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Abstract

This paper is studies the general equilibrium implications of arbitrage trades by
strategic players in segmented financial markets. Arbitrageurs exploit clientèle
effects and choose to specialize in one category of trades, taking into considera-
tion all other arbitrage strategies. This results in an equilibrium network of ar-
bitrageurs. The optimal network for arbitrageurs is of the hub-spoke kind. The
equilibrium network, in contrast, is never optimal for arbitrageurs and is never
hub-spoke. The reason is that equilibrium networks suffer from a Prisoner’s
Dilemma problem that prevents network externalities from being internalized.
We show that, as the number of intermediaries grows, equilibrium allocations
converge to those of the frictionless complete-markets Arrow-Debreu economy.

Journal of Economic Literature classification numbers: G12, D52.

Keywords: Networks, arbitrage, restricted participation.
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1 Introduction

The Arrow-Debreu-Radner (ADR) model describes a world in which all economic
actors are price-takers and in which all claims and commodities are traded on a
centralized exchange, with a Walrasian auctioneer determining one market price
vector clearing all markets simultaneously. The simplifications involved in this setup
have allowed the model to become a useful benchmark in economic theory.

Clearly not all actual markets correspond exactly or even approximately to such
an idealization, and we would like to argue in this paper that global financial markets
should be modeled based upon an extension of the ADR model in at least two
directions.

First, while most retail investors in financial markets can be safely considered to
be price-takers, agents such as universal banks, investment banks, market makers,
mutual and hedge fund managers, insurance companies and the like do exert con-
siderable influence on markets and must be presumed to be strategic rather than
price-taking.

Second, not all assets and commodities in the entire world are traded simulta-
neously on one single giant exchange. Assets are traded on a variety of trading
posts, such as stock exchanges, options and futures exchanges, as well as over-the-
counter (OTC), i.e. in direct and private arms-length transactions bypassing formal
exchanges. A large fraction of trades are OTC, and in this category one can include
many derivatives deals, foreign exchange dealings, upstairs trading, block trading,
bank loans and deposits, private placements of securities, book building such as in
primary and secondary stock issues, and so forth. We refer to such trading posts as
exchanges. As a result, various clientèles trade on different exchanges, and very few
retail clients trade on more than one exchange, let alone on all of them simultane-
ously. This invalidates the posit of traditional pricing theory whereby the marginal
investor in every asset market is the same broadly diversified representative investor.

This market segmentation leads to asset price characteristics distinct from those
that the ADR model can generate. The obvious example that comes to mind is
the importance of geographic factors. Traders need to be embedded locally in order
to appreciate local market conventions, local demand by clients and to gather local
information in order to successfully develop a “market feel” and to respond by formu-
lating a “market view” (see for instance the survey-based paper by Agnes (2000)).
Segmentations do not exclusively arise due to geographic factors. The usefulness
of a general segmentation setup has been recognized long ago, as documented for
instance in the success of the market segmentation hypothesis (Culbertson (1957))
and the preferred habitat hypothesis (Modigliani and Sutch (1966)) in fixed income
analytics. For example, banks and building societies concentrate a large part of their
activity at the short end of the interest rate term structure, both for asset-liability
and for regulatory reasons, while pension funds and insurance companies operate
at the long end. More generally, the assumption of market segmentation implies
that asset prices are determined locally and that as a result overall asset prices need
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not be contained in the set of no-arbitrage prices. This opens up the possibility
for some sophisticated players to profit from said opportunities by intermediating
and facilitating trade. These large players, which we shall simply refer to as arbi-
trageurs in this paper, have a well-defined objective function even in the presence of
exploitable arbitrage opportunities, since the awareness of a market impact naturally
bounds their trades, for else arbitrage opportunities vanish and no profit at all can
be reaped.

A series of recent papers have tried to empirically quantify the extent to which
state prices differ across markets. One of the first systematic studies is the paper
by Chen and Knez (1995) who consider the mean-square distance between sets of
state prices on different exchanges. They find that the NYSE and NASDAQ are
priced by sets of state prices which are close in that norm but do not intersect, show-
ing that the marginal investors on the two markets are close but distinct. There
is also a prolific literature on home bias, wherein a national stock market is held
and priced predominantly by national investors (see for instance Lewis (1999) for a
survey). More recently, there have been a number of event studies of changes in the
composition of the S&P 500 index (see for instance Massa et al. (2005)). Around the
time of the addition a stock to the index, mutual funds benchmarked to the index
have an incentive to purchase the stock, and their marginal valuations are shown to
differ from those of the market at large. Part of the resulting arbitrage is in fact
performed by the managers of the company admitted to the index. Similarly, Da
and Gao (2006) provide empirical evidence supporting the view that a sharp rise in a
firm’s default likelihood causes a change in its shareholder clientèle as mutual funds
decrease their holdings of the firm’s shares. This liquidity shock is initially absorbed
by market-makers before large traders move in to provide the liquidity. The paper
by Blackburn et al. (2006) attempts to show that the marginal growth investor is
distinct from the marginal value investor by measuring the different risk aversion
parameters priced into the two markets. They find preliminary evidence that the
marginal growth investor is indeed less risk averse than the marginal value investor.
Gabaix et al. (2007), in a study of the mortgage-backed securities (MBS) market,
show that collateralized mortgage obligations (CMOs) are priced not by the marginal
investor of the broader market whose state prices depend on the aggregate wealth or
consumption of the economy, but by investors wholly specialized in the MBS market.
In particular, they find that prepayment risk is priced even though it washes out in
the aggregate. The market price of prepayment risk has a systematic relation with
the marginal utility proxy of the MBS specialist investor. The intermediaries who
purchase the mortgages and transform them into CMOs play the role of our arbi-
trageurs. A further illustration of the way the stresses in the credit markets starting
in May 2005, initially triggered by concerns about GM and Ford, were transmitted
through the system show the complex arbitrage web in contemporary credit corre-
lation trades. Schematically, a simplified rendition of the arbitrage network can be
found in Figure 1.

The fact that markets are decentralized across various exchanges leaves open
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Figure 1: Credit Correlation Network. Continental European and Asian banks,
pension funds and life insurers in their quest for higher returns buy synthetic mez-
zanine risk. These structured synthetic CDOs are sold to them by dealers, i.e. the
dealers buy credit insurance from these clients. The dealers in turn hedge their ex-
posures partly with single name CDS to hedge exposure to the level of spreads, and
partly with mezzanine iTraxx tranches. Notice it is the dealers’ arbitraging between
the CDO and the iTraxx which creates a dislocation between the various iTraxx
tranches, which in turn attracts hedge funds and the dealers’ prop trading desks.
These latter sell credit risk on mezzanine tranches and buy credit risk on equity by
selling protection on the equity iTraxx tranches.
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the question as to how the global arbitrageurs link exchanges and investors. In
Rahi and Zigrand (2007c), all arbitrageurs are active on all exchanges. We refer to
this scenario as “universal arbitrage.” In actual trading networks, however, even
large traders only operate on a few exchanges at best. For instance, pairs trading
is a fashionable component of equity long-short hedge funds. What is more, even
if they do operate between a number of exchanges, the various desks do not seem
to coordinate in general. Anecdotal evidence puts this down to informational and
other frictions (for instance, Agnes (2000) cites local “market feel” as the reason
for a concerted strategy among global swaps banks to decentralize non-US swaps
books to their natural markets), to the fact that each desk has allocated a capital
limit and operates roughly as a stand-alone profit center, as well as to the fact that
compensations nearly exclusively depend on a desk’s own P&L and lead to a natural
rivalry among dealers within the same global institution (refer for instance to Drobny
(2000)). In the current paper, we shall from the outset allow arbitrageurs to only
link two exchanges, but let them choose which ones. As a result, the active links
of the network and the number of traders on each such link emerge endogenously
at a Nash equilibrium of the network formation game. This is in contrast with
much of the existing literature on networks in finance where interdependencies are
assumed exogenously at the outset. In our framework the dependencies between
intermediaries are established endogenously.

An overall equilibrium is a subgame perfect outcome of a two-stage game. The
backwards order by which we solve the game is as follows. First investors solve for
their portfolio demands given the asset structure and given the supplies of assets
by arbitrageurs, and arbitrageur trades are determined at a Nash equilibrium of
the trading game, taking as given the demand function of investors, and the network
structure. In the next stage the equilibrium network (the distribution of arbitrageurs
across all permissible links) is determined at a Nash equilibrium of the network
formation game.

In order to focus on the network structure we assume that asset markets are
complete. In actual fact, a considerable number of securities are issued by what we
call arbitrageurs. In Rahi and Zigrand (2007b) we characterize equilibrium security
design for an arbitrary network structure. Our characterization of equilibrium net-
works with complete markets in fact also holds when markets are incomplete but
with asset payoffs that correspond to an equilibrium of the security design game.

The questions we would like to ask are the following. What is the equilibrium
network, and how do the equilibrium asset trades depend on the network? How
integrated can we expect the global economy to be? Can different exchanges be
integrated to a different extent? To which equilibrium does the economy converge as
the number of arbitrageurs grows without limit? When will the equilibrium in the
limit be integrated and when will the global economy merely be a collection of disjoint
subnetworks? How is the network related to the extent of the autarky gains from
trade between trading locations and their depth (as measured by the price impact
of an additional unit of trade). How is the network affected by externalities exerted
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by arbitrageurs active on different links? What kind of architecture (i.e. the set
of links that are permissible) aligns the interests of arbitrageurs thereby promoting
efficiency? How are local shocks propagated through the entire financial system via
the endogenous linkages created by intermediaries? This last point has become a focal
point of financial research post LTCM, and worries about the financial stability of
markets dominated by interdependencies established by derivative positions appear
daily in various news forums.

We are not aware of any papers that have studied these questions in the context
of asset markets. In the banking literature, the papers by Allen and Gale (2000) and
Cifuentes et al. (2005) study the stability of networks formed by the borrowings of
banks from each other. Both the form of the securities (debt) and the network links
are assumed exogenously. There is a large literature on networks in other settings.
For example, in Bala and Goyal (2000) and Goyal and Joshi (2005), agents form links
with other agents in an abstract game. Incentives to form links depend solely on the
number of links the player as well as the potential partner has. Here, in contrast,
it crucially matters which precise links they have, as they anticipate the (subgame
perfect) trades and prices of the equilibrium assets. What is more, our paper does
not suffer from the indeterminacy arising in Bala and Goyal (2000) whereby the
model predicts for instance that under some conditions all equilibrium networks are
hub-and-spoke, but does not provide any guidance as to which of the nodes emerges
as the hub.

Briefly, we derive the following results in this paper. We prove existence of equi-
libria. We show that network externalities give rise to networks that are suboptimal
for arbitrageurs. Controlling for depth, an optimal network is a hub-spoke network.
The complete network, in which all links are permissible, is always suboptimal. If
the complete network is hub-and-spoke, it uses the suboptimal hub. The reason has
to do with the provision of liquidity. Roughly speaking, the optimal hub is a hub
whose equilibrium state-price deflator lies towards the center of all nodes so as to be
used as a repository of liquidity. This allows mispricings to be exploited with as lit-
tle market impact as possible, provided all arbitrageurs use the same hub. However,
each arbitrageur, if given the opportunity, has an incentive to deviate and form a link
across two exchanges, one on each side of the hub, since there is a larger mispricing
on this link. The deviating player will therefore not only not contribute to liquidity,
but will in fact use up liquidity at both ends. All other players act similarly, leading
to a Prisoner’s Dilemma style inefficient outcome.

As the number of arbitrageurs goes to infinity, state prices on all exchanges
converge to the frictionless complete-markets Walrasian state prices of the integrated
economy. In that sense, arbitrageurs connect markets and ensure securities trades in
aggregate that exactly coincide with the transfers of securities that a global Walrasian
auctioneer would have performed. This is true despite the inefficiencies arising from
the network externalities, from market power and from the fact that each arbitrageur
is only allowed to connect two exchanges. The equilibrium network may not be
connected, however, even asymptotically.
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A note on assumptions:
We model each trading location or exchange as a standard Arrow-Debreu economy.
Arbitrageurs take the Walrasian demand function on each exchange as given and
play a Cournot trading game in asset supplies. In order to characterize the Cournot-
Walras equilibria of this game, we assume that the Walrasian demand functions are
linear in asset supplies. More precisely, we assume that state prices on an exchange
are linear in the net aggregate endowment (aggregate endowment plus asset supplies)
of the exchange, i.e. the CAPM holds with respect to net aggregate endowments.
Quadratic utility ensures this, so we assume quadratic utility at the outset.

2 The Setup

We consider a two-period economy with uncertainty parametrized by the state space
S := {1, . . . , S}. Assets are traded in several locations or “exchanges.” They are in
zero net supply. We assume that markets are complete on each exchange. Without
loss of generality we can take the set of tradable securities to be the Arrow securities.

Investor i ∈ Ik := {1, . . . , Ik} on exchange k ∈ K := {0, . . . , K} has endow-
ments (ωk,i

0 , ωk,i) ∈ R × R
S, and preferences which allow a quasilinear quadratic

representation

Uk,i(xk,i
0 , xk,i) = xk,i

0 +
∑

s∈S

πs

[

xk,i
s −

1

2
βk,i(xk,i

s )2

]

,

where xk,i
0 ∈ R is consumption at date 0, xk,i ∈ R

S is consumption at date 1, and
πs is the probability (strictly positive and common across agents) of state s. The
coefficient βk,i is positive. Investors are price-taking and can trade only on their own
exchange. To rule out trivial cases we assume that there are at least three exchanges,
i.e. K ≥ 2.

In addition there are N arbitrageurs who possess the trading technology which
allows them to also trade across exchanges. Arbitrageurs have no endowments, so
they can be interpreted as pure intermediaries. For simplicity, we assume that arbi-
trageurs only care about time zero consumption. They are imperfectly competitive.

Given the set of exchanges K, we specify a set A of links (k, ℓ), i.e. A ⊂ {(k, ℓ) :
k, ℓ ∈ K, k 6= ℓ}. We will use the abbreviated notation kℓ instead of (k, ℓ). To
avoid notational ambiguity, links kℓ and ℓk are taken to be the same link. Each
arbitrageur chooses to arbitrage one of the admissible links. Let Nkℓ be the number
of arbitrageurs on link kℓ. We use the same notation for the set of arbitrageurs on
link kℓ. For notational convenience we define Nkℓ to be zero if kℓ /∈ A. We have
∑

kℓ∈AN
kℓ = N .

Formally, G := (K,A) is a graph, with nodes K and links A.1 We say that ℓ is a

1A standard reference on graph theory is Diestel (2005). We employ the terms “node” and
“link” instead of “vertex” and “edge,” reserving the latter terminology for its standard usage in the
theory of polytopes, which we make extensive use of later.

8



neighbor of k if kℓ ∈ A. The graph is complete if every link kℓ is admissible (i.e. every
node is a neighbor of every other node); if not, it is incomplete. We will have occasion
to consider a number of incomplete graphs. If A = Ahk := {kℓ : ℓ ∈ K, ℓ 6= k}, we
say that G is a hub-spoke graph2 with node k as the hub (for brevity, we call this an
hk-graph). G is unary if only one link is admissible (if kℓ is the admissible link, we
call this a ukℓ-graph). G is a cycle if the K+1 nodes can be ordered as {k1, . . . , kK+1}
such that A = {k1k2, k2k3, . . . , kKkK+1, kK+1k1}. In a cycle, each node has precisely
two neighbors. There is a path connecting k and ℓ if there is a sequence of distinct
nodes {k1, . . . , kI} in K such that k1 = k, kI = ℓ and {k1k2, k2k3, . . . , kI−1kI} ⊂ A.
We say that G is connected if there is a path connecting any pair of nodes k, ℓ ∈ K.
G′ := (K ′,A′) is a subgraph of G, denoted G′ ⊂ G, if K ′ ⊂ K and A′ ⊂ A. If, in
addition, A′ contains all the links kℓ ∈ A for k, ℓ ∈ K ′, we say that G′ is an induced
subgraph of G, and that it is induced by K ′. A maximal connected subgraph of G is
called a component of G (where “maximal” is with respect to the subgraph relation).

While we have introduced the above terminology for the graph G, it applies of
course to any other graph that we consider in the paper (typically a subgraph of G).
G itself will be referred to as an architecture, with A being the set of admissible links.
While G is not necessarily complete, we assume that it is connected. This is without
loss of generality as each component of G can be analyzed as a separate economy.

To an graph G we assign a distribution of arbitrageurs across links that are
admissible in that architecture, {Nkℓ}kℓ∈A. We say that an admissible link kℓ is active
if Nkℓ > 0. Let A∗ ⊂ A be the set of active links. The graph G∗ := (K,A∗) ⊂ G
is called a network. While we have assumed that G is connected, G∗ need not be.
We denote by C the set of components of G∗, with typical element (C,A∗

C). Since
the latter is just the subgraph of G∗ induced by the nodes C, we will denote the
component itself by C; no confusion should arise.

We model the strategic interaction of arbitrageurs as a two-stage extensive-form
game, which we call the network game. We study subgame-perfect Nash equilibria of
this game. It is convenient to refer to the first stage as a game in its own right, taking
as given a continuation equilibrium in each subsequent subgame. In the first stage,
the network formation game, each arbitrageur chooses a link on which to trade. The
outcome is a distribution of arbitrageurs {Nkℓ}kℓ∈A. In each subgame associated
with some distribution of arbitrageurs, arbitrageurs play the trading game in which
each arbitrageur decides how much of the given assets to supply to the two exchanges
on which he is active. Formally, investors are not players in this game—they simply
determine the demand functions that arbitrageurs face on each exchange.

Thus, for a given architecture G, the distribution of arbitrageurs {Nkℓ}kℓ∈A is
determined endogenously, as part of an equilibrium of the network game. We have
defined above a network G∗ for an arbitrary arbitrageur distribution. If G∗ corre-
sponds to an equilibrium arbitrageur distribution, it is called an equilibrium network.

2This is called a star in the graph-theoretic literature.
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3 The Trading Game

We begin by studying equilibria of the trading game for a given network G∗ =
(K,A∗). At this point the distribution of arbitrageurs {Nkℓ}kℓ∈A is arbitrary. Let yk,n

kℓ

be the supply of state-contingent consumption on exchange k of a typical arbitrageur
n active on link kℓ ∈ A∗. Let yk

kℓ :=
∑

n∈Nkℓ y
k,n
kℓ be the aggregate supply on exchange

k of all arbitrageurs active on kℓ, and yk :=
∑

k′ 6=k y
k
kk′ the aggregate supply on

exchange k of all arbitrageurs in the economy. Finally, let yk,\n be the aggregate
supply on exchange k of all arbitrageurs except n, i.e. yk,\n = yk − yk,n

kℓ .

Definition 1 Given {G∗, {Nkℓ}}, a Cournot-Walras equilibrium (CWE) of the trad-
ing game is an array of asset price functions, asset demand functions, and arbitrageur
supplies, {qk : R

S → R
S, θk,i : R

S → R
S, yk,n

kℓ ∈ R
S}i∈Ik, n∈Nkℓ, kℓ∈A∗, such that

i. Investor optimization: For given qk, θk,i(qk) solves

max
θk,i∈RS

xk,i
0 +

∑

s∈S

πs

[

xk,i
s −

βk,i

2
(xk,i

s )2
]

s.t. xk,i
0 = ωk,i

0 − qk · θk,i

xk,i = ωk,i + θk,i.

ii. Arbitrageur optimization: For given qk(·), qℓ(·), yk,\n, and yℓ,\n,
(yk,n

kℓ , y
ℓ,n
kℓ ) solves

max
yk,n

kℓ
∈RS , yℓ,n

kℓ
∈RS

yk,n
kℓ

⊤
qk
(

yk,n
kℓ + yk,\n

)

+ yℓ,n
kℓ

⊤
qℓ
(

yℓ,n
kℓ + yℓ,\n

)

s.t. yk,n
kℓ + yℓ,n

kℓ ≤ 0.

iii. Market clearing:
∑

i∈Ik

θk,i(qk(yk)) = yk, ∀k ∈ K.

Note that investors take asset prices as given, while arbitrageurs compete Cournot-
style. Thus a CWE is a Nash equilibrium of the trading game. This equilibrium
concept is due to Gabszewicz and Vial (1972), and a review can be found in Mas-
Colell (1982). Arbitrageurs maximize time zero consumption, i.e. profits from their
arbitrage trades, but subject to the restriction that they are not allowed to default in
any state at date 1. Equivalently, arbitrageurs need to be completely collateralized.

Let Π := diag (π1, . . . , πS) and 1 := (1 . . . 1)⊤. Investor (k, i)’s utility can be
written as

Uk,i = ωk,i
0 − qk · θk,i + 1⊤Π(ωk,i + θk,i) −

βk,i

2
(ωk,i + θk,i)⊤Π(ωk,i + θk,i). (1)
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The first order condition for the investor’s optimization problem gives us his asset
demand function:

θk,i(qk) =
1

βk,i
[pk,i − Π−1qk], (2)

where pk,i := 1 − βk,iωk,i. The vector Π−1qk is the state-price deflator (or pricing
kernel) associated with the asset price vector qk. Thus pk,i is agent (k, i)’s no-trade
state-price deflator. We can now use the market clearing condition to deduce the
inverse demand mapping, i.e. the price vector on exchange k that sets aggregate
demand, θk :=

∑

i∈Ik θk,i, equal to aggregate arbitrage supply yk:

qk(yk) = Π[pk − βkyk], (3)

where βk := [
∑

i(β
k,i)−1]−1, ωk :=

∑

i ω
k,i, and pk := 1 − βkωk. It is convenient to

think in terms of state-price deflators. Denoting the equilibrium state-price deflator
on exchange k by p̂k, we can write (3) as

p̂k(yk) := pk − βkyk. (4)

Notice that the state prices are affine in net aggregate endowments ωk +yk, or equiv-
alently that the CAPM relation holds with respect to net aggregate endowments.
The vector pk is exchange k’s autarky state-price deflator (autarky with respect to
the rest of the world, but allowing trade within k). We assume that pk ≥ 0, for all
k ∈ K, which says that the representative investor on each exchange is nonsatiated
at the aggregate endowment point of that exchange. The parameter βk represents
the “depth” of exchange k, i.e. the price impact of a unit of arbitrageur trading.3

For instance, ceteris paribus, the market impact of a trade is smaller on exchanges
with a larger population—it can be absorbed by more investors.

Our assumptions on preferences, in conjunction with the absence of nonnegativity
constraints on consumption, guarantee that the equilibrium pricing function (3) on
an exchange does not depend on the initial distribution of endowments, but merely
on the aggregate endowment of the local investors.

We now solve the Cournot game among arbitrageurs, given the asset price func-
tion (3). It turns out that there is a unique CWE, and that this equilibrium is
symmetric, i.e. supplies of all arbitrageurs on a given link kℓ are the same.

Lemma 1 (Equilibrium supplies) Given {G∗, {Nkℓ}}, the equilibrium supply of
arbitrageur n ∈ Nkℓ, kℓ ∈ A∗, is given by

yk,n
kℓ = −yℓ,n

kℓ =
1

βk + βℓ
· (p̂k − p̂ℓ). (5)

3More precisely, the state-s value of the equilibrium state-price deflator falls by βk for a unit
increase in arbitrageur supply of s-contingent consumption.
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The Cournot-Walras equilibrium is symmetric: all arbitrageurs on a given link
have the same supply (as we shall see shortly, the CWE is also unique). The inter-
pretation of (5) is straightforward. Arbitrageurs on link kℓ supply consumption in
state s to exchange k when the price that agents on exchange k are willing to pay for
a unit of state s consumption exceeds the price at which arbitrageurs can procure
that unit on exchange ℓ.

The factor of proportionality in (5) is determined by depth. The deeper the
exchanges k and ℓ (i.e. the lower are βk and βℓ), the more arbitrageur n trades, since
he can afford to augment his supply without affecting margins as much. Notice that
implicitly, as we shall see, the equilibrium mispricing p̂k − p̂ℓ depends on competition
as well as on all other arbitrageur trades on the respective exchanges. In particular,
we shall see that the supply vector is scaled to zero as competition intensifies, because
at the same time the mispricing shrinks and there are more players to share the
smaller pie with.

We can solve for the equilibrium state-price deflators p̂k, k ∈ K, as follows. From
(5),

yk =
∑

ℓ

Nkℓyk,n
kℓ =

∑

ℓ

Nkℓ

βk + βℓ
(p̂k − p̂ℓ). (6)

Let αkℓ := Nkℓ

βk+βℓ , and αk :=
∑

ℓ∈K αkℓ. Using (4), {p̂k}k∈K is a solution to the
following system of equations:

(1 + βkαk)p̂k − βk
∑

ℓ

αkℓp̂ℓ = pk, k ∈ K. (7)

Lemma 2 (Equilibrium prices) Given, {G∗, {Nkℓ}}, there exists a unique profile
of equilibrium state-price deflators {p̂k}k∈K. For any component C ∈ C, we have

p̂k = pη,k :=
∑

j∈C

ηkjpj, k ∈ C,

for some weights {ηkj}k,j∈C that depend only on {βk}k∈C and {Nkℓ}kℓ∈A∗, k∈C, and
satisfy (a) ηjj >

∑

i6=j,i∈C η
ij, for all j ∈ C, and (b) ηkj > 0 for all j, k ∈ C and

∑

j∈C η
kj = 1 for all k ∈ C.

The equilibrium state-price deflator on any exchange is a convex combination
of the autarky state-price deflators of all exchanges to which it is linked directly
or indirectly. How much pℓ is impounded into p̂k depends on depths as well as on
{Nkℓ}.4 Intuitively, if in equilibrium state prices on k depend on preferences and
endowments on other exchanges, it is due to the arbitrage trades which integrate
the various exchanges. The higher a particular Nkℓ and the lower βk and βℓ, the
more arbitrageurs transfer state-contingent consumption in equilibrium across k and

4Later we endogenize {Nkℓ}, so that the weights {ηkj} become endogenous as well.
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ℓ, thereby reducing the mispricing p̂k− p̂ℓ, increasing the influence of preferences and
endowments (and hence of pℓ) of other exchanges ℓ on the local state-price deflator
p̂k. On top of that, given that yet other arbitrageurs transfer resources between
j /∈ {ℓ, k} and ℓ, the state prices of j also find their way into p̂k. This explains
why, depending on {Nkℓ}, autarky state prices of all exchanges in a component are
reflected in each one of them in equilibrium.

Moreover, if pk
s , the autarky valuation of state s in exchange k, rises exogenously,

then p̂ℓ
s increases on all exchanges ℓ in the component of K to which k belongs,

with the largest increase occurring on k itself. In fact, the direct effect on k itself
is larger than the indirect effects on all other exchanges combined. While a positive
local shock affects local state prices most, it positively affects the state prices of all
exchanges directly or indirectly connected to it. Much research has been focused on
such contagion effects following the LTCM episode: how is a systemic shock in one
part of the financial system propagated through the entire system via the endogenous
cross links established by the global financial players? This question is epitomized
by the saying “Why does Brazil catch a cold when Russia sneezes?”

While Lemma 2 gives us an explicit solution to (7), the solution for the general
case is unwieldy and difficult to manipulate analytically. However, we can derive
tractable closed-form solutions for a hub-spoke network, and also for the case of
three exchanges. Consider a hub-spoke network with exchange 0 as the hub. It is
straightforward to solve (7) for {p̂k}k∈K:

Lemma 3 (Equilibrium prices: hub-spoke network) Consider an h0-network.
Then

p̂0 =
∑

k∈K

γkpk, (8)

where

γk :=

β0α0k

1+βkα0k

1 + β0
∑

j
α0j

1+βjα0j

, k 6= 0

γ0 :=
1

1 + β0
∑

j
α0j

1+βjα0j

,

and
p̂k = (1 + βkα0k)−1(pk + βkα0kp̂0), k 6= 0. (9)

Note that
∑

k∈K γk = 1 and, for k 6= 0, the weight γk is increasing in N0k, the
number of arbitrageurs active on exchange k (for given N0j , j 6= k).

Finally, we calculate equilibrium arbitrageur profits. We will be using this infor-
mation in the sequel. We will need to distinguish between equilibrium arbitrageur
profits for a given distribution of arbitrageurs {Nkℓ}, and equilibrium profits in an
equilibrium network, with endogenously determined {Nkℓ}. Let ϕkℓ be the equi-
librium level of profits on link kℓ for given {Nkℓ}. In an equilibrium network, let
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Φ, Φhk and Φukℓ denote profits associated with the complete architecture, the hk-
architecture, and the ukℓ-architecture, respectively. For state-contingent consump-
tion x ∈ R

S, the L2(Π)-norm of x is defined as follows: ‖x‖2 := (x⊤Πx)
1

2 .

Lemma 4 (Equilibrium profits) Given {G∗, {Nkℓ}}, the equilibrium profit of ar-
bitrageur n ∈ Nkℓ, for kℓ ∈ A∗, is

ϕkℓ =
1

βk + βℓ
· ‖p̂k − p̂ℓ‖2

2. (10)

We call ‖pk − pℓ‖2
2 the autarky gains to trade between exchanges k and ℓ. This

quantity, weighted by the depths of the two exchanges,

µkℓ :=
1

βk + βℓ
· ‖pk − pℓ‖2

2 ,

is an upper bound to equilibrium profits on link kℓ.

4 Equilibrium Networks: Preamble

We have shown that, in each subgame corresponding to a given distribution of ar-
bitrageurs {Nkℓ}kℓ∈A, there exists a unique equilibrium of the trading game. We
are now in a position to analyze the network formation game in which {Nkℓ} is de-
termined. Let {Nkℓ(N)}kℓ∈A be the equilibrium distribution of arbitrageurs when
the number of arbitrageurs is N . All the variables introduced earlier, such as prices,
profits and the equilibrium network itself, depend on {Nkℓ(N)}. To save on notation,
we write p̂k(N) instead of p̂k({Nkℓ(N)}), and likewise for all other variables (notice
that p̂k(0) = pk). Also, we write Φ(∞) for limN→∞ Φ(N), and similarly for other
variables.

In an equilibrium network, the distribution of arbitrageurs is such that no arbi-
trageur can increase his profits by deviating to any other admissible link. Ignoring
integer constraints on the number of arbitrageurs,5 profits must be equal on all
active links, with (weakly) lower profits on all inactive admissible links. In the
same spirit we define6 equilibrium profits Φ(N) on the entire interval [0,∞) with
Φ(0) := limN→0 Φ(N) = 1

βk+βℓ‖p
k − pℓ‖2

2. Similarly, A∗(0) := limN→0 A
∗(N).

We seek to answer two sets of questions. The first relates to features of an equi-
librium network, for a given architecture. Which links attract the most arbitrageur
activity? What connectivity properties emerge in equilibrium? Are all admissible
links active? If not, is an equilibrium network still connected?

The second set of questions pertains to the “comparative statics” of equilibrium
networks with respect to the architecture. How are arbitrageur profits and investors’
utilities affected by the architecture? What connectivity properties do desirable
architectures possess?

5Taking integer constraints into account makes the exposition messy without leading to any new
insights.

6Since, strictly speaking, Φ(N) is only defined for N ≥ 1.
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5 Networks with Many Arbitrageurs

A useful benchmark in our analysis of equilibrium networks is limiting networks when
the number of arbitrageurs grows without bound. We show that these networks are
Walrasian: as the number of arbitrageurs goes to infinity, equilibrium state prices
converge to the Walrasian equilibrium state prices of the entire integrated economy
(with unrestricted participation and no arbitrageurs). This is true for an arbitrary
architecture (provided it is connected, which we have assumed throughout).

For C ∈ K, let

pλ
C :=

∑

k∈C

λk
C p

k

where

λk
C :=

1
βk

∑

j∈C
1
βj

.

The vector pλ
C is the average willingness to pay of all investors in C, with the will-

ingness to pay on each exchange weighted by its relative depth. pλ
C is the state-price

deflator for the complete-markets Walrasian equilibrium when the economy is only
composed of exchanges in C (see Rahi and Zigrand (2007c)). Let pλ := pλ

K be the
state-price deflator for the global complete-markets Walrasian equilibrium.

Recall that C is the set of components of the equilibrium network.

Proposition 1 (Convergence) For an equilibrium network, state prices on all ex-
changes converge to the complete-markets Walrasian state prices of the integrated
economy, i.e. p̂k(∞) = pλ, for all k ∈ K. Moreover pλ

C = pλ, for all C ∈ C(∞).

As the number of arbitrageurs increases without bound, all mispricings across ex-
changes vanish. Even though no single arbitrageur ties all the markets together, fierce
competition is a substitute for unrestricted access to global markets. Arbitrageurs
connect markets and ensure securities trades in aggregate that exactly coincide with
the transfers of state-contingent consumption across exchanges that a global Wal-
rasian auctioneer would have performed. We shall see that convergence need not be
monotone, though.

Corollary 1 Generically in preferences or endowments, C(∞) = K.

If for two arbitrary disjoint subsets K1 and K2 of K, we have pλ
K1

6= pλ
K2

, then
there must be a path connecting K1 and K2 for large enough N . So either the
state-price deflator on all exchanges converges to a common state-price deflator as
a result of the equilibrium interexchange of flows of funds resulting from the equi-
librium {Nkℓ(N)}, or if in equilibrium there emerge two disjoint subnetworks (with
a connection allowed by A but not arising in equilibrium), then even though there
are no flows between them, the equilibrium state-price deflator on each one of them
must independently converge to a common state-price deflator in the limit.
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Example 1 As an example, consider the following nodes forming a cross in R
2 (Fig.

2): p0 = (a, a + 2), p1 = (a, a − 2), p2 = (a − 1, a) and p3 = (a + 1, a) for a > 2.
Assume βk = β, k ∈ K. For small N , all arbitrageurs are on link 01. As N grows
p̂0(N) and p̂1(N) converge along the vertical segment linking them until N = N̄ for
which ‖p̂0(N̄) − p̂1(N̄)‖2

2 = ‖p2 − p3‖2
2. For N > N̄ , two active links appear, 01 and

23, and the network comprises two disjoint subnetworks. As N increases without
bound, all four nodes converge to pλ = (a, a). Even as profits on 01 and 23 converge
to zero, they are higher than potential profits on any of the other links.
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Figure 2: The economy in Example 1

This is an example in which the nodes p̂k(N̄) are symmetrical with respect to pλ.
Another such case arises when the nodes are vertices of a (hyper-) cube, for which the
active links correspond to the inner diagonals. We provide a precise characterization
of disconnected equilibrium networks later (Proposition 3, part (ii)).

Note that if {pk}k∈K are linearly independent, then pλ
C = pλ only if C = K, i.e.

the limiting graph must be connected. In this case, we also see from Lemma 2 that
ηkj converges to λj, for all k ∈ K, as N goes to infinity.

There are cases where, for small N , not all admissible links are active because
each arbitrageur can only arbitrage across a single link, and would therefore choose
the most attractive opportunity. But as N goes to infinity, ultimately each exchange
will see some arbitrage trade, as long as there is some reward to be reaped, i.e. as long
as its autarky state-price deflator is not equal to pλ. For a hub-spoke architecture,
in particular, all admissible links will be active for sufficiently large N .

For the case of the h0-architecture, Proposition 1 tells us that the state-price
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deflator on the hub p̂0, given by (8), converges to pλ. Indeed, it can be verified
directly that γk converges to λk as N0k goes to infinity for every k, k 6= 0.

6 The Geometry of Equilibrium Networks

Before we proceed, a few definitions: Let A ⊂ R
d, and {xi} a finite number of points

in A. An affine combination of {xi} is a linear combination
∑

νixi in which the
weights νi add up to one. The points {xi} are affinely independent if none of these
points can be expressed as an affine combination of the other points. An affine
subspace is a translate of a linear subspace, i.e. of the form x+M , where x is a point
in Rd and M is a linear subspace of Rd. The affine hull of A, denoted aff(A) is the
smallest affine subspace containing A; it is the set of all affine combinations of points
in A. The convex hull of A, denoted conv(A), is the set of all convex combinations
of points in A (thus conv(A) ⊂ aff(A)). The dimension of A is the dimension of
aff(A), which is defined to be the dimension of the corresponding linear subspace.
The convex hull of a finite number of points in Euclidean space is called a polytope.7

Geometrically we can view the nodes of a network as points in R
S. The nodes are

given by {p̂k(N)}k∈K (we refer to both k ∈ K and p̂k ∈ R
S as the node corresponding

to exchange k). From (10) we see that the distance between two nodes is proportional
to the square-root of the equilibrium profits reaped by arbitrageurs on that link.8

From Lemma 2 we know that the nodes {p̂k(N)}k∈K are in conv({pk}k∈K). Let
P̂(N) := conv({p̂k(N)}k∈K) and P := P̂(0) = conv({pk}k∈K). Thus P and P̂(N)
are polytopes with P̂(N) ⊂ P for all N , and P̂(∞) = {pλ}.

We now summarize some basic notation and facts about polytopes.9 Let P be
a d-polytope (i.e. a d-dimensional polytope). A face of P is the intersection of P
with a supporting hyperplane. Each face is itself a polytope. The 0-faces are called
vertices, the 1-faces are called edges, and the (d − 1)-faces are called facets. Thus a
1-polytope is a line segment, a 2-polytope is a polygon whose facets (which are also
its edges) are segments, a 3-polytope is a three-dimensional solid, whose facets are
polygons and whose edges are segments, and so forth.

A simplex is a polytope whose vertices are affinely independent. If the midpoints
of the edges incident at a vertex v of P lie on a hyperplane, then these midpoints are
the vertices of a (d−1)-polytope called the vertex figure of P at v. The circumsphere
of P , if it exists, is the sphere that circumscribes P , i.e. whose surface contains all
the vertices of P . If the circumsphere exists, its center is called the center of P ; it is

7Only convex polytopes are considered in this paper. The reader may consult Coxeter (1963)
and Grünbaum (2003) for the background material on polytopes that we use here.

8When we provide Euclidean geometric intuition, we view the Hilbert space L2 with the inner
product 〈p, p′〉 = E[pp′] as the Euclidean space R

S with inner product 〈x, x′〉 = x⊤x′ via the
isomorphism p 7→ Π1/2p =: x. For notational simplicity, we will not make this transformation
explicit.

9As mentioned in footnote 1, we employ the terms “vertex” and “edge” as is standard in the
theory of polytopes. We do not use these terms in the graph-theoretic sense.
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the point from which all the vertices are equidistant.
The notion of a regular polytope can be defined inductively as follows. A regular

polygon is a polygon that is equilateral and equiangular. A regular polytope is a
polytope with regular facets and vertex figures. This definition implies that the
facets are in fact equal and so are the vertex figures.

We say that P is centrally symmetric about 0 if P = −P . P is centrally symmetric
if it is a translate of a polytope that is centrally symmetric about 0. Centrally
symmetric polytopes have an even number of vertices: each vertex is symmetric with
respect to another vertex. The line segment joining such a pair of vertices is called
an axis of P . All regular polytopes are centrally symmetric, except the simplices of
dimension greater than or equal to two and the odd polygons (i.e. 2-polytopes with
an odd number of vertices).

Nodes p̂k that are not vertices of P̂ are called internal nodes (note that the
internality of a given exchange depends on N , and also that an internal node may
not be in the interior of P).

Most of the questions raised in this paper boil down to a combinatorial prob-
lem which, as one might expect, leads to very few clear-cut general results since so
many tradeoffs must be balanced, such as the various depths, and the various ini-
tial mispricings across all active links, taking into account that the prices on each
exchange depend on all flows across the network, no matter how “remote,” i.e. no
matter how many links away (as long there is a path connecting them). In partic-
ular, one should not expect to obtain general results of the sort “every equilibrium
network is hub-spoke,” as have been derived in Bala and Goyal (2000), for in our
paper nodes are exchanges with heterogeneous intrinsic characteristics. Over and
above the connectivity structure, the location of nodes (the position of the autarky
state-price deflators in R

S) and depths matter as well. Hence the reliance on both
graph and polytope theories. Indeed, any given connectivity structure A∗ can be
perturbed by varying the fundamental parameters of preferences and endowments,
and thus scaling the depths and the autarky gains from trade. For instance, consider
any equilibrium network with a particular connectivity structure. Pick a state-price
deflator, say p0, and move it in R

S space further away from the other pk’s. At some
stage the resulting equilibrium network becomes hub-spoke with 0 as the hub. On
the other hand, assume a network with 0 as the hub. As we raise β0 while holding p0

constant (by scaling ω0 down), at some stage trade with node 0 disappears as other
links become relatively more profitable (provided some other link is admissible, and
nodes other than 0 are not all identical).

This is the sense in which “scale” can always make or break any particular con-
nectivity structure. Hence the most interesting effects are the “network effects,”
which depend on the relative location of the state prices, keeping the scale fixed so
as not to overpower the network effects (for example, taking the βk’s to be equal,
and/or imposing symmetry restrictions on the pk’s such as regularity of the polytope
P).

Before we study network effects in more detail, the next example illustrates the
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two aspects of scale.

Example 2 (Pure scale effects) In order to focus on scale only, we study the class
of unary networks, in which there is only one link, and therefore no externalities
across links. This provides us with a useful benchmark. All arbitrageurs have to op-
erate on the same link. Arbitrageur profits in the ukℓ-architecture are easily calculated
from Lemma 4,

Φukℓ =
1

(1 +N)2(βk + βℓ)
· ‖pk − pℓ‖2

2. (11)

From this we see that the optimal unary architecture for arbitrageurs is uk∗ℓ∗, where
(k∗, ℓ∗) = arg maxk,ℓ

1
βk+βℓ · ‖p

k − pℓ‖2
2 =: µkℓ. In particular, if βk = βℓ for all k, ℓ,

then (k∗, ℓ∗) = arg maxk,ℓ ‖ω
k − ωℓ‖2

2. And if ωk = ωℓ for all k, ℓ, then (k∗, ℓ∗) =

arg maxk,ℓ
(βk−βℓ)2

βk+βℓ . This is reminiscent of a result in Duffie and Jackson (1989)
which says that the volume-maximizing futures contract maximizes the “endowment
differential” of the long and short sides of the market.

To develop some intuition consider the case of identical endowments. Then the
exchanges k ∈ K differ only with respect to their preference parameters {βk}. The

function f(βk, βℓ) := (βk−βℓ)2

βk+βℓ is depicted in Figure 3 for fixed βℓ. We see that the
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Figure 3: The objective function of arbitrageurs in Example 2

slope of f to the left of βℓ is steeper than the slope to its right. The solution is to
choose the exchange with the highest βk, provided βk > 3βℓ. If βk ≤ 3βℓ for all k,
then it may be optimal to choose the exchange with the lowest βk, provided it is close
enough to zero. The reason why the optimal exchange will be either the k with the
smallest or the largest βk is as follows. The term (βk−βℓ)2 measures the extent of the
unutilized gains from trade between exchanges k and ℓ. These gains are largest the
furthest from βℓ the new exchange is located. But βk also determines the shallowness
of the exchange. This is reflected in the denominator of the expression. The slope
to the left of βℓ is steeper since markets with low βk are deeper, and therefore more
attractive to arbitrageurs. Thus there is a tradeoff between gains from trade and
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depth. The best exchange may not be the deepest one, since the restriction βk > 0
limits the gains from trade. The shallowest exchange may be preferred to the deepest
one if the gains from trade are sufficiently large to compensate for the shallowness.
We can restate these results as follows: the profit-maximizing link is the one that
maximizes µkℓ.

We now study network effects a bit more formally. For an arbitrary architecture,
the following naive conjecture suggests itself: Nkℓ > Nk′ℓ′ if and only if µkℓ > µk′ℓ′.
This is not true in general precisely because of network externalities, and one might
use the negation of this statement as a definition of network effects:

Definition 2 (Strong equilibrium network effects) We say that an equilibrium
network G∗ exhibits strong equilibrium network effects if either of the following state-
ments is true:

There are kℓ and k′ℓ′ in A :

[SENE1] µkℓ ≥ µk′ℓ′ and yet Nkℓ < Nk′ℓ′, or

[SENE2] µkℓ > µk′ℓ′ and yet Nkℓ ≤ Nk′ℓ′.

For instance even for hub-spoke architectures, the conjecture holds only in the
case of two spokes; with more than two, the relative positions of the spokes, and
the resulting network effects, matter in addition to the gains from trade between a
given spoke and the hub, and they can no longer be internalized. This is the object
of Proposition 8. Notice that even with two spokes there is interaction of trades on
exchange 0 and the profitability of 01 is affected by the extent of trade on 02 and vice
versa, and {Nkℓ} is affected. The definition of network effects as equilibrium network
effects is therefore a very strong one with some externalities possibly internalized at
equilibrium. The following provides an illustration of a situation where the location-
induced network effects dominate scale:

Example 3 (Strong equilibrium network effects in a hub-spoke network)
Consider an architecture composed of one hub, 0, and three spokes, 1, 2 and 3. As-
sume βk = β, all k ∈ K. Assume all autarky state-prices lie on a straight line
segment with p1 at one extremity, p0 in the middle equidistant between the extremi-
ties, and p2 = p3 at the other extremity. We show that there are strong equilibrium
network effects. The intuition is straightforward: since µ0k is the same for all k 6= 0,
the absence of strong network effects would amount to an arbitrageur distribution
N0k = N/3, k = 1, 2, 3. But if that was true, then there would be 2N/3 arbitrageurs
pulling p̂0 into the direction p2 = p3 and only N/3 pulling it into the direction of
p1. Since only N/3 arbitrageurs are pulling p̂k, k = 1, 2, 3 towards the middle, in
equilibrium the gains from trade between exchanges 0 and 1 are larger than between
0 and either 2 or 3, violating the assumption that N0k = N/3. It is clear that the
results of this example still go through even if p0 is located closer to p1.
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Formally, assume to the contrary that N0k = N/3. Then from Lemmas 3 and
4 we find that equilibrium profits are ϕ0k = 2

2+N/3
‖pk − p̂0‖2

2 (also see (15) below).

Since α0k = N
6β

, we find that γ0 = 6+N
6+N(K+1)

and γk = γ0 N
6+N

, k 6= 0. It follows that

p̂0 :=
∑

k∈K γkpk = 6
6+N(K+1)

p0 + N(K+1)
6+N(K+1)

pλ. Using the fact that all exchanges lie

on a straight line with p0 in the middle, we see that p2 = 2p0−p1. We now use these
expressions to verify under which conditions ‖p1 − p̂0‖2

2 = ‖p2 − p̂0‖2
2. After a series

of manipulations, replacing pλ by 1
4
(5p0 − p1), this equality holds iff 2N(K + 1) = 0,

i.e. iff N = 0.
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Figure 4: The economy in Example 3

We now derive a few general results about equilibrium networks. The main
geometric intuition can be summarized as follows: rather than study a network for
a given N ′, it turns out to be more fruitful to first consider the case where N = 0
and then to “trace out” the evolution of the network by increasing N to the desired
N ′. Consider the polytope P̂(N) and assume βk = β, all k ∈ K. As N is increased
from zero, arbitrageurs locate on the graph. Arbitrageurs never trade with internal
nodes, as will be shown in Proposition 2 below, for better profit opportunities exist
with vertices. The diameter of the polytope, diam(P̂(N)) := maxx,y∈P̂(N) ‖x − y‖2,
is equal to (2β times) the square-root of the equilibrium profit of an arbitrageur. If
Nkℓ > 0 then ‖p̂k − p̂ℓ‖2 = diam(P̂(N)). As we have noted before, P̂(N) is a subset
of P. Among the nodes K, only those pairs of nodes that are furthest apart in R

S

are directly connected by an active link. All such links generate the same profits in
equilibrium, i.e. the linked nodes are equally far apart. There can be vertices that
are not connected to any other nodes. But as N increases, the equilibrium polytope
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contracts along those edges that are active, while the polytope remains centered in
the sense that pλ is always in the interior of P̂(N), pλ =

∑

k∈K λkp̂k(N), all N ≥ 0
(see (28)). For N large enough this implies that hitherto inactive vertices become
active as the length of the active edges contracts to the length of the largest edge
emanating from the hitherto inactive vertex. At the same time, as the polytope
contracts, an internal node becomes itself a vertex for some N large enough, and
at some yet higher N becomes an active node. This procedure is repeated until,
as seen in Proposition 1, the polytope converges to the singleton point {pλ}. We
provide some general results that provide the basis of our intuition, with finer points
illustrated in particular examples later on.

Proposition 2 (Internal nodes) Suppose that A is either complete or hub-spoke
and that βk = β, all k ∈ K. Then the equilibrium network (K,A∗) never involves
trade with an internal node unless A is hub-spoke with the internal node being the
hub.

In particular, if the architecture is complete, the equilibrium network can never be
hub-spoke with an internal hub. It can, however, be hub-spoke with a vertex hub.
For instance, assume that pk = p1, k = 1, . . . , K+1 and p0 6= p1. Then no arbitrageur
chooses to arbitrage kℓ if k 6= 0 and ℓ 6= 0, and in equilibrium N0k = N/K, k 6= 0.

We call a polytope strongly symmetric if it is either a regular polytope, or a
centrally symmetric polytope with equal axes. Of course, it can be both, e.g. the
cube. Examples of non-regular polytopes that are centrally symmetric with equal
axes are the rectangle, the bipyramid (with equal axes) whose basis is a regular even
polygon with six or more vertices,10 or any prism based upon an even regular polygon.
A strongly symmetric polytope can be circumscribed by a sphere, so its center, as
defined above, always exists. In case the polytope is centrally symmetric, the center
coincides with its center of symmetry. We denote the family of strongly symmetric
polytopes by P

ss. Of all the polytopes, this family provides us with a clear intuition
as well as tractable closed-form solutions due to the symmetry between vertices.
Intuitively it amounts to assuming that state prices are evenly distributed in state
space.

Proposition 3 (Strongly symmetric complete networks) Suppose that A is com-
plete and that βk = β, all k ∈ K. Suppose further that there is an N̄ ≥ 0, with equi-
librium arbitrageur distribution {N̄kℓ}, such that P̂(N̄) ∈ P

ss with no internal nodes.
Then the center of P̂(N̄) is pλ, and the equilibrium network can be characterized as
follows, for all N ≥ N̄ :

10A bipyramid is a pyramid pasted on both sides of the basis. Indeed we can take such a 3-
bipyramid itself as the basis and construct a d-bipyramid, by repeatedly pasting s-dimensional
pyramids on both “sides” of the (s − 1)-dimensional pyramid. Provided we keep the axes equal
each time we increase the dimension, the result is a centrally symmetric polytope with equal axes.
See Grünbaum (2003) for details.
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i. If P̂(N̄) is a regular simplex, the equilibrium network is complete, with |A∗| =
K(K + 1)/2.

ii. If P̂(N̄) is centrally symmetric with equal axes, the equilibrium network is not
connected for K > 1. It has K+1

2
components, each consisting of two nodes

which are symmetric with respect to pλ.

iii. If P̂(N̄) is a regular odd polygon, the equilibrium network is a cycle: the neigh-
bors of node k, k ∈ K, are the two vertices of the segment opposite to k. Also,
|A∗| = K + 1.

In each case, P̂(N) belongs to the same family of polytopes as P̂(N̄), i.e. (i), (ii)
or (iii), with the same center pλ, but with a smaller circumsphere. For N ≥ N̄ ,
A∗(N) = A∗(N̄), and

p̂k(N) = ν(N) p̂k(N̄) + (1 − ν(N)) pλ, (12)

Nkℓ(N) = [ν(N)]−1N̄kℓ + b(N), kℓ ∈ A∗ (13)

Φ(N) = [ν(N)]2Φ(N̄), (14)

where ν(N) is strictly decreasing in N , with ν(N̄) = 1, ν(∞) = 0, and b(N) is
strictly increasing in N , with b(N̄) = 0, b(∞) = ∞. Moreover, Nkℓ(N) is an affine
function of N .

Note that the cases (i)–(iii) in the proposition cover all possible regular polytopes.
In addition, (ii) covers some non-regular polytopes as well. For the case in which
P̂(N̄) is a polygon with r vertices, with r odd and r ≥ 5, the equilibrium network is
connected but not complete (for r = 3 the polygon is in fact a simplex). The cycle
should obviously not be visualized as the polygon itself, since the neighbors of k are
not the adjacent nodes in the polytope but the ones that are maximally distant from
k.

We can specialize Proposition 3 to the case where N̄ = 0, so that P is strongly
symmetric with vertex set {pk}k∈K . Then P̂(N) is a smaller strongly symmetric
polytope within the autarky polytope P, and P̂(N) contracts evenly to the sin-
gleton {pλ} as N → ∞, with each state-price deflator p̂k converging on a straight
line segment towards pλ, the center of the polytope. Equilibrium profits converge
monotonically to zero. Each active link attracts the same number of arbitrageurs.

For arbitrary polytopes convergence need not be along a linear trajectory but can
be along a nonlinear curve, either globally or piecewise. Examples will be given in
the sequel. However, even if P is not strongly symmetric, P̂(N̄) may be for some N̄ .
Interestingly, convergence is linear from that N̄ onwards, with equilibrium numbers
of arbitrageurs spread out according to the rules laid out in the proposition. For
instance, suppose there are three exchanges and P is an isosceles triangle with the
two sides that are equal making an angle greater than 60◦. Then the third side is
longer and initially all arbitrageurs will concentrate on that link. As N increases,
this side contracts, until the triangle becomes equilateral, i.e. a regular simplex. As
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another example, reconsider Example 1. Here the autarky polytope is a rhombus
which converges to a square. If we modify Example 1, so that the two lines in Figure
2 do not cross at a right angle, then the autarky polytope is a parallelogram which
converges to a rectangle. In both cases, there is an N̄ for which the polytope P̂(N̄)
is centrally symmetric with equal axes, so the proposition applies (in particular, part
(ii)). In fact, this observation generalizes to all centrally symmetric polytopes:

Lemma 5 Suppose that A is complete and that βk = β, all k ∈ K. If P is centrally
symmetric, then there is an N̄ such that P̂(N̄) is centrally symmetric with equal axes.

Arbitrageurs gravitate to the links that correspond to the longest axes of the poly-
tope. This causes these axes to shorten until there is activity on all the axes. Then
they must be equal.

If P̂(N̄) ∈ P
ss with some internal nodes, the proposition still applies for N > N̄

as long as the nodes that are internal for P̂(N̄) are also internal for P̂(N). Let Nmax

be the maximum N for which this is the case and let C be the vertex set of P̂(N̄).
Then we have linear convergence of p̂k to pλ

C , for N ∈ [N̄, Nmax], for all k ∈ C.
In view of the importance of hub-spoke networks in delivering higher payoffs, it

is worth emphasizing the following corollary of Proposition 3:

Corollary 2 Suppose that A is complete and that βk = β, all k ∈ K. If P̂(N̄) ∈ P
ss,

then the equilibrium network is not hub-spoke for any N ≥ N̄ .

In particular if P is strongly symmetric with no internal nodes, then the equilibrium
network is not hub-spoke for any N . The intuition here is that if the architecture
is complete and if equilibrium network is hub-spoke, then the autarky state-prices
must be distributed “irregularly” or asymmetrically in R

S space, with some nodes
further out (but with the mirror-nodes not also further out in a symmetrical fashion)
or some other nodes in clusters.

The strong symmetry imposed in the previous proposition also implies that there
cannot be strong network effects:

Corollary 3 (No strong network effects in P
ss) Under the assumptions of Propo-

sition 3, there are no strong network effects.

Intuitively, strong network externalities imposed upon one node cannot emerge
in equilibrium because by symmetry those same externalities are also imposed on
the other relevant nodes. This causes them to mutually cancel each other out in
equilibrium, and this is precisely what contributes to the relatively succinct closed
form expressions. This does not say that there are no network externalities, of
course. For instance, in cases (i) and (iii) the state-prices and the state-contingent
consumptions on exchange k are affected by arbitrageur actions (and ultimately by
preferences and endowments of investors located) on any other exchange ℓ, no matter
how remote and indirectly connected.
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7 Hub-Spoke Geometry

We now analyze the geometry of hub-spoke networks in a bit more detail. Arbitrageur
profits in an h0-architecture are easily calculated, using (9):

ϕ0k =
βk + β0

[(1 +N0k)βk + β0]2
· ‖pk − p̂0‖2

2 , (15)

with p̂0 given by (8). In equilibrium (with endogenous {N0k}) we must have ϕ0k =
Φh0, for all k on which there is some arbitrage activity. The profit ϕ0k is a product of
two terms. The first term is decreasing in βk, and therefore increasing in the depth
of exchange k, while the second term captures the net gains from trade on exchange
k, taking into account the fact that all other arbitrageurs, including those linking
0 to j 6= k, also trade on 0 (hence p̂0 appears in lieu of p0). Consequently, there is
a tradeoff between depth and equilibrium gains from trade. The following result is
immediate from an inspection of (15):

Proposition 4 (Equalizing differences: hub-spoke architecture) Suppose A =
Ah0. Then:

i. Suppose N0k = N0ℓ > 0. ‖pk − p̂0‖2
2 > ‖pℓ − p̂0‖2

2 iff βk > βℓ.

ii. Suppose ‖pk − p̂0‖2
2 = ‖pℓ − p̂0‖2

2. Then N0k > N0ℓ iff βk < βℓ.

iii. Suppose βk = βℓ. Then N0k > N0ℓ iff ‖pk − p̂0‖2
2 > ‖pℓ − p̂0‖2

2.

Proposition 4 does not give us an explicit characterization of {N0k} since p̂0 itself
depends on {N0k} in a complex manner. The symmetric case, however, is amenable
to further analysis. We say that the nodes {pk}k∈K are symmetric with respect to
p0 if ‖pk − p0‖2 does not depend on k, for k 6= 0. Let L := aff({p0, pλ}). If p0 6= pλ,
then L is the line passing through p0 and pλ; if p0 = pλ, then L is just the point pλ.
We say that the nodes {pk}k∈K are symmetric with respect to L if for every k, there
is a pℓk , such that pℓk is the reflection of pk through L.

Proposition 5 (Symmetric hub-spoke networks) Suppose A = Ah0, and βk =
β, all k ∈ K. Suppose further that the nodes {pk} are symmetric with respect to p0

and L. Then, p̂0(N) = ν(N)p0 + (1 − ν(N))pλ, where ν(N) is strictly decreasing in
N , with ν(0) = 1 and ν(∞) = 0.

Suppose the above hypotheses hold except that the nodes {pk} are not necessar-
ily symmetric with respect to p0. Then, p̂0(N) is in aff({p0, pλ}) and converges to
pλ. There is an array of exchanges {Ki}

n
i=1 and arbitrageurs {Ni}

n
i=1, with Ni >

Ni−1, p
0 ∈ K1, Ki−1 ⊂ Ki, Kn = K, such that for N ∈ [Ni−1, Ni), p̂

0(N) ∈
ν(Ni−1)p̂

0(Ni−1) + (1 − ν(Ni−1))p̂
λ
Ki

. We have ν(Ni−1) ∈ [0, 1], and for N ′ > N ≥
Ni−1, ν(N

′) < ν(N).
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Under the symmetry assumptions of the proposition, the equilibrium state-price
deflator on the hub is pulled evenly “from both sides” and follows a linear trajectory
towards pλ. With symmetry with respect to both p0 and L, p̂0(N) converges to pλ

monotonically along the line segment joining p0 and pλ. If p0 = pλ, then in fact
p̂0(N) = pλ for all N . If symmetry fails and more nodes are one one side than on
another one (but with similar scale properties), then the trajectory is an arc bent
towards the more plentiful, attracting, side.

Once p̂0(N) is determined, p̂k(N) is a convex combination of p̂0(N) and pk,

p̂k(N) = p̂0(N)+ 2
N+2K

P

ℓ ‖p
ℓ−p̂0(N)‖2

‖pk−p̂0(N)‖2

(pk−p̂0(N)). When replacing p̂0(N) by ν(N)p0+

(1 − ν(N))pλ for instance we see that p̂k(N) converges to pλ on an arc turning its
concavity towards p0.

Intuitively, assume N is initially zero. As N becomes positive, only the exchanges
furthest from p0 get connected. Those exchanges form K1. As N further increases,
p̂0(N) monotonically tends towards pλ

K1
:=
∑

k∈K1

1
K1

pk until N equals N1. N1 is the
critical number for which the new equilibrium gains from trade between 0 and any
of the exchanges in K1 equal those between 0 and one or more exchanges not in K1.
Those exchanges when added to the ones in K1 form K2. As N further increases,
p̂0(N) converges towards pλ

K2
, and the argument can be repeated until Ki = Kn = K.

Whereas convergence on each segment [Ni, Ni−1) is monotonic, overall convergence
of p̂0 from p0 to pλ need not be monotonic because pλ

Ki
is in the convex hull of p0

and pλ
Ki−1

. This can be illustrated in a simple example:

Example 4 (Non-monotonicity in a hub-spoke network) Consider the h0 - ar-
chitecture with four exchanges whose autarky state-prices lie on a straight line in R

S.
By construction this architecture is symmetric with respect to L. p0 and p1 form the
extremes of the polytope, with p2 = p3 assumed to be located in conv({p0, pλ

K1
}),

K1 = {0, 1}. Since the gains from trade between p0 and p1 are largest, for small
enough N we have N01 = N . This will be true until N∗ which is so that p̂0(N∗)−p2 =
p̂1(N∗)−p̂0(N∗) = 2[pλ

K1
−p̂0(N∗)]. In other words, at N∗ all links will become active,

and for N > N∗, p̂0(N) converges to pλ
K . Solving for N∗ we get p̂0(N∗) = 2

3
pλ

K1
+ 1

3
p2,

and it can be verified that pλ
K = 1

2
pλ

K1
+ 1

2
p2. But pλ

K lies between p̂0(N∗) and p0, so
for N > N∗ p̂0(N) reverts back in the direction of p0 towards its limit pλ

K.

One can get further results by requiring yet more symmetry and assume that
autarky state prices form a polytope with the hub at the center:

Proposition 6 (Strongly symmetric networks with central hub) Suppose A =
Ah0, β0 arbitrary, βk = β for all k = 1, . . . , K, and p0 = pλ. Suppose further that
P ∈ P

ss with no internal nodes other than node 0. Then the center of P is pλ. P̂(N)
belongs to the same family of polytopes as P, with the same center pλ, but with a
smaller circumsphere. We have

p̂0(N) = p0 = pλ (16)
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Figure 5: The economy in Example 4

and, for k 6= 0,

p̂k(N) =
(β + β0)K

(β + β0)K + βN
pk +

βN

(β + β0)K + βN
pλ, (17)

N0k(N) =
N

K
, (18)

Φh0(N) =
β + β0

[(1 +N/K)β + β0]2
‖pk − p0‖2

2. (19)

Equilibrium profits given by (19) do not depend on k because p0 = pλ is the center
of P.11

When we consider vertex hubs we will adopt the convention of choosing exchange
1 as the hub. This will be particularly useful when we compare central and vertex
hubs later.

Proposition 7 (Simplex networks with vertex hub) Suppose A = Ah1, and
βk = β for all k ∈ K. Suppose further that P is a regular simplex with no internal
nodes. Then:

p̂1(N) =
2K

N(K + 1) + 2K
p1 +

N(K + 1)

N(K + 1) + 2K
pλ (20)

11The only property of strongly symmetric polytopes that we use in the proof is that the circum-
center (which is the center as we have defined it) and the centroid (which is the equally weighted
convex combination of the vertices) coincide. Hence Proposition 6 holds in fact for the larger family
of polytopes that have this property.
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and, for k 6= 1,

p̂k(N) =
2K

N + 2K
pk +

N

N + 2K
p̂1(N), (21)

N1k(N) =
N

K
, (22)

Φh1(N) =
K3[N(N + 4)(K + 1) + 8K]

β(N + 2K)2[N(K + 1) + 2K]2
‖pk − p1‖2

2. (23)

Φh1(N) is strictly decreasing in N . Furthermore,

‖p̂k(N) − p̂1(N)‖2 < ‖p̂k(N) − p̂ℓ(N)‖2, for ℓ 6= 1, N > 0.

Equilibrium profits given by (23) do not depend on k because all the edges of a
regular simplex are equal. Note that P̂(N) is not a regular simplex for N > 0.
Nodes other than the hub are pulled closer to the hub than to other nodes.

The following proposition says roughly that for hub-spoke networks that are small
enough, network effects are absent. “Small” may be either in terms of N small, or
K small, or in the sense that (λ0)−1 is small. The latter condition would apply for
instance if all investors have identical risk parameters βk,i, k ∈ K, and if the number
of investors on 0, I0, is large compared to the aggregate population. In that sense
the spokes are small compared to the hub.

Proposition 8 (No strong network effects in small hub-spoke networks)
Suppose A = Ah0.

Assume that (i) βk = β for all k ∈ K and that N is small. Then there are no
strong equilibrium networks effects of type 2.

Alternatively, assume either that (ii) βk = β for all k = 1, . . . , K and λ0 is large,
or alternatively that (iii) K = {0, 1, 2} with no further restrictions. Then there are
no strong equilibrium network effects.

For hub-spoke networks with either large N or large K, examples can easily be
constructed where network effects matter. The foregoing discussions taken together
fully characterize the case of three exchanges.

Example 5 (Three exchanges) Propositions 3 and 5 allow us to completely char-
acterize the case K = {0, 1, 2}. This example also serves as an illustration for the
principle that in order to understand a network for some given N ′, proposition 3 sug-
gests that one fruitful alternative is to start N at zero and then raise N to N ′. That
the case with K = {0, 1, 2} is fully characterized follows from the observation that
one must be in either of the following three situations. Either only one link is active,
say 01, in which case we know that equilibrium state prices lie on the segment between
the two autarky state-prices and they move on that segment towards the middle point
pλ. Unless p2 = pλ, at some point for larger N there will be trade with exchange 2.
Assume without loss of generality that the active links are 01 and 02. Then we are
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in a necessarily symmetric hub-spoke network. Then p̂0 converges linearly to pλ as
N increases (and therefore also N01 and N02) while p̂1 and p̂2 converge towards pλ

along a parabola. Either N12 always stays at zero, or there might be a point where
‖p̂0 − p̂1‖2 = ‖p̂0 − p̂2‖2 = ‖p̂1 − p̂2‖2, in which case Proposition 3 implies that all
three links become active and equilibrium state prices all converge linearly towards
pλ.

8 Equilibrium vs Profit Maximizing Networks

In this section we study equilibrium networks further and contrast them to profit
maximizing networks.

Proposition 9 (Profits: central hub vs complete architecture) Suppose βk =
β for all k 6= 0, and p0 = pλ. Suppose further that P ∈ P

ss with no internal nodes ex-
cept for node 0. Then, provided β0 ≥ β, there is no activity on node 0 in the complete
architecture for any N . If β0 = β, then Φh0(N) > Φ(N), provided N > 2|A∗|, where
A∗ is the set of active links for the complete architecture. For arbitrary β0 > β, we
have Φh0(N) > Φ(N), provided N is sufficiently large.

Thus, if all exchanges have equal depth, the complete architecture is dominated as
long as there are at least two arbitrageurs on each active link. Moreover, the h0-
architecture leads to higher payoffs for arbitrageurs no matter how illiquid it is, as
measured by β0, provided there are sufficiently many arbitrageurs.

For the sake of intuition let us first focus on the case where P is centrally symmet-
ric. Then the vertices come in pairs (k, ℓk) that are symmetrical with respect to pλ.
Equilibrium profits are higher with a central hub. This is so even though the autarky
gains from trade are higher on link kℓk than on the spokes of the h0-architecture (i.e.
Φ(0) > Φh0(0)). The reason is the positive externality that arbitrageurs on spoke
0k exert on arbitrageurs on the symmetrical spoke 0ℓk. Arbitrageurs on 0k pull p̂0

towards pk, thereby increasing ‖p̂0−p̂ℓk‖2. Arbitrageurs on 0ℓk pull p̂0 in the opposite
direction, towards pℓk . Due to symmetry, the net impact on state prices on the hub
is in fact zero, i.e. p̂0 = p0. The aggregate supply of both families of arbitrageurs
on the hub is also zero—any state-contingent consumption that is supplied to the
hub by arbitrageurs on one spoke is absorbed by arbitrageurs on the other spoke.
Thus the hub acts as a liquidity repository,12 channeling trades in such a manner
that the two groups of arbitrageurs complement each other. The network-induced
complementarity is sufficient to compensate for the fact that the autarky gains from

12We do not define liquidity rigorously in this paper, which is left to a companion paper (Rahi
and Zigrand (2007d)). Do notice however that the common measure of liquidity as depth (1/β0)
does not do justice to exchange 0. If exchange 0 is the hub, it will attract a lot of trade with zero
equilibrium price impact, irrespective of β0. On the other hand, for any other architecture, there is
no trade with exchange 0, even if 1/βk approaches infinity. It is purely the position in the network
which determines liquidity, rather than any of the standard metrics of liquidity in isolation.
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trade between the center and any one of the extremes is considerably less than the
gains from trade between the two extremes, ignoring the central exchange altogether.

The h0-architecture exhibits strategic complements. The more arbitrageurs on
0k trade, the more profitable each trade becomes for the arbitrageurs on 0ℓk because
on the one hand mispricings increase and on the other hand the arbitrageurs on link
0k provide liquidity to the ones on 0ℓk and vice versa.

When the architecture is complete the market mechanism fails to achieve this
outcome due to a Prisoner’s Dilemma. If arbitrageurs could agree to not trade on
kℓk, they would be able to minimize price impact and increase profits. But, given the
opportunity, each arbitrageur would rather arbitrage kℓk due to the much greater
gains from trade. The result is a suboptimal arrangement with all arbitrageurs on
kℓk.

13

For the case where P is not centrally symmetric, for example a simplex, essentially
the same intuition applies. For each node k there is a facet that is opposite to it.
The vertices of this facet pull p̂0 away from pk. Due to symmetry, the net impact on
p̂0 is zero.

In fact the complete architecture is suboptimal for arbitrageurs even if there is no
central exchange. The following proposition shows that a vertex hub delivers higher
profits as well. While a vertex of P is not central relative to the other vertices of
P, it gets pulled towards the center after some level of arbitrageur activity on the
spokes.

Proposition 10 (Profits: central/vertex hub) Suppose K ≥ 3, βk = β for all
k ∈ K, and p0 = pλ. Suppose further that P is a regular simplex with no internal
nodes except for node 0. Then, for the complete and h1-architectures, there is no
activity on node 0 for any N . We have Φh0(N) > Φh1(N) > Φ(N), provided N ≥
2K − 1.

Since node 0 is always isolated in the complete and h1-architectures, the ranking of
profits in these architectures also holds if P has no internal nodes (replacing K by
K + 1 in the proposition).

The reason why a vertex hub delivers higher profits is similar to the one given for a
central hub. If kℓ is left unarbitraged, there is less pressure for the prices on k and ℓ to
converge, leaving the arbitrages on 1k and 1ℓ more differentiated, and therefore more
profitable. As N increases, equilibrium state-price deflators on k and ℓ converge to
pλ along an arc while p̂1 moves more quickly into the middle between p̂k and p̂ℓ. The
effect of this is again to induce strategic complements in that arbitrageurs provide
liquidity to each other to some extent (but less than in the central hub case). It is
therefore not hard to see that the distance between equilibrium state prices on k and
ℓ is high, so that if trade on kℓ was now allowed, some arbitrageurs would deviate
to that link. Again a Prisoner’s Dilemma result obtains.

13Interestingly, even if arbitrageurs were allowed to arbitrage any number of links, they would
only arbitrage kℓk. Arbitrageurs facing the twin restrictions of not being able to trade on kℓk and
of trading on only one link, are better off than completely unrestricted arbitrageurs.
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Thus, for both the central and vertex hub-spoke architectures, the restrictions
implicit in the architecture coordinate arbitrageur actions by pooling liquidity and
by preventing Prisoner’s Dilemma type deviations. The state prices of the hub are
in equilibrium (not necessarily in autarky) to some extent “in-between” the other
state prices, therefore acting as a liquidity pool.

One way to interpret Propositions 9 and 10 is that profits are lower in the complete
architecture because convergence to the Walrasian state-price deflator pλ is faster.
Let dk(N) and dk,hℓ(N) denote ‖p̂k(N) − pλ‖2

2 for the complete and hℓ-architectures
respectively.

Proposition 11 (Speed of convergence: central hub vs complete architecture)
Suppose βk = β for all k ∈ K, and p0 = pλ. Suppose further that P ∈ P

ss with no
internal nodes except for node 0. Then, for all N > 0,

d0(N) = d0,h0(N) = 0,

dk(N) < dk,h0(N), k 6= 0.

Also, dk(N) and dk,h0(N) are strictly decreasing in N for k 6= 0.

Proposition 12 (Speed of convergence: central/vertex hub) SupposeK ≥ 3,
βk = β for all k ∈ K, and p0 = pλ. Suppose further that P is a regular simplex with
no internal nodes except for node 0. Then, for all N > 0,

d0(N) = d0,h1(N) = d0,h0(N) = 0,

d1,h1(N) < d1(N) < d1,h0(N),

dk(N) < dk,h1(N) < dk,h0(N), k /∈ {0, 1}.

Also, the distance of each node k, k 6= 0, from pλ is strictly decreasing in N for all
three architectures.

Like Proposition 9, this result holds for the complete and h1-architectures even if P
has no internal nodes.

9 Networks and Social Welfare

In this section we analyze how the equilibrium utilities of investors depend on the
architecture. Using investor (k, i)’s first order condition, we can write his utility (1)
as:

Uk,i = ωk,i
0 + 1⊤Πωk,i −

βk,i

2
ωk,i⊤Πωk,i +

βk,i

2
‖θk,i‖2

2.

Note that Uk,i depends on the asset structure only through the termW k,i := βk,i‖θk,i‖2
2.

We will find it convenient to refer to W k,i as the equilibrium utility of agent (k, i).
From (2), we see that

θk,i =
1

βk,i
(pk,i − p̂k), k ∈ K.
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Hence, we have

Lemma 6 (Equilibrium utilities) Given a network G∗, the equilibrium utility of
investor (k, i), k ∈ K, is

W k,i =
1

βk,i
‖pk,i − p̂k‖2

2.

An architecture is optimal for an investor if it results in the highest equilibrium
utility for the investor among all possible architectures. An architecture is Pareto
optimal for a group of agents if there is no alternative architecture that Pareto
dominates it in equilibrium for this group. An architecture is socially optimal if it is
Pareto optimal for the set of all agents, arbitrageurs and investors.

We say that investors on exchange k are homogeneous if they have the same
no-trade valuations, i.e. pk,i = pk, for all i ∈ Ik. We refer to an economy in which
investors are homogeneous within each exchange as a clientèle economy. From the
point of view of arbitrageurs, each clientèle k ∈ K consists of agents with identical
characteristics.

We will focus now on a clientèle economy. Lemma 6 gives us the following welfare
index for clientèle k ∈ K:

W k :=
∑

i∈Ik

W k,i =
1

βk
‖pk − p̂k‖2

2. (24)

We can think of W k as the inter-exchange gains from trade reaped by exchange k
in moving from autarky to the arbitraged equilibrium. Note that W k = βk‖yk‖2

2,
so that the gains from trade are proportional to the magnitude of state-contingent
consumption trading volume. In particular this implies that if there are only two
exchanges, the outcome of the game is Pareto optimal in view of the fact that yk =
−yℓ. All the subtleties arise from network externalities across links.

In order to distinguish welfare across networks, we will reserve the notationW k for
welfare on exchange k in the complete architecture, and denote welfare on exchange
k in the hℓ-architecture by W k,hℓ.

Proposition 13 (Welfare: central hub vs complete architecture) Suppose βk =
β for all k ∈ K, and p0 = pλ. Suppose further that P ∈ P

ss with no internal nodes
except for node 0. Then, for all N > 0,

W 0(N) = W 0,h0(N) = 0,

W k(N) > W k,h0(N), k 6= 0.

Also, W k(N) and W k,h0(N) are strictly increasing in N for k 6= 0.

Thus the complete architecture Pareto dominates the h0-architecture for investors.
This is intuitive given our earlier result that, in the complete architecture, the state-
price deflator on any exchange converges faster to the Walrasian state-price deflator
(Proposition 11).

32



Proposition 14 (Welfare: central/vertex hub) Suppose K ≥ 3, βk = β for all
k ∈ K, and p0 = pλ. Suppose further that P is a regular simplex with no internal
nodes except for node 0. Then, for all N > 0,

W 0(N) = W 0,h1(N) = W 0,h0(N) = 0,

W 1,h1(N) > W 1(N) > W 1,h0(N),

W k(N) > W k,h1(N) > W k,h0(N), k /∈ {0, 1}.

Also, for k 6= 0, welfare is strictly increasing in N for all three architectures.

Like Propositions 9 and 12, this result holds for the complete and h1-architectures
even if P has no internal nodes.

When node 0 is the center of P, the interests of arbitrageurs and investors are
directly opposed. Arbitrageurs benefit when the trades between exchanges k and ℓ
are “split” by having to pass through exchange 0, while agents on exchanges k and
ℓ appropriate these gains themselves when they are linked directly.

Investors on node 1 (a vertex of P) are better off if their exchange is the hub
compared to the complete architecture. The reason is that, if exchange 1 is the hub,
the other exchanges cannot trade with each other directly. All trading must be routed
through exchange 1. However, if the other nodes are arranged symmetrically around
the hub, as in the central hub case, the hub becomes just a conduit for liquidity, with
arbitrageur trades on the hub being exactly offsetting. More generally, investors on
the hub are better off the more asymmetric the location of the spokes (see Rahi and
Zigrand (2007a) where we provide a complete analysis of the three-exchange case).

Such results cannot be obtained in the case where agents within an exchange
are heterogeneous. This is because, for a given pk, the deflator pk,i is essentially
unrestricted, so any result that holds for the representative investor on exchange k
can be reversed for an individual agent on k.

10 Conclusion

*** To be written ***
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A Appendix: Proofs

Proof of Lemma 1 Using (3), we can write the Lagrangian for arbitrageur n ∈
Nkℓ as follows:

L =
∑

m∈{k,ℓ}

[pm − βmym,n
kℓ − βmym,\n]⊤Πym,n

kℓ − ψ⊤Π
∑

m∈{k,ℓ}

ym,n
kℓ ,

where ψ is the Lagrange multiplier vector attached to the no-default constraints, and
can be interpreted as a (shadow) state-price deflator of the arbitrageur. The first
order conditions are:

pm − βmym,\n − 2βmym,n
kℓ − ψ = 0, m ∈ {k, ℓ}

together with complementary slackness:

ψ ≥ 0,
∑

m∈{k,ℓ}

ym,n
kℓ ≤ 0, and ψ⊤





∑

m∈{k,ℓ}

ym,n
kℓ



 = 0. (25)

We can rewrite the first order conditions as follows:

p̂m − βmym,n
kℓ − ψ = 0, m ∈ {k, ℓ}. (26)

It is easy to check that a solution to (25) and (26) is given by (5), with

ψ =

(

1

βk
+

1

βℓ

)−1(
1

βk
p̂k +

1

βℓ
p̂ℓ

)

. (27)

The Lagrange multiplier vector ψ is nonnegative if p̂k and p̂ℓ are both nonnegative.
This is indeed the case, as we will verify later (Lemma 2). The no-default constraints
hold with equality. This argmax is in fact unique since the program is globally
concave. Thus the CWE is symmetric, i.e. ym,n

kℓ does not depend on n.

Proof of Lemma 2 Consider a component C ∈ C. Then {p̂k}k∈C solves the system
(7) restricted to C. Define the matrix m = [mkℓ]k,ℓ∈C by mkk := 1+βkαk and mkℓ :=
−βkαkℓ for k 6= ℓ. Let M := m⊗IS×S. Then, letting p̂ := {p̂k}k∈C and p := {pk}k∈C,
(7) can be written as Mp̂ = p. Noting the diagonal structure of each block of M ,
we have |Mii| = 1 + βkαk, for some k, and

∑

j 6=i |Mij | =
∑

ℓ 6=k | − βkαkℓ| = βkαk.
Therefore, |Mii| >

∑

j 6=i |Mij |, i.e. M is strictly (row)diagonally dominant (and so is
m).

We will appeal to the theory of M-matrices; see Berman and Plemmons (1979),
henceforth BP. An M-matrix is a square matrix of the form sI − B, where B ≥ 0,
and s ≥ rad(B), the spectral radius of B. These matrices also have the property
that the diagonal elements are positive and the off-diagonal elements are nonpositive.
By Theorem 6.2.3 in BP, both M and m are nonsingular M-matrices. Hence, there
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exists a unique p̂ solving Mp̂ = p, namely p̂ = M−1p. Since M−1 = (m−1 ⊗ IS×S),
we can write p̂k = pη,k :=

∑

j∈C η
kjpj , where ηkj is element (k, j) of m−1. The

matrix m is irreducible, also called indecomposable (indeed it is irreducible if and
only if C is connected; see Theorem 2.2.7 in BP). Hence m−1 ≫ 0 by Theorem
6.2.7 in BP, i.e. ηkj > 0, all k, j ∈ C. Since m1 = 1 we also have m−11 = 1,
i.e.

∑

j∈C η
kj = 1, all k ∈ C. In other words, m−1 is a stochastic matrix. Finally,

from Theorem 2.5.12 in Horn and Johnson (1985), m−1 is strictly column diagonally
dominant: ηjj >

∑

i6=j η
ij.

Proof of Lemma 4 Using Lemma 1, the equilibrium profit of arbitrageur n ∈ Nkℓ

is

ϕkℓ = (qk − qℓ)⊤yk,n
kℓ

= (p̂k − p̂ℓ)⊤Πyk,n
kℓ

=
1

βk + βℓ
· ‖p̂k − p̂ℓ‖2

2.

Proof of Proposition 1 Let Φ(N) denote the equilibrium profit of an arbitrageur
when the number of arbitrageurs is N . Then Φ(N) = 1

βk+βℓ‖p̂
k(N) − p̂ℓ(N)‖2

2, for

all kℓ ∈ A∗. We claim that Φ(∞) = 0. If not, there exists a constant c > 0
such that Φ(N) > c for arbitrarily large N . Now limN→∞Nkℓ = ∞, for some
kℓ ∈ A. Consider such a link kℓ. We have ‖p̂k(N) − p̂ℓ(N)‖2

2 > (βk + βℓ)c, for
arbitrarily large N,Nkℓ. Therefore, total arbitrageur supply on k by arbitrageurs
on kℓ, given by Nkℓyk,n

kℓ = Nkℓ

βk+βℓ [p̂
k(N) − p̂ℓ(N)], is unbounded: for any constant C̄,

howsoever large, there is an N and a state s for which this supply is greater than C̄
in absolute value. Suppose that the supply is in fact positive (if it is negative, then
we can consider instead the state-s supply by arbitrageurs on kℓ to ℓ). Since p̂k ≥ 0,
(4) implies that yk is bounded above. Due to (6), Nkk1yk,n

kk1
must be unboundedly

negative in state s, for some k1. But then the state-s supply on exchange k1 by
arbitrageurs active on kk1 is unboundedly positive, which places k1 in the same
situation as k was. Eventually the unboundedly large supply in state s must end up
on some exchange km. If km 6= k, the condition that p̂km ≥ 0 will be violated due
to (4). If km = k, consider the following sequence of inequalities that must hold:
p̂k

s < p̂k1

s < p̂k2

s < . . . < p̂km
s = p̂k

s , a contradiction. Basically, arbitrageurs cannot
be trading unboundedly large amounts without running afoul of the fact that at
equilibrium agents are nonsatiated on every exchange.

Since Φ(N) → 0, and Φ(N) ≥ 1
βk+βℓ‖p̂

k(N) − p̂ℓ(N)‖2
2, for all kℓ ∈ A, we

must have p̂k(N) − p̂ℓ(N) converging to zero, for all kℓ ∈ A. We claim that this
is in fact true for all k, ℓ ∈ K. For arbitrary k and ℓ, there is a path connecting
them, since G is connected, i.e. there is a sequence of distinct vertices {k1, . . . , kI}
in K such that k1 = k, kI = ℓ and (ki, ki+1) ∈ A for all i = 1, . . . , I − 1. Now
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‖p̂k(N) − p̂ℓ(N)‖2
2 ≤

∑I−1
i=1 ‖p̂

i(N) − p̂i+1(N)‖2
2. Since each of the terms in the sum

converges to zero, p̂k(N) − p̂ℓ(N) converges to zero as well.
Multiplying equation (7) by λk and summing over k ∈ K we get

∑

k∈K

λkp̂k(N) = pλ. (28)

Hence, for all k ∈ K,

‖p̂k(N) − pλ‖2
2 =

∥

∥

∥

∑

j∈K

λj
[

p̂k(N) − p̂j(N)
]

∥

∥

∥

2

2

≤
∑

j∈K

λj‖p̂k(N) − p̂j(N)]‖2
2

where the inequality follows again from the triangle inequality followed by Jensen’s
inequality. Since each term in the last sum converges to zero, p̂k(N) converges to pλ,
for all k ∈ K.

Now consider C ∈ C(∞). Define N̄ large enough so that for all N > N̄ ,
C(N) = C(∞). Multiplying equation (7) by λk

C and summing over k ∈ C we get, for
all N > N̄ ,

∑

k∈C

λk
C p̂

k(N) = pλ
C .

Taking limits as N goes to infinity, we get pλ
C = pλ.

Proof of Proposition 2 Consider first the complete architecture and suppose
p̂j is internal. Then p̂j =

∑

k∈K∗ νkp̂k, where K∗ is a subset of the vertex set of

P̂, |K∗| ≥ 2, νk > 0 for all k, and
∑

k∈K∗ νk = 1. For any ℓ ∈ K, we have

‖p̂j − p̂ℓ‖2
2 =

∥

∥

∥

∑

k∈K∗

νk(p̂k − p̂ℓ)
∥

∥

∥

2

2

≤
[

∑

k∈K∗

νk‖p̂k − p̂ℓ‖2

]2

(29)

<
∑

k∈K∗

νk‖p̂k − p̂ℓ‖2
2 (30)

≤ max
k∈K∗

‖p̂k − p̂ℓ‖2
2

where (29) follows from the triangle inequality and (30) from Jensen’s inequality.
For a hub-spoke architecture the same argument goes through taking ℓ to be the

hub.

Proof of Proposition 3 Since βk = β, all k, (28) implies that

pλ =
1

K + 1

∑

k∈K

p̂k(N), (31)
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for all N . Moreover, since P̂(N̄) ∈ P
ss with vertex set {p̂k(N̄)}k∈K , pλ is the center

of P̂(N̄).
We see from (7) that equilibrium prices solve the following system of equations:

Λk := p̂k(N) − pk +
1

2

∑

ℓ∈K

Nkℓ[p̂k(N) − p̂ℓ(N)] = 0, k ∈ K. (32)

Using (12) and (13):

Λk = ν(N) p̂k(N̄) + (1 − ν(N)) pλ − pk +
1

2

∑

ℓ∈K

N̄kℓ[p̂k(N̄) − p̂ℓ(N̄)]

+
b(N)ν(N)

2

∑

ℓ∈Ck

[p̂k(N̄) − p̂ℓ(N̄)], (33)

where Ck := {k} ∪ {ℓ | kℓ ∈ A∗} (note that the inclusion of k in Ck is just a matter
of convenience, as the corresponding term of the sum is zero). Using (32) evaluated
at N = N̄ , (33) simplifies to:

Λk = (1 − ν(N))[pλ − p̂k(N̄)] +
b(N)ν(N)

2

∑

ℓ∈Ck

[p̂k(N̄) − p̂ℓ(N̄)] (34)

If P̂(N̄) is a regular simplex, we claim that all links are active, so that |Ck| =
K + 1. Using (31),

∑

ℓ∈Ck
[p̂k(N̄) − p̂ℓ(N̄)] = (K + 1)[p̂k(N̄) − pλ]. Now it is easy

to check that Λk = 0, for all k, for the following choice of ν(N) and b(N) (by direct
substitution into (34)):

ν(N) =
K + N̄

N +K
, b(N) =

2(N − N̄)

(K + 1)(K + N̄)
. (35)

It follows from (12) that ‖p̂k(N)− p̂ℓ(N)‖2
2 = [ν(N)]2‖p̂k(N̄)− p̂ℓ(N̄)‖2

2, which is
independent of kℓ due to the regularity of the simplex P̂(N̄). Therefore, profits are
equalized across all links, with Φ(N) = [ν(N)]2Φ(N̄), and the network is complete,
for all N ≥ N̄ . Indeed, as N increases, all the edges of P̂(N) contract uniformly, so
that P̂(N) is a smaller K-simplex within P̂(N̄), with the same center pλ.

Now suppose P̂(N̄) is centrally symmetric with equal axes. For N = N̄ , let ℓk be
the exchange whose equilibrium state-price deflator is centrally symmetric to that of
k, i.e. p̂ℓ(N̄) = −p̂k(N̄) + 2pλ. We claim that, for ℓ 6= ℓk, N

kℓ = 0, for all N ≥ N̄ .
This implies that

∑

ℓ∈Ck
[p̂k(N̄)− p̂ℓ(N̄)] = p̂k(N̄)− p̂ℓk(N̄) = 2(p̂k(N̄)− pλ). We can

verify that Λk = 0 for

ν(N) =
K + 1 + 2N̄

K + 1 + 2N
, b(N) =

2(N − N̄)

K + 1 + 2N̄
.

Also, from (12), ‖p̂k(N) − p̂ℓk(N)‖2
2 = [ν(N)]2‖p̂k(N̄) − p̂ℓk(N̄)‖2

2, which is in-
dependent of k since the axes of P̂(N̄) are equal. Therefore, profits are equalized
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across all such links, which are K+1
2

in number. Clearly, given (12) and (13), P̂(N)
will contract uniformly as N increases beyond N̄ . So the same pairs of nodes will
remain symmetric. It remains to show that links between non-symmetric nodes will
be inactive. If ℓ 6= ℓk,

‖p̂k(N) − p̂ℓk(N)‖2 = ‖p̂k(N) − pλ‖2 + ‖p̂ℓk(N) − pλ‖2 (36)

= ‖p̂k(N) − pλ‖2 + ‖p̂ℓ(N) − pλ‖2 (37)

> ‖(p̂k(N) − pλ) + (pλ − p̂ℓ(N))‖2 (38)

= ‖p̂k(N) − p̂ℓ(N)‖2,

where (36) follows from the symmetry of k and ℓk with respect to the center pλ, (37)
from the equality of the axes, and (38) from the triangle inequality, which is a strict
inequality because p̂k(N) − pλ is not proportional to p̂ℓ(N) − pλ. Hence Nkℓ = 0
unless ℓ = ℓk.

Finally, suppose P̂(N̄) is a polygon with r vertices, r odd. Clearly, the nodes
that have maximal distance from k are the vertices of the segment that is opposite
to k. Let us denote these by ℓk and mk. Then we have

∑

ℓ∈Ck

[p̂k(N̄) − p̂ℓ(N̄)] = 2

[

p̂k(N̄) −
1

2
[p̂ℓk(N̄) + p̂mk(N̄)]

]

= 2[p̂k(N̄) − pλ]
[

1 + cos
(π

r

)]

where the last equality follows from a simple trigonometric calculation (see Coxeter
(1963), Fig. 1.1A). The values of ν(N) and b(N) for which Λk = 0 are:

ν(N) =
K + 1 + N̄

[

1 + cos
(

π
r

)]

K + 1 +N
[

1 + cos
(

π
r

)] , b(N) =
N − N̄

K + 1 + N̄
[

1 + cos
(

π
r

)] .

That the active links are as postulated is easily seen by the same argument as for
the previous two cases.

In all the three cases, it can be verified that
∑

kℓ∈A∗ Nkℓ = [ν(N)]−1N̄+|A∗|b(N) =

N . |A∗| is K(K+1)
2

for the simplex, K+1
2

for the centrally symmetric case, and K + 1
for the odd polygon.

Proof of Lemma 5 Consider a link kℓk corresponding to an axis that is maximal
in length (there can be many such axes). Clearly there is no activity on any of the
shorter axes. We need to show that there is also no activity on any link mℓ that
does not correspond to an axis. A simple extension of the argument in the proof of
Proposition 3 (equations (36)–(38)) gives us:

‖pk − pℓk‖2 = ‖pk − pλ‖2 + ‖pℓk − pλ‖2

≥ ‖pm − pλ‖2 + ‖pℓ − pλ‖2 (39)

> ‖(pm − pλ) + (pλ − pℓ)‖2 (40)

= ‖pm − pℓ‖2.
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(39) holds as an equality only if both m and ℓ correspond to one end of an axis of
maximal length. The inequality (40) is strict because m and ℓ are not the end points
of an axis.

Proof of Proposition 5 Suppose the nodes {pk} are symmetric with respect to
L. The reflection of pk through L is given by

pℓk = −pk + 2pλ + 2

〈

pk − pλ,
p0 − pλ

‖p0 − pλ‖2
2

〉

(p0 − pλ), k ∈ K. (41)

Note that this formula holds for all k ∈ K (e.g. ℓ0 = 0), and also for the case where
p0 = pλ. For the moment we assume that γk(N) = γℓk(N). We will show later that
this is implied by profit equalization across links. Multiplying both sides of (41) by
γk and summing over k ∈ K, and using (8), we see that p̂0(N)−pλ = ν(N)(p0 −pλ),
where

ν(N) =

〈

p̂0(N) − pλ,
p0 − pλ

‖p0 − pλ‖2
2

〉

.

Hence p̂0(N) = ν(N)p0 + (1 − ν(N))pλ. Since p̂0(N) is equal to p0 at N = 0 and
converges to pλ as N goes to infinity, we have ν(0) = 1 and ν(∞) = 0. From (9),

p̂k(N) − p̂0(N) =
2

2 +N0k
(pk − p̂0(N)), k 6= 0. (42)

By profit equalization, 2
2+N0k ‖p

k − p̂0(N)‖2 does not depend on k, for k 6= 0, from
which we can deduce that

2 +N0k = (N + 2K)
‖pk − p̂0(N)‖2

∑

ℓ≥1 ‖p
ℓ − p̂0(N)‖2

, k 6= 0. (43)

In particular N0k = N0ℓk , thus verifying that γk = γℓk .
If we provisionally assume that ν(N) is continuous in N , then so is p̂0(N). This

in turn implies that {N0k} is continuous in N , and hence so is {γk}. Therefore ν(N)
is continuous in N , verifying our provisional assumption.

We now establish monotonicity of ν. We argue by contradiction. Suppose
ν is not strictly monotone. Then as N increases, p̂0(N) crosses the same point p̄
on the segment conv({p0, pλ}) more than once, i.e. there is an N ′ and N ′′, with
0 ≤ N ′ < N ′′ <∞ such that p̂0(N ′) = p̂0(N ′′) = p̄. From (42) and (43),

p̂k(N) − p̄ =
2

N + 2K

∑

ℓ≥1 ‖p
ℓ − p̄‖2

‖pk − p̄‖2
(pk − p̄); k 6= 1, N = N ′, N ′′.

Summing both sides over k ≥ 1 we get (using (31):

(K + 1)pλ − p̄−Kp̄ =
2

N + 2K

(

∑

ℓ≥1

‖pℓ − p̄‖2

)

∑

k≥1

pk − p̄

‖pk − p̄‖2
, N = N ′, N ′′.

(44)
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Notice that the LHS does not depend on N . Therefore we have

1

N ′ + 2K

∑

k≥1

pk − p̄

‖pk − p̄‖2

=
1

N ′′ + 2K

∑

k≥1

pk − p̄

‖pk − p̄‖2

,

implying that
∑

k≥1
pk−p̄

‖pk−p̄‖2

= 0. But then p̄ = pλ from (44). So if p̄ 6= pλ, then

N = N ′, a contradiction. This establishes monotonicity.
Now we remove the assumption of symmetry with respect to p0. Define K1 :=

{k ∈ K : ‖p0 − pk‖2 ≥ maxℓ∈K ‖p0 − pℓ‖2} ∪ {0} and pλ
K1

:= 1
|K1|

∑

k∈K1
pk. For the

set of nodes K1, ignoring all other nodes, the previous proof applies with the obvious
changes. In particular, symmetry with respect to L implies symmetry with respect
to L1 := aff({p0, pλ

K1
}) (indeed, L1 = L). Therefore p̂0(N) converges monotonically

to pλ
K1

as N → ∞. Now there will be a smallest N1 > 0 such that ‖p̂k(N1) −
p̂0(N1)‖2 = ‖pℓ − p̂0(N1)‖2 for k ∈ K1 and ℓ 6∈ K1. Define K2 recursively as the
union of K1 with all nodes ℓ 6∈ K1 for which the previous condition applies, and
define pλ

K2
:= 1

|K2|

∑

k∈K2
pk. A modification of the proof above again applies to the

world with nodes in K2 only. It can easily be seen that pλ
Ki

is in the convex hull of
p0 and pλ

Ki−1
. This argument is repeated until the finite Nn for which Kn = K.

Proof of Proposition 6 We have λ0 = 1
1+Kβ0/β

and λk = 1
K+β/β0 . Using the fact

that p0 = pλ, this implies that pλ = 1
K

∑

k≥1 p
k. Therefore pλ is the center of P.

Plugging N0k = N
K

into the γj weights in Lemma 3 we get γ0 = Kβ0+β(K+N)
Kβ0(1+N)+β(K+N)

and γk = β0N
Kβ0(1+N)+β(K+N)

, k 6= 0, so that

p̂0(N) = γ0p0 + γ1Kpλ (45)

which is equal to pλ since p0 = pλ. Using (15),

Φh0(N) =
β + β0

[(1 +N/K)β + β0]2
‖pk − p̂0(N)‖2

2, (46)

from which (19) follows since p̂0(N) = p0. This expression does not depend on k
because the pk’s are equidistant from the center p0 = pλ. The formula for p̂k(N) is
easy to check from (9).

Proof of Proposition 7 When N1k = N
K

, (45) and (46) hold, with node 0 replaced
by node 1. Hence (20) is verified, and

Φh1(N) =
2

β

[

K

N + 2K

]2

‖pk − p̂1(N)‖2
2, (47)

Denoting the coefficient of p1 in (20) by ν(N), we have (suppressing the dependence
of p̂1 and ν on N):

‖pk − p̂1‖2
2 = ‖pk − p1 + (1 − ν)(p1 − pλ)‖2

2

= ‖pk − p1‖2
2 + (1 − ν)2‖p1 − pλ‖2

2 + 2(1 − ν)〈pk − p1, p1 − pλ〉. (48)
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For vectors x, y and z in R
S, we have

‖x− z‖2
2 = ‖x− y + y − z‖2

2

= ‖x− y‖2
2 + ‖y − z‖2

2 + 2〈x− y, y − z〉,

so that
2〈x− y, y − z〉 = ‖x− z‖2

2 − ‖x− y‖2
2 − ‖y − z‖2

2. (49)

Using this to evaluate the inner product in (48), we get

‖pk − p̂1‖2
2 = (1 − ν)2‖p1 − pλ‖2

2 + ν‖pk − p1‖2
2 (50)

The (squared) ratio of the circumradius and the edge length of the simplex P is given
by a standard formula (see Coxeter (1963), p. 292–295):

‖pk − pλ‖2
2

‖pk − pℓ‖2
2

=
K

2(K + 1)
, k, ℓ ∈ K. (51)

In particular, ‖p1 − pλ‖2
2 = K

2(K+1)
‖pk − p1‖2

2. Substituting this, as well as the value

of ν, into (50), we get

‖pk − p̂1(N)‖2
2 =

K[N(N + 4)(K + 1) + 8K]

2[N(K + 1) + 2K]2
‖pk − p1‖2

2 (52)

< ‖pk − p1‖2
2, ∀N > 0, (53)

where the inequality (53) holds because ‖pk − p̂1(N)‖2
2 is strictly decreasing in N

for all N ≥ 0 (this is easily verified from (52)). This also implies, from (47), that
Φh1(N) is strictly decreasing in N . The expression for profits (23) can be obtained
by substituting (52) into (46). The formula for p̂k(N), (21), follows from (9). Using
(21) and (53), we have for N > 0 and ℓ 6= 1:

‖p̂k(N) − p̂1(N)‖2 =
2K

N + 2K
‖pk − p̂1(N)‖2

<
2K

N + 2K
‖pk − p1‖2

=
2K

N + 2K
‖pk − pℓ‖2

= ‖p̂k(N) − p̂ℓ(N)‖2.

Proof of Proposition 8 Statement (i) can be seen as follows. Assume ‖pk−p0‖2 >
‖pℓ − p0‖2. From Proposition 4 we know that N0k > N0ℓ iff ‖pk − p̂0(N)‖2 >
‖pℓ − p̂0(N)‖2. Lemma 3 has shown that p̂0(N) can be made arbitrarily close to p0

by choosing N small enough, from which we can deduce that ‖pk −p0‖2 > ‖pℓ −p0‖2

implies for small N that ‖pk − p̂0(N)‖2 > ‖pℓ − p̂0(N)‖2 as well.
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As to (ii), λ0 large is equivalent to β0 small relative to all other βk, k 6= 0. From
Lemma 3 it follows again that p̂0(N) can be made arbitrarily close to p0 by choosing
β0 small enough, and Proposition 4 (iii) establishes the result.

Now to (iii), so suppose K = {0, 1, 2}. Let x = N01 and y = N02, and define

bk := β0

β0+βk , for k = 1, 2. Using (15), we find that

ϕ01(x, y) =
[1 + (1 − b2)y][(1 + y)µ01 − b1yµ02] + y(1 + y)(b1 + b2 − 2b1b2)µ12

[1 +N + xy(1 − b1b2)]2
,

ϕ02(x, y) =
[1 + (1 − b1)x][(1 + x)µ02 − b2xµ01] + x(1 + x)(b1 + b2 − 2b1b2)µ12

[1 +N + xy(1 − b1b2)]2
.

The equilibrium distribution of arbitrageurs (x, y) is given (ignoring integer con-
straints) by the solution to ϕ01(x, y) = ϕ02(x, y), with x + y = N , a quadratic
equation, provided a real solution exists and is an element of [0, N ]:

x2(1 − b1b2)(µ02 − µ01) + (2x−N)H + (N + 1)(µ02 − µ01) = 0, (54)

where

H := (N + 1)(1 − b2)µ01 + [1 − b1 −Nb1(1 − b2)]µ02 + (N + 1)(b1 + b2 − 2b1b2)µ12.

It can be verified that H > 0 unless µ01 = µ02 = µ12 = 0, in which case H = 0. The
result follows: assume wlg that µ02 > µ01, then (54) implies that 2x − N < 0, i.e.
N01 < N/2 < N02.

Proof of Proposition 9 For the complete architecture, p0 = pλ is the center
of P̂(N) for all N . In particular, it is internal for all N . Moreover β0 ≥ β. By
Proposition 2, no trade occurs with exchange 0 and we can simply ignore it. From
Proposition 3, equilibrium profits for the complete architecture are

Φ(N) = [ν(N)]2 Φ(0)

=
1

2β
[ν(N)]2‖pk − pℓ‖2

2, kℓ ∈ A∗

≤
1

2β
[ν(N)]2

[

‖pk − p0‖2 + ‖pℓ − p0‖2

]2
, kℓ ∈ A∗ (55)

=
2

β
[ν(N)]2‖pk − p0‖2

2 (56)

where (55) follows from the triangle inequality ((55) holds as an equality if and only
if the polytope P is centrally symmetric), and (56) from the centrality of p0.

For the h0-architecture, profits do depend on β0. Consider first the case of β0 = β.
Comparing (56) with (19), and using the appropriate expression for ν(N) from the
proof of Proposition 3 (recall that we are applying this proposition for K, not K+1,
nodes), we see that Φ0(N) > Φ(N) if and only if N ≥ K(K−1) = 2|A∗| for the case
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of the simplex, N > K = 2|A∗| for the centrally symmetric case, and N ≥ K

cos(π
r )

for

the case of the odd polygon with r vertices. In the last case, the condition is most
stringent for r = 3, i.e N ≥ 2K = 2|A∗|.

Now suppose β0 > β. It is immediate from (15) that N0k = N
K

, so that

Φh0(N) =
β + β0

[(

1 + N
K

)

β + β0
]2‖p

k − p0‖2
2

=
K2(β + β0)

[K(β + β0) +Nβ]2
‖pk − p0‖2

2. (57)

Comparing (56) and (57) for the case of the simplex, it suffices to show that, for
sufficiently large N ,

K2(β + β0)

[K(β + β0) +Nβ]2
>

2

β

[

K − 1

N +K − 1

]2

or
[

N +K − 1

K(β + β0) +Nβ

]2

>
2

β(β + β0)

[

K − 1

K

]2

.

This condition is satisfied for large N , since the limit of the LHS as N goes to infinity
is 1

β2 . Cases (ii) and (iii) of Proposition 3 can be dealt with in analogous fashion,
and we leave the details to the reader.

Proof of Proposition 10 For the complete architecture, there is no trade on
node 0 by Proposition 9. We claim the same is true for the h1-architecture. From
(20),

p̂1(N) − pλ =
2(K − 1)

NK + 2(K − 1)
(p1 − pλ). (58)

Since p0 = pλ,

‖p̂1(N) − p0‖2
2 =

[

2(K − 1)

NK + 2(K − 1)

]2

‖p1 − p0‖2
2. (59)

Using (21), (52) and (51), in that order, we have for k /∈ {0, 1}:

‖p̂1(N) − p̂k(N)‖2
2 =

[

2(K − 1)

N + 2(K − 1)

]2

‖p̂1(N) − pk‖2
2

=
2(K − 1)3[NK(N + 4) + 8(K − 1)]

[N + 2(K − 1)]2[NK + 2(K − 1)]2
‖p1 − pk‖2

2

=
4K(K − 1)2[NK(N + 4) + 8(K − 1)]

[N + 2(K − 1)]2[NK + 2(K − 1)]2
‖p1 − p0‖2

2. (60)

It is easy to verify that (59) is strictly less than (60), i.e. node 0 will not see any trade
in the h1-architecture. Therefore, for all computations concerning the complete and
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h1-architectures, we can ignore node 0 and apply our results for these architectures
replacing K by K − 1.

From (23) and (51), and the fact that p0 = pλ,

Φh1(N) =
(K − 1)3[NK(N + 4) + 8(K − 1)]

β[N + 2(K − 1)]2[NK + 2(K − 1)]2
‖pk − p1‖2

2 (61)

=
2K(K − 1)2[NK(N + 4) + 8(K − 1)]

β[N + 2(K − 1)]2[NK + 2(K − 1)]2
‖pk − p0‖2

2. (62)

Comparing (62) with (19), Φh0(N) > Φh1(N) if and only if

K[N + 2(K − 1)]2[NK + 2(K − 1)]2 > (K − 1)2(N + 2K)2[NK(N + 4) + 8(K − 1)].

After some laborious (but straightforward) algebraic manipulations, this condition
can be rewritten as:

1

9

[

4K(K2 − 9)(N3 + 8K) + 3NK(K − 3)(N3 + 20N + 64K) + 144K(N + 1)

+ 12N(7NK2 + 6N + 44K3) +K2(7N4 − 144K3 + 256K2)

+N2K2(5N2 − 36K) + 32NK3(N2 − 8K) +NK2(3N3 − 32K2)
]

> 0,

which is satisfied for K ≥ 3 and N ≥ 2K − 1 (all the bracketed terms are nonnega-
tive).

For the complete architecture, using (14) and (35), with K − 1 instead of K:

Φ(N) =
1

2β

[

K − 1

N +K − 1

]2

‖pk − p1‖2
2.

Comparing with (61), Φh1(N) > Φ(N) if and only if

2(K − 1)[NK(N + 4) + 8(K − 1)]

[N + 2(K − 1)]2[NK + 2(K − 1)]2
>

1

(N +K − 1)2
.

After some tedious algebra it can be shown that this condition is equivalent to (since
K ≥ 3)

N3K − 2N(K − 1)2(K + 3) − 8(K − 1)3 > 0.

It is easy to check that this condition is satisfied if N ≥ 2K − 1. In fact, the weaker
condition N ≥ 2(K − 1) suffices for K ≥ 5.

Proof of Proposition 11 Using (12) and (17):

dk(N) = [ν(N)]2‖pk − pλ‖2
2, k ∈ K, (63)

dk,h0(N) =

[

2K

N + 2K

]2

‖pk − pλ‖2
2, k ∈ K. (64)

44



These equations hold trivially for k = 0 since p̂0 = p0 = pλ. In the complete archi-
tecture there is no activity on node 0 (Proposition 10), while in the h0-architecture
the equilibrium price is equal to p0 for all N due to offsetting trades with the other
nodes (Proposition 6). It is easy to check that

ν(N) <
2K

N + 2K
(65)

in all the three cases studied in Proposition 3 (as in the proof of Proposition 9, we
apply Proposition 3 for K nodes, not K + 1). The result follows.

Proof of Proposition 12 For the complete and h1-architectures, there is no
activity on node 0 (Proposition 10). So we apply our results for these architectures
for K − 1 instead of K. The result for exchange 0 follows as in Proposition 11.

Consider the h1-architecture. From (58),

d1,h1(N) =

[

2(K − 1)

NK + 2(K − 1)

]2

‖p1 − pλ‖2
2. (66)

For k /∈ {0, 1},

p̂k(N) − pλ =
2(K − 1)

N + 2(K − 1)
(pk − pλ) +

N

N + 2(K − 1)
[p̂1(N) − pλ]

=
2(K − 1)

N + 2(K − 1)

[

(pk − pλ) +
N

NK + 2(K − 1)
(p1 − pλ)

]

from (21) and (58). Therefore,

dk,h1(N) =

[

2(K − 1)

N + 2(K − 1)

]2
[

‖pk − pλ‖2
2 +

(

N

NK + 2(K − 1)

)2

‖p1 − pλ‖2
2

+

(

2N

NK + 2(K − 1)

)

〈pk − pλ, p1 − pλ〉

]

, k /∈ {0, 1}. (67)

Using (49) and (51), and the fact that all vertices of P are equidistant from pλ, we
see that 〈pk − pλ, pλ − p1〉 = 1

K−1
‖pk − pλ‖2

2. Substituting into (67), some algebraic
manipulations give us:

dk,h1(N) =
4(K − 1)2

(

[NK + 2(K − 1)]2 −N(N + 4)
)

[N + 2(K − 1)]2[NK + 2(K − 1)]2
‖pk − pλ‖2

2, k /∈ {0, 1}.

(68)
From (63) and (35),

dk(N) =

[

K − 1

N +K − 1

]2

‖pk − pλ‖2
2, k ∈ K. (69)
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The ranking for exchange 1 follows from (64), (66) and (69). Comparing (68)
with (69), we see after some tedious algebra that dk(N) < dk,h1(N) for all N > 0,
since K ≥ 3. Finally, dk,h1(N) < dk,h0(N), for N > 0, follows from (64) and (68).

Monotonicity with respect to N can be deduced from the relevant expressions
(64), (66), (68) and (69).

Proof of Proposition 13 The welfare index of clientéle k ∈ K is given by (24).
Using (12) and (17):

W k(N) =
1

β
[1 − ν(N)]2‖pk − pλ‖2

2, k ∈ K, (70)

W k,h0(N) =
1

β

[

N

N + 2K

]2

‖pk − pλ‖2
2, k ∈ K. (71)

Now the result follows from (65).

Proof of Proposition 14 The result for exchange 0 follows from the correspond-
ing result in Proposition 12. From (20),

W 1,h1(N) =
1

β

[

NK

NK + 2(K − 1)

]2

‖p1 − pλ‖2
2.

For k /∈ {0, 1}, we use (21), (52) and (51), in that order, to get

W k,h1(N) =
1

β

[

N

N + 2(K − 1)

]2

‖pk − p̂1(N)‖2
2 (72)

=
1

β
·
N2(K − 1)[NK(N + 4) + 8(K − 1)]

2[N + 2(K − 1)]2[NK + 2(K − 1)]2
‖pk − p1‖2

2

=
1

β
·

N2K[NK(N + 4) + 8(K − 1)]

[N + 2(K − 1)]2[NK + 2(K − 1)]2
‖pk − pλ‖2

2, k /∈ {0, 1}.

(73)

From (70) and (35),

W k(N) =
1

β

[

N

N +K − 1

]2

‖pk − pλ‖2
2, k ∈ K. (74)

We now compare (71), (73) and (74). It is easy to check W 1,h1(N) > W 1(N) >
W 1,h0(N). A tedious computation also verifies that W k(N) > W k,h1(N) for k /∈
{0, 1}. Also for k /∈ {0, 1}, W k,h1(N) > W k,h0(N) provided

K[NK(N + 4) + 8(K − 1)] ≥ [NK + 2(K − 1)]2,

a condition that is easily verified.
Monotonicity of welfare with respect to N is straightforward to check (for the case

of W k,h1(N) it follows from (72) and the observation made in the proof of Proposition
7 that ‖pk − p̂1(N)‖2

2 is decreasing in N).
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