcast authentica-
tion. HORSE and BiBa are r-time signature schemes that provide unforgeable signatures
which can be verified by using publicly available information. R-time signature schemes
achieve faster signature generation at the expense of larger key sizes. Generally, the gen-
eration of such signatures is faster than public-key signatures but they can only be used
to sign r messages [15].

The HORS protocol works by mapping a message m to a k-element subset of t-element
set T . The mapping of a message m is achieved by a collision-resistant hash function H
(eg. MD5 or SHA-1). Then, for messages m1 and m2; m1 6= m2, it should be impossible
to get H(m1) ⊆ H(m2). In a general case for r messages m1,m2, ...,mr, it must be
infeasible to obtain H(mr) ⊆

⋃r−1
i=1 H(mi). To obtain the k-element subset, the output

of the hash function H(m) is split into k substrings each log2(t) bits. The substrings are
then interpreted as integers ji, (1 ≤ i ≤ k), which selects k values in set T . The k values
selected from T form the signature (sj1 , sj2 , ..., sjk).

To sign a message m in HORS, the sender initially selects values t and k such that
k log2 t ≤ |H(·)|2. The function H as described above is a collision resistant hash function
that maps a message m to k-element subsets of T . The sender then generates the secret
key, SK = (s1, s2, ..., st) by randomly generating t l-bit values. The public key is then,
PK = (v1, v2, ..., vt) with vi = f(si),1 ≤ i ≤ t,where f is a one way function. The sender
computes h = H(m), and splits h into k sub-strings each of length log2t bits. Each sub-
string is interpreted as an integer ji for (1 ≤ i ≤ k). The signature is then made of the
subset of SK, (sj1 , sj2 , ..., sjk) and is sent along with the message m. To verify a signature
(s′1, s

′
2, ..., s

′
k) at the receiver, the receiver computes h = H(m). The receiver then splits

h into k substrings and interprets the substrings as integers of log2t bits. Then it verifies
that vi = f(s′i), for 1 ≤ i ≤ k otherwise the signature is rejected.

HORSE extends HORS by using one way chains to generate and update the secret key
and public key pair. In the HORS protocol one can only sign r messages without losing
security. HORSE uses a one way hash function H() to generate chains of values each d
values long. To initialize, the sender generates t random values (s<0,1>, s<0,2>, ..., s<0,t>)
and uses them to construct t chains of length d. The hash function is used recursively d
times on each of the t initial values to get a chain as shown in Figure 7. The keys are
then used in reverse order of generation. That is, the initial secret key is given by SK0

= (s1, s2, ..., st) = (s<d−1,1>, s<d−1,2>, ..., s<d−1,t>), where s<i,j> = H i(s<0,j>). The initial
public key is given by PK0 = (v1, v2, ..., vt); vi = f(si), ∀si ∈ SK0

The signature generation and verification is computed as described above for HORS.
The secret-key gets updated after each signature is generated. The values used to generate
the signature gets replaced by the values preceding them in the respective chains as shown
by Figure 8. The figure depicts a scenario where the secret key SKi gets updated after
using the values s<µ,α>, s<ν,β>, and s<ξ,κ> in a signature. The secret key is then updated
to SKi−1 with s<µ,α>, s<ν,β>, and s<ξ,κ> replaced by s<µ−1,α>, s<ν−1,β>, and s<ξ−1,κ>

respectively, while the other values remain unchanged.
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Figure 7: HORSE protocol

Figure 8: Updating the public and secret keys in HORSE

The receiver updates the public key each time it receives a signed message. The re-
ceiver verifies the signature by performing a hash operation on the values that make up
the signature and compares them to the public key as described earlier. After success-
ful verification, the receiver updates the public key by replacing the values in the public
key that are preceded by the values that make up the received signature. In the ex-
ample shown in Figure 8, the values that make up the signature (s<µ,α>, s<ν,β>,s<ξ,κ>)
replace the corresponding values in the public key (vα, vβ,vκ) in the public key. In a
lossy environment, the receiver may not successfully receive the signed message and lose
synchronization, which would lead to unsuccessful signature verification. To avoid the
loss of synchronization, the index corresponding to the position of the values that make
up the signature in their corresponding chains is sent as part of the signature. This lets
the receiver know how many hash operations it needs to perform to verify each value
in the signature. The signature is then formed by (< α1, s1 >, < α2, sk >,< αk, sk >)
where αi ∈ [0, d− 1] gives the position of si in the chain. The signature is then verified if
Hd−αi(si) = s<d,i> for 1 ≤ i ≤ k.

In the worst case, the maximum number of messages that can be signed is d. That
would happen if at least one chain gets used to create a signature every time a message
is sent. Based on probability, the expected number of messages that can be signed is
d/(1−e−k/t) [15]. As an example, in [15] HORSE is expected to sign up to 65 ·d messages
compared to 4 messages for HORS, for the same parameters t = 1024 and k = 16. The
tradeoff is that the memory required to store the chain values in HORSE is d times that
of HORS. Alternatively, if memory is not enough, HORSE could require up to k · d hash
evaluations to generate each signature. However, [15] mentions a technique that allows
efficient storage of chain values that requires only storing log2 d hash values and performs
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at most log2 d hash evaluations per step.

5.2.1 Authenticating PCT Messages using HORSE

Each HORSE instance is expected to sign n = d/(1 − e−k/t) messages on average as
explained above. To sign messages exceeding d/(1− e−k/t), there is a need to use a new
HORSE instance after the current one expires. To address the issue of signing messages
exceeding d/(1− e−k/t) messages, we propose a tired solution similar to the one employed
for using BiBa to sign PCT messages. A long-term HORSE instance is used to send the
initial public key of a new short-term HORSE instance when the current one expires. The
initial public keys of the short-term HORSE instance are signed by the long-term HORSE
instance and sent to the receivers to allow the receivers to verify subsequent messages.
Figure 9 shows the structure of the our construct to provide authentication for the PCT
system.

An example to illustrate how the HORSE construct works is presented below:

• The initial public key of the long-term HORSE instance is sent to the receivers at
the time of installation. This is done by a technician installing the PCTs, shown in
Figure 9 by label A.

• Short-term HORSE initial public keys are then sent to the receivers signed using
the long-term HORSE private key as described above. Label B in Figure 9 shows a
short-term initial public key being sent to the receivers.

• Application messages are signed with the short-term HORSE instance as described
previously, shown by label C in Figure 9.

• Each short-term instance HORSE on average will send d/(1− e−k/t) messages after
which a new short-term HORSE instance needs to be created. When one of the
chains in the short-term HORSE instance is about to be exhausted (left with say
3 values), a new short-term HORSE instance is created and the public key is sent
to the receivers. When the first chain is exhausted (left with 1 value), a message is
sent to the receivers to instruct them to use the last public key they received. The
message sent to the receiver to switch to the new public key is encrypted with the
expiring short-term HORSE instance, such that the chain that had 1 value left have
all its values used.

A short-term HORSE with t = 1024, k = 4, and d = 50 on average will sign 12825 mes-
sages before a new short-term instance is required. If the long-term HORSE instance has
the same parameters, then 2565 short-term HORSE instances can be signed. Therefore
on average 128252 = 164480625 application messages can be signed. Keeping the previous
application data rate of 20 messages per day, the construct can last 8224031 days (22531
years).

5.2.2 HORSE Protocol Messages

The protocol messages that are communicated to facilitate the use of HORSE for authen-
tication in our solution follow the format used for BiBa (See Section 5.1.2). The structure
of the messages is shown in Figure 10. The message fields are defined as follows:
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Figure 9: Employing HORSE to authenticate messages

Figure 10: Structure of HORSE protocol messages
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TYPE: Describes the type of data that is carried in the message.
0 : Application messages are carried in the KEY field
1 : Short-term HORSE instance public key is carried in the KEY field
2 : Command to switch to newly received public key
3 : Long-term HORSE commitment key. This option is not used if the long-term
HORSE instance commitment is done off-line

KEY: The Data that is being sent in the message which is signed. Depending on the
value of the TYPE field it can either be a message sent by the application or a
command to switch to the next HORSE instance, or short-term HORSE public key.

< S1, I1 >...< SK , Ik >: The signature formed by the k values that forms the subset (Si),
and the index of the values in the chains(Ii); with 1 ≤ i ≤ k. The size depends on
the value of k.

The flow of messages will follow the same diagram as depicted by Figure 6
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5.3 The Elliptic Curve Digital Signature Algorithm

Elliptic Curve Digital Signature Algorithm (ECDSA) is similar to the Digital Signature
Algorithm (DSA), but employs elliptic curves over a finite field[16]. Elliptic curve cryptog-
raphy offers faster verification and smaller keys for equivalent security with other public
key systems [17]. Based on the complexity of the Elliptic Curve Discrete Logarithmic
Problem, it is computationally infeasible to forge a signature if appropriate parameters
are employed.

A finite field F is made up of a finite number of elements together with two binary op-
erations on F. The binary operations, addition and multiplication have special arithmetic
properties as defined in [16]. The order of a finite field is the number of elements in the
field. If p is a prime number, then the field Fp is called a prime field and is made up of
integers {0,1,2,...,p− 1}. Addition and multiplication of elements of Fp are done modulo
p. That is a + b = r; where r = (a + b)mod p, and a · b = s ;where s = a · bmod p. An
elliptic curve E on a finite field Fp; where p > 3 is an odd prime, is given by the equation:

y2 = x3 + ax2 + b (1)

where p is a prime number, a, b ∈ Fp, and 4a3 + 27b2 6= 0(mod p). The set E(Fp) consists
of all points (x, y) (x, y ∈ Fp) that satisfy equation 1 and a point ϑ located at infinity.
The point ϑ is the identity element of the group.

All the elements of the group have the properties:

P + (−P ) = (−P ) + P = ϑ

and
P + ϑ = ϑ+ P = P

The security of elliptic curve cryptography comes from the Elliptic Curve Discrete
Logarithmic Problem (ECDLP). The ECDLP consists of finding a value k such that
P = kQ given P and Q ( with P,Q ∈ Fp ). There is no efficient known algorithm that
can compute the value of k [17]. The parameter requirements to achieve resilience to
known attacks are outlined in [16]. [16] also gives ways of generating cryptographically
secure parameters for elliptic curves using several methods.

To sign a message, initially the sender and receiver agree on an elliptic curve with a
base point P over the field Fp. The sender has a private key x and a public key Q = xP .
The parameters of the curve a, b, P, q, Fp as well as the public key Q are assumed known
to the receiver. To sign a message m:

1. The sender generates a random number k; k ∈ [1, n − 1] and then computes kP =
(x1, y1). The value x1 is then converted to an integer x̄1

2. Compute r = x̄1mod n. If r = 0 then step 1 is repeated until r 6= 0.

3. Compute k−1mod n.

4. Compute SHA-1(m) and convert the output string into an integer e.

5. Compute s = k−1(e+ dr)mod n ; with s 6= 0. If s = 0 then go back to step 1.
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6. The pair r,s form the signature and sent to the receiver.

When the receiver receives the signed message it performs the following steps to verify
the signature.

1. Confirm that r, s ∈ [1, n− 1].

2. Compute SHA-1(m) and convert the output string into an integer e.

3. Compute w = s−1mod n.

4. Compute u1 = ewmod n and u2 = rwmod n.

5. Compute X = u1P + u2Q. If X = ϑ reject the signature.

6. Covert the x coordinate of X to an integer x̄′1, and compute v = x̄′1mod n

7. Accept the signature if v = r

5.3.1 Authenticating PCT Messages using ECDSA

Authenticating PCT messages does not require a lot of changes to ECDSA. The use of
the hash function SHA-1 in step 2 of signature generation can be omitted since the PCT
messages are small. Consequentially step 2 at the receiver will also be omitted resulting
in less computations. The use of hash function is to obtain a fixed length string from
variable message lengths . In practice the messages could be a file a few kilo bytes long,
hashing it using SHA-1 results in a string 160 bits long.

The value n > 2160 is recommended to protect against attacks as outlined by [16].
The sizes of the signature (r,s) is dependent on the value n, r, s ∈ [1, n − 1]. Taking a
minimalist approach and using n = 2160, we have both r and s being 20 bytes long (the
signature is 40 bytes long). The above parameters can then be used for the PCT system
for authentication purposes. It may be necessary to use a dynamic approach where the
elliptic curve parameters used are refreshed periodically. To allow such a construct, the
sender uses one long-term secret key to sign the new parameters when sending to them
to the receivers.
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6 Simulation Results and Analysis

The evaluation of the protocols was done using the Network Simulator tool (NS-2.30).
The evaluation consists of building a model of the RDS network. The physical layer
propagation model was designed to match closely real conditions by conducting field
measurements to calibrate the model. Signal strength readings of FM broadcasts were
taken from various places in Ottawa and used to characterize the channel gain. The
locations for signal strength measurements were chosen randomly and are shown in Figure
11. Readings were taken from two FM broadcast channels, Hot 89.9 (operation at 89.9
MHz) and Bob FM (operationg at 93.9 MHz). Both stations have their transmitting
antennas in Camp Fortune shown by the top left tag on Figure 11. Hot 89.9 transmits
at an effective radiated power (ERP) of 27 KW while Bob FM has an ERP of 95 kW.
The signal strength measurements are presented in Figure 12 by the crosses (red). All the
readings were taken from indoors to reflect operation conditions for PCTs. The variations
of the signal strength readings as shown in Figure 12, are due to the different conditions
at the measurement sites. Some of the locations were on high rise apartment buildings
with potential line of sight conditions while others were in basement apartments. Other
sites were in town houses with dry wall and wooden walls while others had concrete walls.
All these different conditions have effects on the signal propagation and hence the signal
readings were diverse although they were taken from distances relatively similar from the
transmission antenna. Weather conditions and other unknown environmental effects also
account for the vast differences in the readings. To account for the diverse nature of the
data, two approximations were made to reflect the best case and worst cases. Figure
12 also shows the estimated signal strength obtained through simulations. The physical
layer signal propagation model used accounts for large scale fading channel by using the
Shadowing model provided in NS-2. The small scale channel fading was modeled by using
a Ricean model obtained from [18].Two pathloss exponents were used to account for the
diverse data as shown in Figure 12. Taking a conservative approach the evaluation was
conducted for the worst case scenario hence the lower curve on Figure 12 was used to
evaluate performance.

Figure 11: Locations of signal strength measurements
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Figure 12: Estimation of the communication channel using field data

The media access of the model was designed to closely resemble the RDS network.
That is, the fragmenting of messages into RDS groups was done to model the real network.
Security is provided for by implementing the above the three authentication schemes in
the link layer. Table 1 shows the parameters of the RDS network used to evaluate the
security protocol. All results presented here, unless stated otherwise are based on the
parameters in Table 1.

RDS Mode Real-Time
Number of re-transmissions 5

Raw data bitrate 1187.5 bps
Propagation model pathloss exponent 3.50

Transmission power 27KW
Application Message size 30 Bytes

Table 1: Physical network parameters

6.1 BiBa Performance Results

From the simulations of the security protocol, a BiBa instance of 1024 SEAL chains was
found to take 440 seconds (7.33 minutes) to bootstrap, assuming that no other application
uses the network. Reducing the number of SEAL chains by half reduces the bootstrapping
time by half. Alternatively, SEALs of smaller size could be used to reduce the size of the
public key. The time taken to bootstrap a new BiBa instance needs to be short to avoid
periods where the receiver is not synchronized with the sender. If such periods are allowed,
the receiver will be unable to authenticate the new messages. To avoid such a problem,
the last few time intervals (depending on the size of the short-term BiBa commitment key)
of the current short-term BiBa instance could be used to bootstrap the next short-term
BiBa instance.

The commitment keys used to bootstrap BiBa instances (public keys) are in the order of
a few kilo bytes. Successful reception of such messages over the lossy RDS channel becomes
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a problem. Initial studies of the RDS network show that the probability of receiving
messages sent over the network is inversely proportional to the size of the message. The
probability of receiving a message made up of m RDS groups and retransmitted n times
is given by P = (1 − P (fail)n)m; where P (fail) is the probability that a single RDS
group is not received. The size of the BiBa commitment key using 512 SEAL chains
(t = 512), with each SEAL 16-bits (2 Bytes) long for the short-term BiBa instance, the
key is m = 512∗2

RDS Group size
= 256 groups; with (RDS Group size = 4). Such a large value

for m diminishes the probability of reception rapidly.

The trick mentioned earlier of avoiding unsynchronized periods between successive BiBa
instances helps to increase the probability of receiving a new public key to an already syn-
chronized node. This is because such a node effectively has 2 chances of receiving a the
commitment key for the next short-term BiBa instance. The first chance comes from using
the long-term BiBa instance to bootstrap the new short-term BiBa instance. The second
chance comes from using the short-term BiBa instance to avoid unsynchronized periods
between successive short-term BiBa instances. To increase the chances of bootstrapping
short-term BiBa instances the number of times a public key is sent can be increased by
sending commitment keys by both the long-term and short-term BiBa instances.

Different values for the number of SEALs in the short-term BiBa instance (t) have
an impact on the reception of application messages. Figure 13 shows how the probability
of receiving application messages vary with different commitment key sizes. The results
presented in Figure 13 are for fixed SEAL sizes (16 bits). A larger value for t results in
a larger commitment key which has lower probability of reception. It can be seen that
generally a larger value of t results in lower reception probability compared to smaller
values of t.

Figure 13: The effects of different of public key sizes on reception of messages

The reception of application messages depends largely on the successful bootstrap-
ping of the BiBa instances at the receiver. When the receiver fails to bootstrap, all the
messages received during that period will not be successfully verified. The results de-
picted in Figure 14 show degraded performance against the case with no security because
of the obvious bootstrapping problem caused by large commitment keys. More applica-
tion messages are rejected by the security layer caused by unsynchronised receivers when
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bootstrap information is not received. The successful reception of messages varies accord-
ingly with the number of retransmissions of RDS groups. By increasing the number of
RDS re-transmissions, the reception of the individual messages and more importantly the
commitment keys, will be increased.

Figure 14: The effects of different signature sizes on reception of messages

The signature sizes are linear in k for a k-way BiBa signature, and public keys are
linear in the number of SEALs (t). The signed messages are bigger than unsigned messages
because of the signatures. Increasing the number of collisions required for the signature
(k) increases the sizes of the transmitted message but also increases the security of the
BiBa protocol by lowering the chances of an adversary to successfully forge a signature. It
is expected that messages bearing larger signatures incur lower reception at the receiver
based on initial studies of the RDS network. Figure 14 shows the probability of receiving
messages using different values of k. The graph on top shows the probability of reception of
messages with no authentication. As shown by Figure 14, the messages of an 8-way BiBa
signature scheme are less likely to be received than those of a 4-way BiBa scheme. The
difference between the signed messages and unauthenticated messages is large because
of the dependence on successful bootstrapping of receivers for signed messages. The
successful bootstrapping of receivers diminishes fast with distance and effectively reduces
the coverage area that a Systems Operator can offer high availability of services.

The signatures introduce significant overhead to messages if the messages are small.
An 8-way BiBa signature scheme with 16-bit SEALs has a 100% overhead on 16-Byte
messages without considering the bootstrap keys. The messages that are transmitted in
the PCT system are very small messages, in the order of tens of bytes. Therefore the
signature overhead is large and together with the communication of public keys, the BiBa
protocol as used in our design is not bandwidth efficient. However, if the SEAL chains are
long and each BiBa instance lasts for long periods of time, the consumption of bandwidth
for security reasons can be very small. If one commitment key is sent every 24 hours to
bootstrap the receivers, then the bandwidth consumption by background traffic is small.
For a short-term BiBa instance with 512 SEAL chains, each SEAL 2 Bytes long, the
bandwidth consumption will be 512∗2∗8

24∗60∗60
= 0.0948bps. With this construct, the availability

of the service would be increased by multiple transmissions of the commitment keys for
the short-term BiBa instance.
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The operation of the RDS network calls for careful design of the interaction of the
security layer and other applications running on top of the RDS network. From simula-
tions there are instances when the application messages can pre-empt the transmission
of messages when RDS is operating in Real-Time Mode. If such an event occurs while
the short-term BiBa commitment keys are being transmitted, the security protocol would
perform badly. Therefore, both the application using the security protocol and other ap-
plications running on top of RDS need to be designed to avoid pre-empting of the security
commitment keys.

6.2 HORSE Performance Results

Simulation conditions for HORSE were kept equivalent for the case employing BiBa as
the security protocol. To be specific, the memory required to store the one way chains
at the sender was kept constant. Therefore, the number of chains, chain value sizes and
chain lengths were kept equal for both cases. Fixing the mentioned parameters results in
an equivalent size of the public keys for HORSE and BiBa. To improve the chances of
successful bootstrapping to new HORSE instances, the initial public keys could be sent
periodically, the same as described for BiBa.

The size of the signature in HORSE is larger than in the case where BiBa is employed.
The increase in signature size is a result of including the position of the values that
make up the signature in their respective chains. The signature size in bits is dlog2de · k.
Therefore, the signature size increases linearly with the number of values that make up
the signature,(k), and logarithmically with the lengths of the chains used to generate the
signatures (d). There is a tradeoff between the lengths of the chains d, and the storage
requirements and signature size. A large value of d results in a higher number of messages
that can be signed by a single HORSE instance. On the other hand, a large d requires
more storage and/or computation by the sender and larger signatures. Earlier studies
reflect that successful reception of messages over the RDS network is inversely related
to the size of the message. Larger signatures result in larger messages and ultimately
lowered probability of reception. The computational overhead at the sender for the PCT
system can be tolerated since the base station is assumed to be equipped with powerful
storage and computing resources. Figure 15 shows the relation between different values
of k. As depicted by Figure 15, unsigned messages (no signature or k = 0 ) have a better
probability of reception than the signed messages. The messages with larger value for k
have lower chances of reception as shown by the curve for k = 8 against that of k = 4. The
reduction in performance is a result of the signatures, which result in large messages being
sent over the RDS network. The difference between the signed messages and the unsigned
messages is large due to the dependence on successful bootstrapping of the devices.

The results presented in Figure 15 and the rest of the document are for a fixed value of
d, where an 8-bit unsigned value carries the index of the values making up the signature.
An 8-bit value for the index can represent positions of values for chains up to d = 256
values long. It is not expected to have chains more than 256 values in length because that
could potentially result in extensive computations at the receivers to verify signatures.
To verify a signature, the receiver performs up to d · k hash operations. Large values of
d would place a lot of computational burden on the PCT receivers which are expected to
have low computational power.
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Figure 15: The effects of different signature sizes on reception of messages for HORSE

Figure 16: The effects of different public key sizes on reception of messages for HORSE
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Successful reception of initial public keys is critical for the verification of signatures. The
larger the signatures, the more likely that the initial public key is not received successfully.
In this case, the receiver will not be synchronized with the sender and will fail to verify
signed messages. Figure 16 shows the effect of varying values of t. The size of the public
key grows linear with respect to t. To keep the cases with different values of t equivalent,
the value t · d was kept constant in all cases. That is, the amount of storage required by
the sender is the same in all cases. The results are as expected with larger values of t
performing worse than smaller values. This is shown in Figure 16 with t = 128 performing
better than t = 256 which in turn performed better than t = 512.

From the results in Figure 16, it is evident that keeping t as small as possible and keeping
d as large as possible improves improve successful initial key reception by reducing the
size of the public key. As pointed out earlier, the number of operations at the receiver is
equal to k · d. For a fixed value of k, increasing d (and reducing k) will result in increased
computations at the receivers.

6.3 ECDSA Performance Results

Figure 17: The performance of ECDSA used over the RDS network

The ECDSA protocol produces large signatures compared to BiBa and HORSE. For
the recommended 160-bit key (according to [16]) ECDSA has a signature of 40 bytes.
This introduces a lot of overhead in the case of PCT messages which are expected to be
a few tens of bytes in size. The large messages result in lowered performance as shown
by Figure 17. It is worth noting that although the overhead on each message is large for
ECDSA, the successful verification of signatures does not depend on receiver bootstrap
as is the case with BiBa and HORSE.

6.4 Comparing the Authentication Protocols

Figure 18 puts things in perspective and compares the performance of all the protocols
against each other. Figure 18 shows the reception of messages signed by each of the
authentication protocols under investigation. From the simulation results as shown in
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Figure 18: Comparisons between BiBa, HORSE and ECDSA

Figure 18, HORSE performs better than BiBa in terms of successful reception of messages.
For the same values of k and t, HORSE has a significant advantage over BiBa as shown
in the figure. As an example, at a distance of 14 km, HORSE with t = 256 and k = 4
gives 5% better message reception than BiBa with the same parameters. The difference in
performance increases as the distance increases, reaching 20% at a distance of 18 km. The
performance improvement in HORSE comes from efficient use of chain values. In BiBa,
the short-term BiBa instance expires when the time set for it elapses even if there are
no application messages sent during that period. This results in frequent transmission of
the large commitment keys (public keys) which have low chances of successful reception.
From the figure, there is no significant difference between HORSE with t = 256 and k = 4
and ECDSA. It is worth noting that with HORSE the values of t and k can be adjusted
to improve performance, albeit with tradeoffs mentioned previously.

ECDSA has large signatures on each message and had overhead of
40

30
∗100% = 133.33%

on a 30 byte message (the signature is 40 bytes long). A HORSE instance with parameters
t = 256, k = 4, and d = 20 introduces only 41.32% overhead. Such a HORSE instance
can be used to sign d/(1− e−k/t) = 1290 messages. Each message is 30 bytes long and the
signature on each message is k(b+a) = 12 bytes long(where b = 2 and a = 1; i.e. each value
in that make up signature is 2 bytes long and the index variable used for synchronization
is 1 byte long). The public key sent to the receivers is t ∗ 2 = 512 bytes long, and sent

only once. Therefore, the overhead is
512 + (12)1290

30(1290)
∗ 100% = 41.32%. It is important

to notice that the overhead of the HORSE protocol will increase with periodic sending
of initial public keys to improve bootstrapping probability. The overhead of the BiBa

protocol with the same parameters in the best case is equal to
512 + (8)30νd

30νd
∗ 100% =

30.08%;(with d = 20, and ν = b tγ
k
c = 25 ; typically γ = 0.10). The best case for BiBa

that achieves the above overhead is when the maximum number of messages is signed in
each time interval. That is, for the above parameters in each of the d = 20 time intervals,
ν = 25 messages are signed. The number of signed messages in each interval is expected
to be less than the maximum hence the overhead will be larger. The increase in overhead
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is a result of is inefficient use of keys in BiBa. If the BiBa instances are bootstrapped
multiple times to improve successful reception of messages, the overhead is even higher.

The computations that the receivers have to perform when ECDSA is employed for
authentication are extensive. In general public key cryptography are computationally
extensive because of the arithmetic involved in signature generation and verifications.
Public key cryptosystems perform complex operations on relatively large numbers (160
bits for ECDSA). The PCTs are expected to employ low power microcontrollers with
limited computational power. Implementations of ECDSA on an 8-bit processor takes 2.78
seconds to verify a signature [19]. On a slightly more powerful 16-bit M16C microcontroller
ECDSA was shown to require 630 msec to verify a signature [20]. Comparisons between
DSA and HORSE on a PPC 867 MHz platform show that a HORSE implementation
using MD5 with t = 256, k = 16, d = 210 has a key generation time of 0.63 seconds and
can verify 2688 signatures in one second [15]. An equivalent DSA has a key generation
time of 2.66 seconds and can verify 108 signtures in one second [15] (note that ECDSA is
based on DSA). The time required for signature verification in ECDSA is very similar to
DSA as shown in [21]. [21] compares software implementations of ECDSA and DSA on a
Pentium Pro 200 MHz-based PC to give a perspective on relative performance of ECDSA
and DSA. The results show that ECDSA requires 26 ms to verify a signature while DSA
require 28.3 ms to verify a signature. HORSE gives a faster signature verification time
than DSA (on which ECDSA is based) and a designer faces a tradeoff between the two
schemes. The fast verification time of HORSE is ideal for PCT’s which are expected to
employ microprocessors with modest computational power. The use of HORSE allows for
relatively cheap devices at the cost of longer periods to bootstrap the devices. ECDSA
does not require bootstrap but requires the devices to perform complex operations and
hence take longer times to verify signatures. The time taken to verify a signature could
be exploited by an attacker allowing a denial of service attack. If the receivers take a long
time to verify a signature, an attacker who floods the network with messages will take up
resources at the receivers while they verify the signatures. This could result in missing
legitimate messages while the receivers are verifying the bogus messages. Moreover battery
powered devices would be unable to go into powersaving modes because they would be kept
busy verifying bogus messages, ultimately leading to reduced battery life and increased
down times of the receivers.

Security Overhead 95% service security level computational
scheme availability (probability of guessing effort

(KM) a valid signature) (at receiver)
ECDSA 133.33% 120 2−80 High
HORSE 41.32% 130 2−35 Low

BiBa 30.08% 120 2−35 Low

Table 2: Comparisons of the security schemes for BiBa and HORSE with t = 512 and
k = 4,and ECDSA using SHA-1

Comparisons of the security schemes is presented in Table 2. The table shows the
bandwidth overhead introduced by the different security schemes. ECDSA has the most
overhead compared to the other schemes. The overhead of HORSE and BiBa as presented
in the table is a lower bound and in practice will be higher depending on the number of
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times public keys are sent to the receivers. The use of signatures makes messages larger
which in turn results in increased message loss-rate. Distances from the transmitter at
which 95% of the messages are correctly received with the network parameters set as in
Table 1 are also presented from simulations. Up to a distance of 90 km all the security
schemes achieve high availability of services. Beyond that rane, messages may not be
received correctly. The loss of messages is due to signatures and failure to bootstrap
receivers for BiBa and HORSE protocols. The security level provided by the schemes in
terms of successfully forging a signature by guessing is presented in Table 2. ECDSA gives
a high level of security with a cost of added computational complexity at the receivers.
BiBa and HORSE offer reduced security and lower computational cost at the receivers.
Reversing the one way hash function used in ECDSA, BiBa and HORSE should be com-
putationally infeasible, hence strong hashing algorithms should be employed. An attacker
who cannot obtain private key material from the transmitter and tries to forge a signature
is limited to guessing. The probability that an attacker can successfully forge an ECDSA
signature is 2−80 while for HORSE and BiBa it is 2−35 [14].
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7 Conclusions

Through the study we have shown that security (in the form of message authentication)
can be offered over the RDS system. The security provided by the three protocols provides
source authentication at a cost of bandwidth efficiency. The construct allows for seamless
operation of devices after initialization. The use of a long-term BiBa and HORSE instance
allows devices that were rebooted to resynchronize to current short-term instances. The
large size of the public keys of the BiBa and HORSE protocol affects the performance,
which is dependent on the successful bootstrapping of devices. Although the transmission
of the public key for both BiBa and HORSE may take a long time, careful scheduling
of such actions for periods with minimal traffic can improve performance. Comparisons
shows that the performance of ECDSA is comparable to HORSE. HORSE allows to adjust
key sizes and signature sizes to improve performance and reduce overhead. ECDSA on
the other hand gives a fixed signature size and introduces significantly higher message
overhead compared to BiBa and HORSE. Hybrids of the schemes should be considered
for the purposes of making the scheme resilient to attacks and conserve bandwidth.

The protocol employing BiBa and HORSE described here places constraints on the
application data rate. The protocol assumes an upper bound of the application data rate.
A single BiBa instance can be used to sign a finite number of messages in a single time
interval before the security of the protocol falls below targeted levels. In the event that an
application exceeds the number allowed by the protocol within a time interval, a decision
needs to be made to either buffer such messages until the next period, send the messages
unsigned, or sign the message, albeit with reduced security. Buffering some messages may
not be ideal for real-time messages, while some critical messages require authentication at
the receivers. A more relaxed design is recommended to avoid placing tight constraints on
the application. A tradeoff between the public key sizes and the bound on the application
message generation rate exist. Smaller public keys means fewer messages can be signed
in a single period. Allowing for many messages to be sent in a single period requires that
either multiple short-term BiBa instances run in parallel or one short-term BiBa instance
with a large number of SEAL chains. The results of both choices effectively increases the
size of the commitment keys and ultimately results in increased bootstrapping times and
a lowered probability of successful bootstrapping of receivers.

The problem of key distribution still persists with the methods discussed. In the event
that a long-term secret key is compromised, there is no feasible way at present to renew
it for all the protocols presented. The difficulty is inherent due to the asymmetric nature
of the channel. Traditional key agreement and distribution protocols cannot be employed
on a one-way communication channel like RDS. Further studies should be conducted to
propose manageable ways of system recovery in the event of a long-term chain compromise.
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