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Seismic records, combined with dredged samples and a core, indicate that the Spratly Islands of the Dan-
gerous Ground Province are constructed of presently active carbonate build-ups, known to extend back
continuously at least to the Pleistocene and presumed to have initiated in the Miocene, most likely upon
the crests of sea-floor cuestas that trend north-east–south-west parallel to the sea-floor spreading mag-
netic anomalies of the contiguous abyssal plain of the southern part of the South China Sea. The cuestas
range from spectacular to subdued, constructed of Triassic and Cretaceous strata and no older rocks have
been identified from dredges.

The cuesta axes plunge towards the south-west away from the islands, suggesting that the reefs began
colonising their more elevated parts, but the timing is uncertain. The highest seismically recorded cuesta
crest is in 440 m of water and the islands and reefs are generally closely surrounded by water deeper than
1500 m. Since the so-called Mid-Miocene Unconformity (MMU), the region has been undergoing post-rift
thermal subsidence. However, the nearby seismic lines show no evidence of drowned carbonate reefs. It
is suggested that the coral-algal reefs colonised the crests of the most elevated cuestas that have maintained
stability as shown by the 165 m core of one reef indicating periodic exposure with caliche horizons. Deep-
ening water has protected the build-ups from extinction by post-rift draping strata in contrast to the Central
Luconia Province, and the build-ups have been able to keep up with regional thermal subsidence.

The dredged Mesozoic strata indicate that the Dangerous Ground is not exotic and should be interpreted
as an integral part of the pre-rift Sundaland continent that included South China, Vietnam, Peninsular
Malaysia, western Sarawak and possibly part of Sabah. Igneous and metamorphic samples have been
dredged. Although individual spot K/Ar dates cannot be accepted at face value, such rocks can also be inter-
preted as an integral part of Sundaland. Post-MMU dredged samples are predominantly deep-water calcar-
eous mudstones typified by the draping strata of the Ocean Drilling Program (ODP) Site 1143 cored from
Recent to Late Miocene.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The purpose of this paper is to attempt an understanding of the
geology of the islands and the Dangerous Ground, supported by
nearby seismic lines and dredge sample descriptions. The Spratly
Islands, mostly reefs, are well known more as a region of different
territorial claims. A substantial number of papers have been pub-
lished on the Dangerous Ground (e.g. Clift et al., 2002, 2008;
Hutchison, 2004) but there is a lack of studies on the actual geology
of the Spratly Islands themselves, except for Gong et al. (2005).
Taylor and Hayes (1980, 1983) wrote about the Reed Bank that is
close to but not actually one of the Spratly Islands.

There are more than 600 reefs and islets in the southern South
China Sea. Most lie between 7–12�N and 112–116�E. (Fig. 1). They
ll rights reserved.

(C.S. Hutchison), vjgeomar-
were named after Captain Richard Spratly, master of the British
whaler ‘Cyrus South Seaman’, who in 1843 sighted the Spratly Is-
land, also known as Ladd Reef. China refers to them as the Nansha
Islands. Admiralty charts have the warning ‘‘Dangerous Ground”
printed over this region, to warn sailors of the reefs, many of which
were uncharted. The region has come to be referred to as ‘Danger-
ous Ground’ in the absence of any formal name. As far as can be
determined, all of the Spratly Islands are capped by active coral
reef and there are no other rock outcrops. Most of the ‘islands’
are under water at high tide, but some maintain a partial low ele-
vation of a rim surrounding a lagoon, in which case they are spar-
sely vegetated and inhabited by sea birds. There are no indigenous
human inhabitants, but tourists visit for diving and fishing and the
military occupy many for territorial claims.

This paper is mainly confined to seismic data acquired within
Malaysian Exclusive Economic Zone (EEZ). There are numerous is-
lands and reefs within the maritime boundary of Malaysia’s EEZ.
The main reefs and islands are shown in Fig. 2. The names in the
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admiralty charts differ from those given by claimant countries.
However, a considerable amount of confusion exists regarding
their naming and which countries claim and occupy them. Com-
prehensive non-geological details are given by Hancox and Pres-
cott (1995) and Dzurek (1996). This paper does not deal with the
legal and occupational claims by contiguous coastal countries.

The Spratly Islands are mostly reefs. Pulau1 Layang-Layang has
been identified as an atoll with a box-like shape suggesting fault
control. The old theory of Darwin (1842), that atolls are carbonate
build-ups upon the calderas of extinct volcanoes, is no longer valid
1 In Malay language, pulau means island, terumbu means reef.
and Purdy and Winterer (2001) have shown that a carbonate rim
enclosing a lagoon is a result of fresh water karstic weathering at
sea level. A rim and lagoon are not, however, universal. The atoll
morphology in no way suggests control from the underlying base-
ment morphology.

There is a reconnaissance network of 2D seismic lines over most
of the area (Fig. 2), except in the vicinity of the Barque Canada Reef
(Terumbu1 Perahu), Commodore Reef (Terumbu Laksamana) and
Amboyna Cay (Pulau Kecil Amboyna).

In 2007 several deep-penetration 2D seismic lines were ac-
quired in this area, as part of the Malaysian Continental Shelf Pro-
ject. However, they are not included in the present paper.
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2. Data sources

The data banks of the Malaysian National Oil Corporation PET-
RONAS were searched and the nine seismic lines closest to the
Spratly Islands were selected for interpretation. The only available
shallow drilling on a carbonate reef was analysed by Gong et al.
(2005). The available dredging was by Yan et al. (2009) and
Kudrass et al. (1986).
3. Bathymetry

Bathymetry maps of this region that have been derived from sea
level altimetry generally have poor resolution. Fig. 3A is a map
from a ship-borne survey. It shows a very distinct N70�E-trending
fabric demonstrated by some of the larger islands and shoals, sug-
gesting they result from carbonate build-ups on the ridges of bed-
rock cuestas. This is more clearly demonstrated by the oblique
view from the south-west (Fig. 3B). However, there are individual
islands (e.g. Pulau Layang-Layang) that appear to stand alone as
atolls and the box-like shape suggests an origin involving fault
control.

The islands and shoals rise abruptly to around sea level from
water depths of 1.7–2.0 km, even as deep as 2.5 km near Viper
Shoal (Fig. 3A). The only cored reef is on Taipingdao (Fig. 2). Reef
facies coral-algal limestone was cored to a depth of 165 m, but
the complete thickness of limestone and the nature of the underly-
ing bedrock are unknown (Gong et al., 2005). The oldest date ob-
tained by Gong et al. (2005) is Pleistocene. Off-reef the water
plunges abruptly (Fig. 3A).

The Dangerous Ground is the continental slope whose crust has
been rifting to form cuestas which then underwent post-rift ther-
mal subsidence. An important question remains – have the carbon-
ate build-ups been continuous upon the cuesta crests since the
Mid-Miocene Unconformity (MMU)? Unfortunately Taipingdao
has not been drilled to the base of the build-up. There is also no
seismic to show the stratigraphy of or beneath the build-ups of
the Spratly Islands. However, within the Central Luconia Province
(Fig. 1), seismic data show poor resolution beneath the buried car-
bonate build-ups (Epting, 1980), but horsts or platforms were
interpreted (Vahrenkamp, 1998).
4. Mid-Miocene Unconformity

What has come to be called the Mid-Miocene Unconformity
(MMU) has turned out to be a complex of Miocene events and dif-
ferent authors have inadvertently emphasised different individual
sub-events resulting in the present confusion. Mat Zin and Tucker
(1999) have shown that there are both Early and Middle Miocene
events. The confusion has also resulted from the misguided belief
that any unconformity is geographically universal. A prominent
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unconformity seen in shallow nearshore waters should be ex-
pected to change with regional variations and become a perfect
conformity in deeper waters farther offshore.

The Mid-Miocene Unconformity (MMU) has been marked on
the following seismic lines as the distinct boundary between
underlying rifted terrane and overlying post-rift draping strata.
This is the only horizon that can widely be identified on seismic re-
cords. However, there is inconsistency regarding the interpreta-
tion, timing and nature of this boundary.

Hutchison (2004) and Mazlan (1999) gave this boundary a Mid-
dle Miocene age. Krebs and Van Vliet (2009) and Van Vliet (personal
communication) stated that seismic and well biostratigraphic data
concurrently reveal that the MMU is in most places neither of Mid-
dle Miocene age nor an unconformity in the traditional sense of a
true break in the stratigraphic record. They concluded that the
crests of fault-blocks (or anticlines) experienced minor (probably
entirely submarine) erosion and the resulting sediments were
deposited in adjacent lows. Hemipelagic sediments draped this
irregular, essentially structural, topography and thinned atop highs
to form condensed sections above local unconformities. There was,
however, near continuous deposition at this time in the lows. Bako-
1 and Mulu-1wells, drilled on non-carbonate paleo-highs, reveal
Fig. 3A. Bathymetric map around the Spratly Islands, isobaths in km. The lower cross
islands and shoals. The N70�E trend of the cuesta strike is obvious. Islands such as Pula
that the MMU is late early Miocene and is covered by a condensed
section that comprises about 10 m.y.

Robinson et al. (2009), based on data from a non-carbonate well
‘X’ (Fig. 1), confirm an Early Miocene dating but with different
views. The MMU, recognized as a pronounced angular unconfor-
mity throughout the deepwater Sarawak area, is in fact Early Mio-
cene with a strontium isotope age of 18.5–19.0 Ma, with a 2.0–
2.5 m.y. hiatus at the unconformity. The sediments below the
unconformity show consistent Early Miocene dating in all the
deepwater offshore wells of Sarawak.

However, we shall for convenience continue to call it the MMU.
Very importantly, the unconformities described by Robinson et al.
(2009) and Krebs and Van Vliet (2009) are not actually the prom-
inent boundary between overlying post-rift draping strata and
the underlying rifted terrane. Especially Robinson et al. (2009)
illustrate their Lower Miocene dated unconformity as considerably
underlying the end of the rifting/beginning of draping horizon.
Thus, it is clear that the confusion arises because the multiple Low-
er/Middle Miocene events have all been amalgamated into the
‘Mid-Miocene Unconformity’.

The observations of Krebs and Van Vliet (2009) and Robinson
et al. (2009) are applicable only to the deep water areas north of
section was drawn with no vertical exaggeration to show the cuesta nature of the
u Layang-Layang show no elongation and have an atoll-like appearance.



Investigator ShoalErica Reef (Terumbu Siput)

Mariveles Reef (Terumbu Mantanani)

Dallas Reef (Terumba Laya)
Pulau Layang-Layang

Ardasier Reef (Terumbu Ubi)

Metres
+100 – 0

0 – -100
-100 – -200
-200 – -500
-500 – -1,000

-1,000 – -1,500
-1,500 – -2,000
-2000 – -2,500

-2,500 – -2,950

N

Fig. 3B. Perspective view of the Spratly Islands based on the bathymetry of Fig. 3A, showing the elongated asymmetrical shape of the reefs and a more conical Pulau Layang-
Layang.

C.S. Hutchison, V.R. Vijayan / Journal of Asian Earth Sciences 39 (2010) 371–385 375
the Central Luconia Province. However, Mat Zin and Tucker (1999)
have shown that there is a real erosional unconformity in the Mid-
dle Miocene, with greater erosion upon the compressed and up-
faulted anticlines, and lesser erosion in the intervening synclines.
The folding of the Oligocene–Lower Miocene strata, both onland
and offshore in the Balingian Province must also have been part
of the complicated Middle Miocene events, and Hutchison (2005)
has shown that a major tectonic event not only folded the strata
but also caused uplift of the pre Middle Miocene formations to
form a new landmass north of the isoclinally folded Sibu Zone fly-
sch (Fig. 10). At approximately the same time, the pattern of regio-
nal rifting of the Dangerous Ground ceased and the rifted terrain
was unconformably draped over by unfaulted hemipelagic strata
of calcareous mudstone, with no depositional breaks from Middle
Miocene to the present day (Li et al., 2005). It appears that the
so-called MMU represents a complicated series of tectonic events,
some of which may have been Early Miocene, others Middle Mio-
cene. On seismic lines, without chrono-stratigraphic control, we
have marked the MMU as the distinct boundary between underly-
ing rifted terrain and overlying draping strata.
5. Structural interpretation of seismic lines

5.1. Lines 1 and 2

These seismic lines show interesting features related to the
existence of the Amboya Cay (Pulau Kecil Amboyna), which may
be applied elsewhere in the Dangerous Ground. They are the near-
est available to that island (H on Fig. 2). Resolution dies out rapidly
with depth and the best possible geological interpretation is pre-
sented (Fig. 4A).

As with all seismic sections across the Dangerous Ground,
the geological subdivisions may be summarised as follows
(Fig. 4A):
1. A basement usually without seismic resolution
2. A syn-rift sequence, characterised by strata dipping towards a

master fault that was active during deposition.
3. A post-rift sequence that drapes over and generally buries all

the older rocks. It is flat-lying, but at this 8� vertical exaggera-
tion the flexures shown by the drape may be mistaken for fold-
ing. Its flexures mimic the highs and lows of the underlying
cuestas.

The following are the major features:
5.1.1. Sea-floor cuestas
A cuesta is a geomorphological feature formed by strata dip

slope (usually gentle) and a normal fault scarp slope (usually
steep). The two slopes come together as a prominent linear cuesta
ridge, indicated as A on both lines of Figs. 4A and 4B. There is an
excellent correlation between Lines 1 and 2 (Fig. 4B) resulting in
the following measurements: the trend of the cuesta crest between
the two lines is N61�E, consistent with the orientation of the mag-
netic anomalies (Fig. 1) of the abyssal plain of the South China Sea
marginal basin (Briais et al., 1993). Barckhausen and Roeser (2004)
have made changes to the anomaly identification, now early Mio-
cene 6a and 6b in the SW prong contiguous with the Dangerous
Ground, but not to their south-west–north-east orientation. How-
ever it should be remembered that none of the anomaly identifica-
tions has been confirmed by drilling and dating. Faults in the
Dangerous Ground area (continental slope) are parallel to magnetic
anomalies in the contiguous abyssal plain indicating that the rif-
ting was of a single crustal attenuation regime.

The water depth to the cuesta crest is 1336 m (Line 1) and
846 m (Line 2). The axis therefore plunges to the south-west, more
elevated towards the islands and reefs (Fig. 4B). Calculated actual
scarp slope dips are 12.2� (Line 1) and 25� (Line 2). The gentle
dip slope is calculated to be 0.25� (Line 1) and 1.3� (Line 2).
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The cuesta ridge becomes higher (overlain by shallower water)
towards the north-east (Fig. 4B). Unfortunately there is no seismic
coverage in that direction. It is our hypothesis that carbonate
build-ups upon the cuesta ridges have been able to keep pace with
regional thermal subsidence while the off-ridge deep water accom-
modated the post-rift muddy sediments thereby maintaining clear
water on the crests for continuous reef growth. This is in contrast
to burial by a high influx of siliciclastic sediments in the Central
Luconia Province (Fig. 9). No extinct carbonate build-ups have been
seen in seismic lines. Only where islands occur have there been
build-ups, and seismic records have not been acquired close en-
ough to the islands to demonstrate that every build-up has contin-
ued active to the present day.

A second parallel, but less spectacular, ridge is seen at B on both
seismic lines of Figs. 4A and 4B. Measurements are given as fol-
lows: trend of cuesta ridge N54�E. This sharp cuesta also plunges
towards the south-west, more elevated towards the north-east
where there are several reefs (Fig. 2).

The minor peak at C cannot be traced from Line 1 to Line 2, sim-
ilar to a peak recorded elsewhere by Yan and Liu (2004). It may be
possible to follow their view that it is a Miocene volcanic edifice or
possibly a drowned carbonate build-up, rising from the MMU or
from beneath it, but this cannot be proven.

5.1.2. Sea-floor ponded strata (turbidite ‘fairways’)
An impressive sea-floor fairway is illustrated in Figs. 4A and 4B.

The flat-lying turbidite sequence occupies a bathymetric low
immediately on the north-west side of the large cuesta at A. The
top of the turbidite pile is impressively flat-lying. Bathymetry mea-
surements have been made as 2037 m and 2050 m along the base
of the scarp slope. The far end bathymetry measurements are at
2044 and 2030 m water depth (Fig. 4B). The turbidite fairway
trends north-east–south-west, parallel to the bounding scarp face
Fig. 4A. Interpretation of the structure and geology of parallel north-west–south-east sei
water layer of �8�. This means that the steep fault plane at A of about 70� dip is actual
bounds, along its north-west side, a young turbidite fairway, of 19–27 km width. The u
A. The width of the turbidite channel is 19 km (on Line 1) and
27 km (on Line 2).Turbidite thickness is �0.5 km (Line 1) and
�1.1 km (Line 2).

The amalgamated sea-bed turbidite flows have cut down and
partly eroded into the post-rift draping sequence (Fig. 4A). From
this, it is clear that the sea-floor channelised turbidites had been
flowing from the south-west towards the north-east but meander-
ing over the width of the fairway. The sediment supply was not
from Sabah because of the deep intervening North-West Borneo
Trough, rather coming from Sundaland, either from Sarawak or
the Mekong River across the Sunda Shelf. It is remarkable that this
formerly unknown flat-lying young turbidite fairway is 20–30 km
wide, comparable to the well known North-West Borneo Trough
that is a major sea-floor bathymetric feature. But the fairway can-
not be traced farther away from these seismic lines.

5.1.3. Discussion
The major fall in eustatic sea level at the end of the Serravallian

(Mid Miocene 10.6 Ma), as documented by Haq et al. (1987), may
have accentuated uplift at the Mid-Miocene Unconformity
(MMU) but Mat Zin and Tucker (1999) and Hutchison (2005) have
shown that this major erosional unconformity may have been the
tectonic result of sea-floor spreading in the South China Sea push-
ing the Dangerous Ground area (including the Spratly Islands)
southwards to cause the Lower Miocene and older strata of Borneo
to be folded and compressed and uplifted against the Rajang group
foldbelt (Fig. 10).

5.2. Lines 3 and 4

Seismic interpretations of parallel Lines 3 and 4 are illustrated in
Fig. 5. Line 4 passes very close to Pulau Layang-Layang. It contains no
clues to the existence of a nearby reef. The water depths are fairly flat
smic Lines 1 and 2 (location on Fig. 2). Both lines have a vertical exaggeration of the
ly only 18� (tangent of the angle � vertical exaggeration). The prominent scarp at A
ninterpreted seismic lines are also shown.
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around 1500 m. This is surprisingly deep so close to the island, but
this is the general characteristic of the Spratly Islands, indicating that
the build-ups constructed the whole of any Island and kept pace with
the very significant amount of Dangerous Ground thermal subsi-
dence. The sea-floor topography is very subdued with no sea-floor
cuestas. This may have been due to a more crystalline crustal lithol-
ogy than at Line 3, less susceptible to major faulting.

By contrast, Line 3 shows a well developed cuesta (A on Fig. 5)
that rises to a water depth of only 440 m. There is no carbonate
build-up upon it. It may be concluded that the only build-ups are
those forming the Spratly Islands and no build-ups have been
drowned by subsidence of the Dangerous Ground.

The main controlling factors must be that the cuesta crests had
been at sea level at one time (probably at the MMU) to allow algae
and corals to begin building a reef. The rate of post-rift thermal
subsidence should not have been too fast for carbonate build-up
to become impossible, but the surrounding deep water was neces-
sary to accommodate the post-rift sediments and thereby prevent
killing the reef growth.
5.3. Line 5

This line extends north-east–south-west, approximately paral-
lel to the regional strike of the faults. Strike sections are notori-
ously difficult to interpret because some seismic reflections come
from off-line. The line is not too distant both from Pulau Layang-
Layang and the reef of Permatang Ubi. Although the two peaks A
and B are not too distant from Pulau Layang-Layang, on this seis-
mic line they lie at a water depth of 1070 m (Fig. 6).

The half grabens of the rifted basement are clearly delineated,
even though the line is approximately parallel to the strike of the
faults. Other elements are less clear than in a dip section.

The two clues to the proximity of Pulau Layang-Layang and the
reef of Permatang Ubi are the sharp peaks A and B that are presum-
ably elongated only slightly oblique to the plane of the paper. Their
steepness makes them difficult to interpret, but the vertical exag-
geration of �8 has introduced the steepness. At this exaggeration, a
sea-floor slope of 70� is actually only 19�. Peak B appears to be a
fault horst. It is certainly bounded on the north-east side by an
impressive fault that bounds a thick package of syn-rift strata. Peak
A also has the appearance of a narrow horst, bounded on two sides
by normal faults.
5.4. Lines 6 and 7

Line 6 lies extremely close to Terumbu Montanani yet the
bathymetry is rather featureless, with water depth quite flat at
around 1.5 km (Fig. 7). This line contains no clues to the existence
of the nearby reef, a common characteristic of the region of the
Spratly Islands.
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By contrast, Line 7, which is farther from any island, contains
two spectacular sea-floor cuestas (Fig. 7). There is nothing compa-
rable on Line 6. The highest cuesta, with a crest water depth of only
876 m, has no carbonate build-up upon it. The scarp slopes dip
steeply towards the north-west at 28–30�. The bedding dips to-
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in the same way that old steep-dipping fault planes onland may
continue to outcrop. This does not mean that the faults are young.
There is no indication that the master faults changed from normal
to thrust (footwall being upthrust) as a result of possible later com-
pression. The syn-rift strata show no dragging that would indicate
such a possibility. The complicated bedding of the syn-rift strata
are highly characteristic with strongly rotated bedding against
the active master fault.

The contrast in relief of the Mid-Miocene Unconformity be-
tween Lines 6 and 7 is natural and results from the heterogene-
ity of the continental crust known from China (Yang et al., 1986)
and Vietnam (Thanh and Khuc, 2006), from which the South Chi-
na Sea continental slope was rifted. Semi-lithified sedimentary
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strata readily undergo normal faulting to form cuestas. By con-
trast granites and crystalline rocks, such as occur in the Precam-
brian Yangzi Platform or the Kontum Massif of eastern Vietnam,
do not easily yield to faulting and never result in cuestas. Rela-
tively unfaulted areas within a rifted terrane are natural and re-
flect the heterogeneity of the crust. Its nature cannot be
identified from seismic without supplementary information and
accordingly no conclusions should be drawn from the differences
of rifting intensity between Lines 6 and 7 and others. The Ter-
tiary rifts are also strongly inherited in their location and inten-
sity from Caledonian (Devonian), Indosinian (Triassic) and
Yenshanian (Cretaceous) orogenies that moulded the structural
fabric of Sundaland (Hutchison, 2007).
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5.5. Lines 8 and 9

The water over Lines 8 and 9 is generally deep, averaging
1500 m. Terumbu Peninjau lies between the two lines (Fig. 8). An
approximately flat mesa-like feature is bounded along its north-
west side by a normal fault and scarp slope. The exposed top of
the scarp is at a water depth of 1372 m (Fig. 8). The bounding of
the mesa along its south-east extent is less spectacular because it
is covered over by the post-rift strata. The elevation of this
south-east crest is at 1500 m water depth. The mesa-like feature
sags only very slightly in the centre. Neither of the lines shows geo-
logical evidence of the reason for the existence of the nearby reef,
except that it sits upon the flat-lying mesa.

Line 8 shows a similar mesa, and it may be confidently extrap-
olated between the two lines. In Line 8, the bounding fault scarps
reach the sea-floor at elevations of 1428 and 1195 m respectively
(Fig. 8). The mesa in Line 8 is nearly perfectly flat.
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The geographical trend of the mesa and its bounding crests may
be determined by comparing Lines 8 and 9. Terumbu Peninjau lies
on the mesa. The cuesta crests at 1428 m and 1372 m (Fig. 8) give a
regional trend of N56�E, similar to the trend of Fig. 5 and is approx-
imately parallel to the magnetic anomalies of the abyssal plain of
the South China Sea (Fig. 1). It may therefore be concluded
that the faults all strike in a north-east–south-west direction
and that the rifting belongs to one unified system that includes
sea-floor spreading in the abyssal plain. The mesa is an integral
part of this system. Mesas may be drowned banks, such as the Reed
Bank (Fig. 1) that did not drown.
6. Seismic character of the post-rift strata

The post-rift sequence drapes over the Mid-Miocene Unconfor-
mity surface (Hutchison, 2004). Faulting is remarkably absent from
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the post-rift sequence. The faults terminate upwards at the MMU
(Figs. 5–8). The strata were deposited in bathyal water because
the Dangerous Ground Province underwent post-rift thermal sub-
sidence. In this region the post-rift sequence is thick and com-
pletely drapes over the syn-rift sequences.

The post-rift strata drape over the MMU to form a fairly uni-
form thickness. The sea-floor topography mimics, but in a sub-
dued manner, the buried MMU (Fig. 8) but the draping strata
may not have been able to cover over the large cuestas. Fig. 6,
of only 4� vertical exaggeration, shows that the draping strata
are not folded. The long amplitude wave-like structure is not
tectonic folding and results from the uniform deposition upon
the buried rifted topography. Differential compaction may also
have enhanced this effect. Fig. 5 appears to suggest that the
draping strata are folded. This is a misleading artefact of the
large (�8�) vertical exaggeration.
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7. Direct evidence of geology

The islands themselves are formed exclusively of carbonate
build-ups (Fig. 3), thought to range from Mid Miocene to present
day. A core to a depth of 165 m on the island of Taipingdao on
the Zhanghe Bank (Fig. 2) logged a succession of coral-algal lime-
stone with several caliche horizons indicating frequent subaerial
exposure. Isotope dating indicates a succession from Holocene well
into the Pleistocene (Gong et al., 2005). The build-ups are typical of
reefs and cays and they contain no outcrops of older rocks. What
lies underneath has to be inferred from the seismic records that
indicate a preponderance of cuestas of bedded strata but there
are no outcrops from which to deduce the chronostratigraphy.
The dredging programme of Kudrass et al. (1986), summarised
by Hutchison (2005), provide real evidence of the nature of the
underlying rocks. Only three dredges were accomplished within
S

nt

20 kilometers

Section

South China Sea
M = Mukah
Bi = Bintulu
Ba = Balingian

Bi
BaM

Upper Plioceneocene

ne

ne

ene

cene

   Rajang Group foldbelt
   (buttress) folded and 
 uplifted by Late Eocene

   Mid Miocene
Unconformity (MMU)

SSE

er Miocene

ion et al.

pressed and eroded anticlines as a product of the Mid-Miocene Unconformity, after
mistaken for horsts (Hutchison, 2005). (B) Cartoon to suggest the cause of folding



C.S. Hutchison, V.R. Vijayan / Journal of Asian Earth Sciences 39 (2010) 371–385 383
the Malaysian EEZ (Fig. 2) and no additional work has been carried
out. They all cluster north-east of the Commodore Reef. However,
the area immediately to the east, north and north-east of the
Malaysian EEZ, towards Mischief Reef, is of more interest where
reefs are more numerous and the dredged samples more varied.

Kudrass et al. (1986) selected the slopes that support topo-
graphic highs such as banks, reefs and islands. They tabulated
and described the large collection of rocks without making any
geological analysis, but now it is possible to understand their col-
lection by reference to the seismic lines of Figs. 5–8.

7.1. Pre-rift basement

The pre-rift basement is exposed beneath the sea on the scarp
slopes and has been sampled around Mischief Reef (Fig. 2). The fol-
lowing sedimentary rocks have been dredged: light brown–grey
siltstone and sandstone containing Clathropteris fern leaves of
Upper Triassic–Lower Jurassic age were dredged at locality TR
(Fig. 2). The strata have a vitrinite reflectance of 1.0–2.5%, resulting
from loading by the rock and the water column. This range is
equivalent to medium volatile bituminous coal–anthracite and is
generally over-mature for oil – the oil-window is 0.5–1.35 (Hutch-
ison, 1983). Dark grey claystone contains moulds resembling
Upper Triassic Halobia and Daonella, abundant in Triassic rock out-
crops in Peninsular Malaysia and Vietnam. Grey–black siliceous
shale, of unknown age, contains radiolarian relicts.

The following metamorphic rocks have been dredged: biotite–
muscovite–feldspar–quartz migmatitic gneiss has yielded a K/Ar
date on muscovite (122 Ma) suggesting Lower Cretaceous meta-
morphism (Kudrass et al., 1986); garnet-mica schist containing sil-
limanite and one sample contained andalusite. K/Ar dating on
muscovite (113 Ma) suggests the same metamorphic event;
quartz-phyllite gave a K/Ar date on muscovite (113 Ma) also indi-
cating Cretaceous metamorphism; and amphibolite schist in which
the amphibole gave a K/Ar date of 146 Ma (Jurassic). However low
credence must be given to K:Ar dates on random samples that have
been altering on contact with sea water. The ages should be inter-
preted with caution.

The following plutonic rocks have been dredged: boulders of
dark green diorite, of unknown age, are composed of plagioclase,
clinopyroxene, ilmenite and some quartz. The plagioclase and
pyroxene are much replaced by epidote, prehnite and chlorite;
blocks of intensely altered olivine gabbro, of unknown age, in
which the olivine is almost completely replaced by aggregates of
chlorite, talc and montmorillonite.

The dredged rocks are not unusual in the context of continental
Southeast Asia. The contiguous landmasses of Vietnam, South China,
Peninsular Malaysia and western Sarawak have abundant outcrops
of similar Triassic strata (Hutchison, 1989; Hutchison, 2007). As
examples, the coal-bearing Van Lang, Hon Gai and Ha Coi formations
of the An Chau depression of north Vietnam contain identical Tonkin
flora to western Sarawak (Thanh and Khuc, 2006; Kon’no, 1972).
Rhyolitic tuffaceous strata in south and south-west Vietnam are clo-
sely similar to the Semantan Formation of central Peninsular Malay-
sia (Nuraiteng, 2009). The continental terranes also contain
significant belts of Triassic and Late Cretaceous granites and local-
ised metamorphic rocks bear witness to older sutures and deformed
belts. It may, therefore, be concluded that it is the typical continental
crust of Southeast Asia that has been rifted to form the basement of
the shelf and continental slope of the southern South China Sea.

7.2. Syn-rift rocks

Kudrass et al. (1986) have included dredge samples that date
the rift related strata of the included seismic lines as Upper Oligo-
cene to Lower Miocene. The specimens are as follows: light-grey–
green slightly consolidated siltstone containing siliceous sponge
spicules, radiolaria and planktonic Foraminifera, and Middle to
Upper Oligocene nannoplankton; shallow-marine carbonates sam-
pled at 23 sites, containing Late Oligocene to Early Miocene (Te)
Foraminifera and Nummulites.

The well cemented syn-rift shallow-marine Oligocene–Early
Miocene carbonates have not been identified on regional seismic
records and therefore their stratigraphic significance is unknown.

7.3. Middle Miocene to Recent post-rift draping strata

Ocean Drilling Program (ODP) Site 1143 has provided informa-
tion only about the Upper Miocene to Recent post-rift strata
(Fig. 1), drilled as part of Leg 184 (Shipboard Scientific Party,
2000). 500 m of clay and highly calcareous nannofossil ooze with
Foraminifera were recovered.

Many other sites yielded dredges of Pliocene ooze, ranging from
grey–green clay to light-grey foraminiferal ooze. Coccoliths indi-
cate a full Pliocene age range. Upper Pliocene ooze fills the outer
vesicles of submarine basalt (Kudrass et al., 1986).

The following igneous rocks have been dredged: porphyritic ba-
salt; vesicular basalt containing olivine, clinopyroxene and plagio-
clase gave a K/Ar Pliocene date of 2.7 Ma. However the K/Ar dating
values should be given low credence. Porphyritic and vesicular ba-
salt, containing olivine, clinopyroxene and plagioclase, gave a K/Ar
Pliocene date of 2.7 Ma. Vesicular olivine basalt tephra surrounds
lumps of Pliocene carbonaceous ooze. The basalt gave a K/Ar date
of 0.42 Ma. Red and green massive dacite is of unknown age. The
groundmass contains large plagioclase and small alkali feldspars.
Secondary alteration to sericite and chlorite replace clinopyroxene.
There is an extensive Pliocene–Pleistocene rift-related basalt prov-
ince extending from Peninsular Malaysia, through Thailand to Viet-
nam and eastern China. As Hutchison (2007) has discussed, these
gemstone-bearing alkaline basalts are associated with the major
rifts that were active during development of the Tertiary basins
of the South China Sea.

Li et al. (2005) have shown from Foraminifera studies that there
is an unconformity-free 500 m cored sequence, from late Middle
Miocene (12 Ma) to the present day so it may be assumed that
the post-rift strata have been deposited without any tectonic inter-
ruption except for occasional basaltic eruptions in the Pliocene.

7.4. Granites from the continent–ocean boundary zone

Yan et al. (2009) described I-type tonalite-granodiorite dredged
from near the continent–ocean boundary to the north of the Spra-
tly Islands at 11�470N, 114�56.50E and 11�28.30N, 114�04.60E. These
samples have been dated by zircon U–Pb at 127–159 Ma by Yan
et al. (2008). Such Mesozoic granites may be correlated with the
abundant Yenshanian granites (Xu and Zhu, 1988) of eastern main-
land China as would be expected from the rifting history of the
South China Sea.

The Yenshanian (Jurassic–Cretaceous) dredged granites lend
some support to the theory of Taylor and Hayes (1983) that an An-
dean-type continental margin was rifting.
8. Comparison with Central Luconia

The Central Luconia Province (Fig. 1) contains �200 carbonate
build-ups and 43 have been drilled and proven to be a very signif-
icant gas province (Epting, 1980). Some build-ups began in the
Early Miocene (Late Cycle III, 20.5 Ma). Most of the Cycle V build-
ups were developed in the Messinian and Tortonian (10–5 Ma).
Their extinction has been attributed to an influx of post-rift Cycle
VI Upper Miocene siliclastic sediments (Fig. 9) but away from the
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sediment supply in deeper water, some of the build-ups were not
terminated by muddy water and have continued active even until
the present day (Mohammad Yamin and Abolins, 1999).

The build-ups are generally interpreted to have developed upon
horsts, but seismic resolution beneath the build-ups is very poor.
Mat Zin and Tucker (1999) and Hutchison (2005) showed that tec-
tonic events around Mid-Miocene Unconformity time caused fold-
ing of the Balingian Province and the onland Miri Zone. The tightly
folded and faulted anticlinal crests were eroded and deeper base-
ment thrust-up, as shown by flower structures (Fig. 10), to resem-
ble horsts (e.g. Tatau Horst), as discussed by Hutchison (2005).

Build-ups continue to survive in deepening water, but in shal-
low water a high influx of siliciclastic sediments causes their
extinction. The tectonic scenario of the well studied and exten-
sively drilled Central Luconia Province should be taken as a guide
for interpretation of the Spratly Islands.

9. Conclusions

It seems reasonable to conclude that the Spratly Islands have re-
sulted from carbonate build-ups upon the higher crests of major
sea-floor cuestas whose axes generally plunge towards the
south-west. The trends of the cuesta axes are parallel to the mag-
netic anomalies of the south-west prong of the contiguous abyssal
plain (Briais et al., 1993; Barckhausen and Roeser, 2004) showing
that all are part of a single rifting system. Seismic profiles show
that their present crests may reach as high as present-day eleva-
tions of around 400 m below sea level towards the Spratly Islands,
though the majority are much deeper. Sea-floor cuesta crests that
were suitable for coral-algal growth would have been at sea level
before the Dangerous Ground region began post-rift thermal subsi-
dence. The build-ups kept pace with subsidence to form islands
and reefs now known as the Spratly Islands. A mesa-like feature
around Investigator Shoal now rests under about 1200 m of water.
Unlike the Central Luconia Province, the reefs of the Spratly Islands
were protected from extinction because of the deepening water of
the region, within which the post-rift strata were fully accommo-
dated, and the reefs were able to continue to build-up in clear
water, even to the present day.

The preponderance of sea-floor cuestas indicates that the region
is dominated by well bedded strata and dredging suggests they are
mainly of Triassic–Cretaceous age. Such rocks are widespread on-
land China, Vietnam, Thailand, Peninsular Malaysia and western
Sarawak (Hutchison, 2005). It is concluded, admittedly on limited
information, that the Spratly Islands infrastructure is not exotic
to the region of Southeast Asia and that the rifting was of a large
part of eastern Sundaland.

Yan et al. (2006) correctly concluded from their review that the
South China Sea margins are non-volcanic. They listed the dredge
samples by Kudrass et al. (1986) as the only examples. Unfortu-
nately the K/Ar dates cannot be reliably accepted, so that no mean-
ingful statement can be made of the sparse occurrences of volcanic
rocks. However Yan and Liu (2004) and Hutchison (2004) pre-
sented seismic interpretations of sea-floor edifices that have no
structural elongation and might be interpreted as volcanic features
that rise from around the Mid-Miocene Unconformity or from a
lower level. However they remain untested. There are also conical
edifices, as yet unpublished, within the North-West Borneo Trough
that are now conclusively shown by Hutchison (2010) to be
drowned carbonate build-ups.
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