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Abstract

Sexually-Transmitted Diseases (STDs) constitute a major public health concern. Mathematical
models for the transmission dynamics of STDs indicate that heterogeneity in sexual activity
level allow them to persist even when the typical behavior of the population would not support
endemicity. This insight focuses attention on the distribution of sexual activity level in a pop-
ulation. In this paper, we develop several stochastic process models for the formation of sexual
partnership networks. Using likelihood-based model selection procedures, we assess the fit of
the different models to three large distributions of sexual partner counts: (1) Rakai, Uganda,
(2) Sweden, and (3) the USA. Five of the six single-sex networks were fit best by the negative
binomial model. The American women’s network was best fit by a power-law model, the Yule.
For most networks, several competing models fit approximately equally well. These results sug-
gest three conclusions: (1) no single unitary process clearly underlies the formation of these
sexual networks, (2) behavioral heterogeneity plays an essential role in network structure, (3)
substantial model uncertainty exists for sexual network degree distributions. Behavioral research
focused on the mechanisms of partnership formation will play an essential role in specifying the
best model for empirical degree distributions. We discuss the limitations of inferences from such
data, and the utility of degree-based epidemiological models more generally.



1 Introduction

Sexually-Transmitted Diseases, including HIV/AIDS, constitute a major global public health
concern. UNAIDS estimates that there were 40 million adults and children living with HIV/AIDS
in 2001. In addition to being a major humanitarian calamity, the AIDS pandemic represents
a substantial barrier to economic development in many resource-poor settings throughout the
world.

STDs other than HIV have been labeled a “hidden epidemic” by the National Institute of
Medicine (1), who estimate that the annual economic cost of STDs other than HIV/AIDS in
the United States alone to be $16.4 billion (1). While the prevalence of some of the traditional
bacterial STDs such as Gonorrhea (Neisseria gonorrhoeae) and Syphilis (Treponema pallidum)
have undergone steady decline over the last twenty years, others, such as Chlamydia (Chlamy-
dia trachomatis) have increased in prevalence (2). Furthermore, some STDs on the verge of
elimination have made dramatic reversals, re-establishing themselves as endemic infections (3).

Non-fatal viral STDs have extremely high prevalence globally and may be a significant co-
factor in HIV infection. Genital herpes has a prevalence of up to 22% in the general population
of the United States, (4) and can reach as high as 60% prevalent in some developing countries
(5).

In addition to the morbidity caused by STDs themselves, the persistence of endemic bacterial
STDs raises concerns for emerging infections and the evolution of anti-microbial resistance.
Antibiotic-resistant strains of STD microbes pose a significant emerging health risk (1). For
example, penicillinase-producing Neisseria gonorrhoeae (PPNG) and chromosomally mediated
penicillin- and tetracycline-resistant Neisseria gonorrhoeae (CMRNG) have led to these drugs
being abandoned. Furthermore, fluoroquinolone resistance is becoming increasingly common in
both the developing and developed world, leaving dangerously few therapeutic options for the
treatment of once curable diseases (6; 7; 8; 9). The maintenance of an endemic infection in which
selection is able to favor resistant strains of microbes is a great concern for emerging infections
generally because of the unusual mechanisms of selection in prokaryotes (10).

The control and eventual eradication of STDs is an important public health goal. Both
mathematical and statistical models of infectious disease processes have proven to be invaluable
tools for infectious disease epidemiology (11; 12). However, developing useful models for STDs
presents a number of challenges. Prominent among these is characterizing population hetero-
geneity in sexual behavior. The average behavior of most populations is not sufficient either to
allow an epidemic or maintain an endemic STD infection. Mathematical formalizations of STD
infection dynamics indicate that heterogeneity in sexual behavior allows STDs, which would
otherwise fade out given average behavior, to persist (13; 14; 15). The importance of behavioral
heterogeneity has focused attention on the properties of the distribution of sexual partner num-
ber. In this paper, we will present an analysis of the statistical properties of empirical sexual
partnership distributions. These distributions play a key role in the mathematical theory of
STD transmission, and may hold the key to their control (16; 17).
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1.1 Mathematical Epidemiology of STDs

In the standard theory of infectious disease transmission dynamics, (18; 14) the force of infection
is an increasing function of the size of the population, and populations will exhibit threshold sizes
below which an epidemic is impossible. These behaviors are a consequence of the traditional
assumption of mass action. However, Anderson and colleagues (14) note that there is no reason
to assume that the number of intimate contacts will increase with increasing population size.

In addition to threshold population sizes for epidemics, the dynamics of an epidemic are gov-
erned by a threshold parameter, R0, the basic reproductive number. R0 represents the expected
number of secondary cases produced by a single index case in a population of susceptibles. In the
case of an unstructured population, R0 is simply the product of three quantities: (1) the trans-
missibility of the pathogen, (2) the duration of infectiousness, and (3) the contact rate between
susceptible and infectious individuals. For more complexly structured models, the calculation of
R0 can be generalized in a fairly straightforward manner (19), though the interpretation becomes
more difficult.

Given the relatively few sexual contacts the typical person has, it was perplexing that STDs
could remain endemic in a population. Epidemiological insights into the frequent re-infection of
the same group of people with curable bacterial STDs led to the formulation of the core-group
concept in STD epidemiology. (13) While the value of the basic reproduction number is below
threshold for the majority of the population, it exceeds threshold for the core, where the infection
can persist and occasionally infect people outside of the core. This concept is analogous to the
“rescue effect” in metapopulation biology, whereby a global population remains viable through
the net growth and subsequent dispersal of the population in a few “source” local populations
(20).

For non-curable STDs such as HIV, the core-group concept as developed by Hethcote and
Yorke (13) does not strictly apply since there is no role for re-infection. However, behavioral
heterogeneity still clearly plays an important role in the transmission dynamics.

Behavioral heterogeneity has been incorporated into the formulation of R0 by Anderson and
colleagues (21). Assuming random mixing with respect to the degree distribution in a population
structured by sexual activity, they show that R0 increases linearly with the variance of the degree
distribution of the population sexual contact graph.

Since surveys of sexual behavior reveal that the great majority of people have one partner
or fewer in the last year, (22; 23) the driving factor for STDs is clearly the tail of the degree
distribution, and this is where the emphasis for inference typically focuses (24; 25).

1.2 Social Networks

By definition, socially communicable diseases are transmitted from person to person. An intu-
itive and mathematically convenient means of representing social contacts is a graph (26). The
nodes of the graph represent individual people and the edges represent contact. The number
of edges adjacent to a particular node is its degree, and the collection of nodal degrees is the
degree distribution of the population.

Graph-theoretic network models have been used to describe a wide variety of relational data
including friendship networks among children, scientific collaboration networks, (27) social and
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economic exchange networks, and, more recently, contact networks for the spread of infectious
disease (28).

1.2.1 Models for Degree Distributions

Empirical degree distributions for sexual partnership networks are highly skewed (15). The
modal yearly degree is k = 1 for nearly all large representative surveys (e.g., 22; 23; 29; 30; 31)
The tremendous skew of sexual degree distributions has, through analogy to a variety of physical
systems, suggested the possibility of power-law scaling (32). Networks exhibiting power-law
scaling have been referred to as “scale-free” networks in (33) and subsequent publications. This
attribution is associated with properties of the implicit underlying stochastic mechanism, and
is often used loosely.

Let K be the degree of a randomly sampled person from the population. Recent empirical
work (33; 25) has claimed that some sexual network degree distributions have a probability mass
function (PMF) for network degree of the form, P (K = k) ≈ k−ρ, k >> 1, where P (K = k) is
the probability of observing exact degree k and ρ is referred to as a scaling parameter. Let f
and g be two functions with support the whole numbers. We take f(k) � g(k) to mean that
there exist constants c1, c2 such that 0 ≤ c1 < f(k)/g(k) ≤ c2 < ∞ for k = 1, . . .. We then say
that P (K = k) has power-law behavior if P (K = k) � k−ρ.

Inference on the scaling parameter ρ of a power-law model typically involves fitting a regres-
sion line through the apparently linear region of a plot of the survival function of the degree
distribution plotted against the distribution on double logarithmic axes (33; 25). The measure-
ment of uncertainty is then taken as the standard error of the estimated slope. This methodology
is inappropriate for the inference problem, yielding (1) biased estimates of the scaling parameter,
and (2) greatly underestimated model uncertainty (15).

Even for very large surveys (such as NHSLS in the USA (22)), the number of observations
in the tail of the distribution is very small. The information contained in the tail of a degree
distribution is therefore low. Consequently, the precision of inferences on the tail is extremely
low.

The degree distribution, of course, was generated by the behavior of the individual actors.
The distribution at any time point is probably best thought of as representing a dynamic equi-
librium of underlying social and epidemiological processes, rather than simply a static pattern
of sexual behavior (34). Specifying a plausible stochastic process by which the observed data
can have been generated provides a better strategy for investigating the properties of sexual
networks than considering mathematical distributions with weak proximate mechanisms. The
equilibria of stochastic models of network formation can be fit to empirical data using likelihood
techniques, allowing both the estimation of parameters and the assessment of goodness-of-fit to
the data.

1.3 Stochastic Models for Network Formation

We will discuss three general classes of stochastic process model for sexual network formation:
(1) nonhomogenous Poisson, (2) preferential attachment, and (3) “vetting” models.
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Non-homogeneous Poisson models Consider the population of individuals with at least
one partner in a given time period. Suppose that the number of additional partners K − 1 that
the person has in the time period follows a Poisson distribution with expected value λ. There are
many proximate mechanisms for this (for example, the partners are accumulated at a constant
rate in time).

The assumption that all individuals have identical propensities to form partnerships is unre-
alistic. Individuals differ by gender, age, marital status, attractiveness, and other fundamental
characteristics that greatly influence partnership formation. To model within-population het-
erogeneity, we can represent the individual expected values λ as independent draws from a
distribution P (λ).

There are myriad reasonable models for P (λ). One flexible choice is the Gamma distribution.
A Poisson distribution with Gamma-distributed rate parameter λ is a classical hierarchical
model, with marginal distribution of negative binomial (35). Suppose that P (λ) is a Gamma
distribution with mean µ and standard deviation τ. Let λi+1 be the expected number of partners
for person i. The model can be written:

K = k|λi ∼ Poisson(λi) + 1 (1)
λi ∼ Gamma(mean = µ, s.d. = τ) (2)

or more formally,

P (K = k|λi) =
e−λiλk−1

i

Γ(k)
(3)

P (λi) =
e−λi/β(λi/β)α−1

βΓ(α)
λi > 0 (4)

where α = µ2/τ2 and β = τ2/µ, so that P (K = k) =
∫∞
0 P (K = k|λ)P (λ)dλ k = 1, . . . is a

negative binomial distribution shifted to k = 1, 2, . . . . We call the resulting partner distribution
the shifted negative binomial distribution. The shifted negative binomial distribution can have
quite a long left tail. Nonetheless, the variance is finite. The negative binomial distribution is
flexible enough to model a variety of shapes of degree distributions and is widely used in ecology
and epidemiology (36; 37).

Preferential attachment models In preferential attachment models, the probability that a
contact is made with any particular individual is a function of that individual’s current degree.
Two models for preferential attachment are (1) the Yule distribution (38; 15) and (2) the Waring
distribution (39).

The underlying stochastic model motivating the partnership distributions under the Yule
begins with a network of r connections. Assume that (1) there is a constant probability (ρ −
2)/(ρ − 1) that the r + 1st partnership in the population will be initiated from a randomly
chosen person to a previously sexually inactive person, and (2) otherwise the probability that
the r + 1st partnership will be to a person with exactly k partners is proportional to kf(k|r),
where f(k|r) is the frequency of nodes with exactly k connections out of the r total links in
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the population. Simon (38) called the limiting partnership distribution of this process the Yule
distribution, following the pioneering work of Yule (40).

Often a measure of passing time is associated with the growth model. In some variants a
partnership is associated with each time increment, and in others a person is associated with
each time increment. However these formulations are equivalent in their essential representation
of the network.

This stochastic process has been rediscovered, apparently without awareness, by several
research groups (41; 42; 43) and been used to characterize Internet growth. The special case
with ρ = 3 has been proposed by (41). The stochastic process underlying the Yule distribution
has been used by(41; 42) to characterize Internet growth. It is also implicit in the analysis of
the scaling properties of sexual contact networks (25). It has been described as the “rich get
richer” model, as people in the network with many partners tend to accumulate partners faster
than those with less. The resulting distribution under this model has the desired property that
most people have very few partners, while a very few have many sexual partners. The PMF of
the Yule distribution (35) is:

P (K = k) =
(ρ− 1)Γ(k)Γ(ρ)

Γ(k + ρ)
, k = 1, 2, . . . (5)

where Γ(ρ) is the Gamma function of ρ. The Yule distribution has power-law behavior as
P (K = k) � k−ρ.

The Waring distribution is a natural generalization of the Yule proposed by Irwin. (39)
The motivating stochastic process is identical to that of Simon, with the exception that the
probability that the r + 1st partnership in the population will be initiated from a randomly
chosen person to a previously sexually inactive person is ρ−2

ρ+α−1 . This model allows for the
probability of non-preferential partnerships to be a separate parameter from that governing the
preferential process. The limiting distribution is given by

P (K = k) =
(ρ− 1)Γ(ρ + α)

Γ(α + 1)
· Γ(k + α)
Γ(k + α + ρ)

, α > −1. (6)

The Waring distribution has apparently been derived independently by (44) in the context
of modeling growth of the Internet.

Vetting models The general idea underlying the vetting models is that people form sexual
partnerships based on a two-stage process. First, they generate an acquaintance list from which
they, second, choose their sexual partners. This class of model is extremely flexible in that
practically any probability distribution can be specified for both of these processes. This process
focuses attention on the stopping rules that people employ when forming sexual partnerships.

The Yule-vetting models are generalizations of the Yule distribution that recognize that the
formation of sexual partnerships is not cost-less. Suppose that sexual partners are chosen from
a pool of acquaintances. First, individuals form a random number A acquaintances from a
PMF P (A = a). In many situations the process of acquaintance formation may be a relatively
cost-less process and P (A = a) may have power-law behavior. This process may represent
social networking, geographic, or other processes. Second, suppose the potential number L of
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sex partners an individual has in the time period follows a distribution that is typically short-
tailed. For example, it could be a geometric or negative binomial distribution. There are many
proximate mechanisms for this (e.g., the partners are from a queue with constant rate). However
the actual number of partners K is bounded by the number of acquaintances the person has, in
the sense that it can not exceed that number: K = min(A,L). The distribution of the number
of partners is then:

P (K = k) =
∞∑

a=1

P (K = k|A = a)P (A = a) = P (A = k)P (L > k)+P (A ≥ k)P (L = k) k = 1, 2, . . .

(7)
This will resemble P (L = k) (e.g., short-tailed) when L is stochastically much smaller than

A. It will resemble P (A = a) when L is stochastically much larger than A. These two situations
correspond to relatively large and small acquaintance networks, respectively.

As before, the assumption that all individuals have identical propensities to form sex part-
nerships is unrealistic due to the individual characteristics such as gender, age, marital status,
attractiveness. We can model this within-population heterogeneity, by independently drawing
the individual expected values from a distribution P (λ).

If P (λ) is a Gamma distribution with mean µ and scale parameter τ , and that the acquain-
tance distribution is Yule with scale parameter ρ, then the potential partnership distribution is
negative binomial and we call the resulting partner distribution the negative binomial Yule dis-
tribution. These potential partnership distributions have an alternative interpretation. Suppose
an individual chooses partners from their acquaintances and each independently satisfy some
criterion with a fixed probability. Then each individual chooses partners until they meet a quota
of people at satisfy this criterion. An example of this would be people looking for a number of
long-term partners among many casual partners. Many other interpretations are possible and
interesting with context.

A simple member of this class has τ = 1 so that the heterogeneity distribution is exponential.
In this case the potential partnership distribution is geometric and the distribution is called the
geometric Yule distribution. This model has a nice interpretation as people looking for a single
long-term partner among many casual partners.

The negative binomial Yule has as special limiting cases the Yule and Shifted Negative
binomial distributions. Furthermore, in the intermediate ranges, it can be shown that

P (K = k) � e−k/κk−α k = 1, 2, . . . (8)

where κ = 1/ log(1 + 1/τµ). The right-hand-side of this equation represents a model that
has been considered by various authors and for a variety of networks. (45; 33) Newman has
argued this model applies to scientific collaboration networks (27), and has named the distri-
bution the truncated power law. It is unclear if the Power-Exponential model has a stochastic
mechanism that motivates its exact mathematical form. However it can be motivated as an ad
hoc approximation to the geometric Yule distribution which does have a reasonable stochastic
process underlying it.

A distribution that may prove useful for generating long-tailed acquaintance lists is the
discrete Pareto distribution (35). Similarly, the acquaintance list distribution can be modeled
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as Yule, Waring, or negative binomial.
Vetting models represent many other degree distributions as special cases. On particular case

of interest lies in the intermediate parameter range of models with power-law list generators in
which it can be shown that P (K = k) � e−k/κk−α, where κ = 1/ log(1 + 1/τµ). This is the
power-exponential distribution used by Newman (27) to model scientific collaboration networks
and is frequently referred to as the truncated power law model.

Discrete Pareto Linguists have long been interested in the frequency of words in large se-
quences of text. They proposed an underlying the stochastic mechanism called the Zipf-Estroup
law (46; 47) analogous to that of Simon. This results in a power-law model for K the number
of times a word appears in the text (35):

P (K = k) =
1

ζ(ρ)kρ
, k = 1, 2, . . . (9)

where ζ(ρ), the Riemann zeta function of ρ. This is often referred to as the discrete Pareto
distribution in analogy to the continuous version (which has been used as a model for degree
distribution in (24)). It is also referred to as the (Riemann) zeta distribution. Two examples of
this distribution are Zipf’s law (ρ = 1) relating the relative frequency of words in a text to their
rank, and Lotka’s law (ρ = 2) for the number of authors making contributions.

For the same expected value, the discrete Pareto distribution will initially decay more rapidly
than the Geometric, negative binomial or Yule, but then more slowly in the tail (35). The
implication of this is that a negative binomial or Yule degree distribution contaminated with
extreme outliers could mimic a discrete Pareto distribution.

The discrete Pareto distribution lacks a plausible stochastic mechanism for network for-
mation, which limits its appeal as a model of sexual contact networks. While this lack of a
motivating stochastic mechanism constrains the utility of the discrete Pareto distribution as a
model for sexual networks, it can nonetheless be used as an acquaintance-list generator in a
vetting model.

1.4 Differential Tail Behavior

It is probable that the behavior that governs the acquisition (and maintenance) of the first sexual
partner a person has in a given time interval will differ from the process leading to the acquisition
of further partners. For example, the process leading to the choice of marriage partner is likely
to differ from the process leading to the extra-marital affairs (48).

To account for the possibility of substantial differences between the process at low and
high network degree, we allowed for the inclusion of extra parameters to fit the low-degree
observations (e.g., k = 1, 2). We evaluated the improvement of fit effected by the inclusion
of such parameters in the model selection stage (see section 2.2.1). Network data collected on
sexual activity of ever-active people for a relatively short interval, such as a single year, are
likely to contain a fraction of people for whom k = 0. While it is traditional to discard these
values before performing inference on the scaling behavior of the degree distribution (33; 25),
the number of zeros in a population holds a tremendous amount of information about both the
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distribution and the process that generated it. All models that we fit contain a parameter for
the frequency of degree k = 0.

2 Methods

2.1 Data

There are a variety of forms of network data (49). Local network data result from collecting
information on the number and attributes of a focal individual’s sexual partners ascertained
using an epidemiological/sociological survey instrument. For our analysis, we use local network
data gathered from men and women as a part of three large, representative surveys of sexual
behavior. For all surveys, we used the reported number of sexual partners in the last year as
the estimate of individual network degree.

Rakai Project Sexual Network Survey The Rakai district is an administrative unit of
southern Uganda with a mature AIDS epidemic and an HIV/AIDS prevalence of approximately
16%. As with all of Sub-Saharan Africa, the primary mode of HIV transmission in Rakai is
believed to be heterosexual. Data were collected as part of a large international collaborative
research project.

Sex in Sweden Data from Sweden come from the 1996 “Sex in Sweden” survey based on a
nationwide probability sample and financed by the Swedish National Board of Health (23).

National Health and Social Life Survey Data from the United States comes from the
National Health and Social Life Survey (NHSLS) (22). NHSLS was a national probability
sample of the sexual behavior of Americans. Sexual partner count was ascertained by two
different techniques for the NHSLS. First, respondents were asked to indicate the number of
sexual partners they had had in the last year (and in their lives) in face-to-face interviews.
Second, respondents were asked the same questions on a written instrument in which partner
numbers were binned into categories of k = {0, 1, 2− 5, 5− 10, 10− 20, 20− 100}.

There is considerable evidence that the latter method generally yields more reliable results
(22; 23). We therefore use the responses to the written question for our model estimation. This
introduces some complications to the likelihood function which are nonetheless easily handled
(see below).

Neither Sweden nor the United States is characterized by a generalized HIV/AIDS epidemic
with national prevalence for both countries less than 1%. Table 1 presents summary statistics
for the three studies.

2.2 Statistical Inference

We adopt a likelihood framework to estimate the model parameters and compare the different
models against each other. The likelihood framework provides a set of powerful tools for infer-
ence. The method of maximum likelihood estimation has been traditionally regarded as optimal
based on asymptotic arguments (50). For most models the MLE is approximately normally
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distributed (35) and for small sample sizes the uncertainty of the MLE can be quantified by the
bootstrap (51). Here, we employ bootstrap methods to quantify the small sample properties of
the MLEs and calculate confidence intervals.

Like any sample from a population, the samples obtained in the sexual surveys we analyze
here are imperfect representations of their populations. Errors accrue due to sampling frame
mis-specification, informant mis-report and non-response (52; 53; 54). Likelihood methods enjoy
the tremendous advantage that the sampling design is “ignorable” for many standard (and non-
standard) designs under the likelihood framework (55). That is, the likelihood only depends on
data in the sample, and not on unknown missing data.

Consider fitting a PMF Pθ(K = k) to survey information where θ is the (possibly vector)
parameter. For example, for the Yule model the parameter is ρ, the scaling exponent. Given a
random sample of n individuals with reported degrees K1, . . . ,Kn the logarithm of the likelihood
of the model is

L(θ|K1 = k1, . . . ,Kn = kn) ≡
n∑

m=1

log(Pθ(K = km)). (10)

A maximum likelihood estimator (MLE) for θ is a value θ̂ that maximizes
L(θ|K1, . . . ,Kn) as a function of θ.

Since our models allow for the decoupling of the behavior of the majority of observations
and that of the tail, the complete data likelihood will be somewhat more complicated than a
standard likelihood. (56) Define kmin as the degree above which the parametric model (e.g.,
the Yule) is fit and denote P (K = k) = πk for k ≤ kmin. By the law of total probability, the
probability of observing degree k is:

P (K = k) = P (K = k, k > kmin) + P (K = k, k ≤ kmin) (11)
= P (K = k|K > kmin)P (K > kmin)I(k > kmin) + πkI(k ≤ kmin), (12)

= P (K = k|K > kmin)(1−
kmin∑
m=0

πm)I(k > kmin) + πkI(k ≤ kmin),

where I is the indicator function.
Given n total observations with observed frequencies n0, n1, . . . on network degree k =

0, 1, . . ., the log-likelihood of the data is

L(π, θ|K1 = k1, . . . ,Kn = kn) =
kmin∑
m=0

nm log(πm) +
(

n−
kmin∑
m=0

nm

)
log

(
1−

kmin∑
m=0

πm

)
+ (13)

+
∞∑

m=kmin+1

nm log
(

P (K = m|K > kmin)
)

.

The last term is the contribution to the likelihood of the observed values given that they
are in the tail of the distribution. ¿From the form of (14) the observed values in the tail are
sufficient for the parameter θ. Similarly, the MLEs of πm are given by the sample proportions,
π̂m = nm/n, m = 0, 1, . . . , kmin (see Appendix A).
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Special care was needed in calculating the likelihood for the NHSLS data, because the data
on sexual partner count were grouped. We employed a mixed parametric likelihood approach
to the problem (56). The full data likelihood for NHSLS is presented in the Appendix.

2.2.1 Model Selection

The different models we consider have different numbers of parameters. In general, a model with
more parameters may be expected to fit data better than a model with few parameters. The
likelihood L provides a measure of the goodness-of-fit of a model to the data that does not adjust
for the complexity of the model. If the models are nested, in the sense that they form a sequence
with each model being a subset of a previous more complex one, then likelihood ratio tests can
be used. Many solutions have been proposed for non-nested situations, such as we are faced with
here. We adopt two different approaches: (1) the Akaike Information Criterion (AIC) (57; 58; 59)
and (2) the Bayesian Information Criterion (BIC) (60). For a simple random sample of n people
with data K1, . . . ,Kn, the AIC is defined as AIC = −2L(θ̂|K1 = k1, . . . ,Kn = kn) + 2d, and
BIC = −2L(θ̂|K1 = k1, . . . ,Kn = kn) + log(n)d.

A model is judged better than another model if it has a smaller AIC (or BIC) value. Both
AIC and BIC have solid theoretical foundations: Kullback-Leibler distance in information theory
(for AIC), and integrated likelihood in Bayesian theory (for BIC). The BIC approach has the
benefit of incorporating model uncertainty and sample size into the decision. The AIC has the
advantage of efficiency. That is, for large sample size, it is the best approximation to the “true”
model (58). If the complexity of the true model does not increase with the size of the data set,
the BIC is usually preferred, otherwise AIC is preferred. However, both criteria should be used
for guidance and not used to unilaterally exclude models solely based on ranking.

3 Results

The results of the model fits are presented in table 2. We have listed the five best-fitting models,
by AIC. Four out of the six networks were best fit by the shifted negative binomial model and
one was best fit by the special case of the negative binomial, the geometric. For all networks but
one, the best-fitting model had low kmin (i.e., 1 or 2), whereas for the Ugandand men, kmin = 4.

For all the networks but one, the top five best-fitting models had similar values of the
likelihood (AIC/BIC). However, for the American men’s network, the negative binomial model
fit dramatically better than the next best model.

For all networks in which a power-law model (i.e., Yule, Waring) appeared, the value of the
scaling parameter ρ > 3, indicating that all networks were characterized by finite variance (15).

4 Discussion

A wide range of potential models for the degree distributions exist and empirical data are often
limited. Frequently, many models will fit the empirical information approximately equally well,
at least superficially. Thus sophisticated statistical methodology should be used to assess the
quality of the fit of proposed models, and the plausibility of stochastic mechanisms underlying the
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model must be weighed. M. Kendall emphasized this point in his 1960 inaugural address to the
Royal Statistical Society (34). Kendall argued that for statistical modeling in the social sciences
to mature as a scientific discipline, it must move beyond simple curve fitting exercises and into
tests of process models. While revealing regular patterns in social systems is an important
first step in scientific understanding, their existence does not entail a causal mechanism. Since
the observed patterns in the social world were generated by the behavior of individual actors,
specifying plausible, testable stochastic processes by which larger patterns emerge is essential
in the scientific understanding of social phenomena. Unfortunately, this message has often been
lost in the passage of time and the segmentation of scientific enterprise.

Our results indicate that no unitary stochastic process easily explains the formation of sexual
networks in the populations we have examined. It has been suggested that sexual networks
may display power-law behavior (25; 61). While some of the power-law models appear to fit
the women’s networks, both the men’s and women’s networks were generally better fit by the
negative binomial and variants. Preferential attachment is one stochastic mechanism for the
evolution of networks characterized by power-law degree distributions (42; 62) Lloyd and May
(32) suggested that such processes might be relevant for human sexual contact networks and this
hypothesis found putative empirical support by (25) in the Swedish sexual networks analyzed
in this paper. We found the support for preferential attachment to be mixed overall. While a
preferential attachment model (i.e., Yule, Waring) fell into the top five best-fitting models for all
networks but the American and Swedish men, it was the top model only in the case of American
women.

Despite their appealing stochastic mechanism, the vetting models performed poorly relative
to the simpler models.

The Importance of Heterogeneity The stochastic mechanism most clearly supported by
the model selection procedure was individual heterogeneity in the propensity for forming part-
nerships. This is reflected in the negative binomial fitting best for five of the six networks, and
in the magnitude of the likelihood criteria supporting this model for the American men.

One interpretation for such a model is that each individual person has a constant hazard of
forming a new sexual partnership, but that this hazard varies from individual to individual. For
the great majority of people, this hazard is very low.

Limitations of Exclusively Degree-Based Models Research on social networks with ap-
plication to epidemiology has focused on degree distribution as the primary property of interest
(28; 45; 25). This is a natural starting point, both because of the theoretical focus on hetero-
geneity in sexual activity (21; 63) and the relative availability of local network data. However,
there are other features of sexual networks which have a bearing on epidemic processes. Two
such features that have received a great deal of attention recently are clustering and minimum
path length, the determinants of the so-called “small world” network effect. Small-world net-
works can arise from power-law models of the degree distribution (33). Small world graphs tend
to have larger final epidemic sizes than other sparse networks because of their relatively high
connectedness (28).

Nodal attributes, such as gender, ethnicity or marital status, are also of fundamental im-
portance for the formation of networks (16). The probability that an actor will form a sexual
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contact with an alter is a function of both the actor’s and the alter’s nodal attributes, sepa-
rately from their degree (64). Differential selectivity in interaction is not easily accommodated
in standard degree-based epidemic theory. The standard model of heterogeneity (14) assumes
random mixing conditional on activity class. More recent formal treatments, which expressly
deal with network structure, deploy similar assumptions (45).

In addition to the nodal attributes, other network properties, which are not necessarily re-
lated to degree, play a fundamental role in epidemics on networks. One property of particular
importance is concurrency. Concurrency denotes the propensity to form simultaneous part-
nerships (65). In both simulation (65; 66) and empirical studies, (67) concurrency has been
demonstrated to have significant effects on STD epidemics independent of the number of sexual
partnerships.

An alternative to strictly degree-based network models that can accommodate all these fea-
tures are the Exponential Random Graph Models (ERGMs), also known as p∗ models (68).
While the specification of such models presents a host of technical challenges, recent advance-
ments in statistical computing have put them within reach. Specifically, Markov-Chain Monte
Carlo (MCMC) simulation provides a means both for routinely calculating the likelihoods of
large ERGMs and simulation networks with given nodal and structural characteristics. Recent
work into the properties of MCMC solutions to ERGM models promises to overcome some of
the traditional difficulties in calculating likelihood estimates (69).

Limitations Inference about the properties of the sexual network degree distribution is limited
by data quality. There are three problematic features of available network data: (1) potentially
sizable sampling errors associated with sexual history surveys (70), (2) data coarsening (partic-
ularly for NHSLS), (3) censoring of very high degree individuals due to AIDS mortality (King
Holmes, personal communication).

While these factors all limit our ability to infer network properties, they are certainly not
unique to the likelihood-based procedures we have employed. The likelihood framework, in fact,
can deal with issues associated with measurement error and bias more effectively than previous
methods used in this context (15). However, the intrinsic data limitations warrant caution for
the interpretation of stochastic models. Any stochastic model will be a caricature of reality,
and it is the modeler’s responsibility to decide to what degree of precision a useful model must
conform.

A potentially greater problem for scientific progress in this field is the dearth of behavioral
data on how sexual partnership networks are formed. In their critique of the common practice
of using observational data to simultaneously choose a model and estimate its parameters,
Burnham and Anderson (58) note that the scientific work in multi-model inference lies in the
development of a priori mechanistic models. These models can be derived either empirically or
deductively from theory. In developing alternative models for this paper, we have attempted
to specify plausible behavioral mechanisms by which networks form, allowing us to confront
existing models (e.g., 25) with alternatives. Progress on this front is clearly predicated on
careful behavioral work such as that of Gorbach and colleagues on the formation of concurrent
sexual partnerships (71).

Table 2 reveals substantial model uncertainty. Different models yield similar AIC values for
the same data. This result suggests two important features of the inference for sexual networks.
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First, it highlights the need both for models based on plausible stochastic processes and for
behavioral data to allow us to distinguish models based on mechanism. Second, it indicates
that model uncertainty should be accounted for when attempting to make predictions regarding
the behavior of sexual networks or epidemics thereupon. This uncertainty can be dealt with
through, for example, Bayesian model averaging (72).

Conclusion The results we have presented here indicate that a general behavioral model for
the formation of human sexual contact networks is still lacking. Preferential attachment is one
model that has been previously suggested, and the assumptions of preferential attachment have
been incorporated into subsequent work. However, this mechanism does not perform especially
well when confronted with alternative models. We suggest that incorporating actor heterogene-
ity and dependence is essential for future network models in epidemiology. Furthermore, if we
are to move beyond ad hoc curve fits of network degree distributions and make real progress
in understanding the stochastic mechanisms which generate empirical networks, two points are
essential: (1) we must recognize that there is much more to sexual networks than degree dis-
tributions, and (2) collaboration between network modelers, epidemiologists, and behavioral
scientists is essential.
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Appendices

A Maximum likelihood estimator for πm

Equation 14 presents the full data log-likelihood for the models we use. Here we verify that the
maximum likelihood estimator π̂m is simply the sample proportion of m, nm/n.

The maximum likelihood estimator is given by,

∂L(π, θ|K1 = k1, . . . ,Kn = kn)
∂πk

=
nk

πk
− n−

∑kmin
m=0 nm

1−
∑kmin

m=0 πm

,

which is zero, only if π̂m = nm
n ∀ m = 0, ... This partial is not defined for πk = 0 or

∑kmin
m=0 πm = 1.

However in these special cases the likelihood is maximized (with probability 1) by the sample
proportions.
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The Hessian matrix of equation 14,[
∂2L(π, θ|K1 = k1, . . . ,Kn = kn)

∂πk∂πj

]
,

is negative definite indicating that the MLE is the unique global maximum.

B Likelihood for NHSLS data

The NHSLS data for annual sexual partner count were binned into categories
k = {0, 1, 2− 5, 6− 10, 11− 20, 21− 100}. Suppose the observations C are a categories {1, . . . , C}.
The probability of an observation in category c with inclusive range [lc, uc] is

Pθ(C = c) = Pθ(lc ≤ K ≤ uc) =
uc∑

m=lc

P (K = m)

where Pθ(K = m) is the log-likelihood. The exact observation of the degree is the special case
where the categories correspond to a single degree.

Suppose we observe categories C1 = c1, . . . , Cn = cn. The full data likelihood for the grouped
NHSLS data is then

L(θ|C1 = c1, . . . , Cn = cn) =
n∑

m=1

log(Pθ(C = cm)).
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Survey sex n mean variance HIV prevalence
Rakai women 803 0.89 0.27 16%

men 621 1.28 1.23
Sweden women 1335 1.01 0.88 0.08%

men 1476 1.27 2.19
USA women 1919 1.09 0.69 0.6%

men 1506 1.41 1.42

Table 1: Descriptive statistics for the three sexual history surveys. Means and variances are for
the number of reported sexual partners in the last year. HIV Prevalence data are for the year
2000 and come from (73) for Rakai and UNAIDS country fact sheets for Sweden and the United
States.
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population sex model kmin d L AIC BIC ρ/mean scale/s.d.
Uganda F nb 2 4 -525.17 1058.35 1077.10 0.27 1.90

yule 3 4 -525.32 1058.64 1077.39 3.68 NA
geo 3 4 -525.45 1058.91 1077.66 2.67 2.67
nb 3 5 -524.89 1059.79 1083.23 1.88 0.11
tpl 3 5 -525.28 1060.57 1084.01 2.59 14.84

M geo 4 5 -781.10 1573.10 1595.26 2.72 2.72
zero-nb 4 6 -780.90 1573.80 1600.38 6.29 0.93

tpl 4 6 -781.02 1574.03 1600.62 4.54 0.88
nb 4 6 -781.22 1574.44 1601.03 3.58 0.52

yule 2 3 -784.25 1574.50 1587.79 5.43 NA
Sweden F nb 1 3 -1068.45 2142.90 2158.27 0.38 3.62

yule 2 3 -1068.64 2143.27 2158.64 4.23 NA
waring 2 4 -1067.95 2143.91 2164.39 6.53 1.87

g-y 2 4 1068.16 2144.31 2164.80 2.89 4.62
yule 3 4 -1068.17 2144.33 2164.82 4.68 NA

M nb 1 3 -1509.17 3024.34 3040.07 0.66 2.47
g-y 2 4 -1508.21 3024.43 3045.39 2.47 7.35
tpl 2 4 -1508.22 3024.44 3045.41 1.82 6.75

nb-y 1 4 -1508.27 3024.55 3045.51 1.51 1.23
nb-y0 1 4 -1508.37 3024.55 3045.51 1.51 1.23

USA F yule 2 3 -1600.74 3207.48 3224.03 3.84 NA
waring 1 3 -1601.34 3208.67 3225.23 3.11 -0.68

tpl 4 6 -1598.64 3209.27 3242.38 33.07 0.14
pois 4 5 -1599.69 3209.39 3236.98 0.69 NA
yule 3 4 -1600.71 3209.42 3231.49 3.91 NA

M nb 1 3 -1599.14 3204.28 3220.08 0.78 0.26
nb 2 4 -1605.31 3218.63 3239.70 1.43 1.75

geo 2 3 -1608.33 3222.66 3238.46 1.39 1.39
nb 3 5 -1606.58 3223.15 3249.49 1.65 2.09
nb 4 6 -1607.11 3226.21 3257.81 1.95 2.67

Table 2: Top five best fitting models for each network ordered by the value of the AIC. kmin

is the cutoff, d is the number of parameters of the model, logL is the log-likelihood of the
model, AIC is Akaike’s Information Criterion, BIC is the Bayesian Information Criterion, ρ is
the scaling parameter for power distributions or the mean of the non-power distributions (e.g.,
negative binomial, geometric), scale is the second parameter of the distribution if applicable.
Models: nb = shifted negative binomial, geo = geometric, tpl = truncated power law, zero-nb
= zero negative binomial, g-y = geometric-yule, pois = Poisson, nb-y = negative binomial yule.

20



0 1 2 3 4 5 6 7 8 9

(a) Ugandan men

degree

0
20

0
40

0
60

0

0 1 2 3 4 5 6 7 8

(b) Ugandan women

degree

0
20

0
40

0
60

0

0 2 4 6 8 10 12 14 16 18 20

(c) Swedish men

degree

0
20

0
60

0

0 2 4 6 8 10 12 14

(d) Swedish women

degree

0
20

0
60

0

0 1 2 3 4 5 6 7

(e) American men

degree

0
40

0
80

0
12

00

0 1 2 3 4 5 6

(f) American women

degree

0
40

0
80

0
12

00

Figure 1: Reported degree distributions for men and women from the three population samples.
The plots are histograms showing the absolute number of observed degree k (including zeros).
By row, top to bottom, the figures are: Uganda, Sweden, USA.
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