Performance Analysis of Wavelet OFDM (WOFDM) By

Asma Latif Dr. N.D. Gohar

Presentation Outline

- Brief Overview of Classical OFDM
- Wavelet Theory
- Wavelet implementation using FB
- Approach
- WOFDM
- Limitations
- Results

Classical OFDM

- Orthogonality is achieved via IFFT and FFT
- Uses CP to combat channel impairments
- Reduces the BW Efficiency by factor N/N+N_{CP}
- No equalization or simple equalization needed at the receiver

Shortcomings of Fourier Transforms

- Does not gives good information if the frequency components of the signal varies with time
- Transform is localized at f₀ iff x[n] is infinite
- A Solution:
 - Short Time Fourier Transform: Windowed Version of DFT
 - The Time Frequency Grid is uniform for all frequency and time
- Another Solution : Wavelet Transform
 - Both Frequency and Time Localization

Wavelet Transform

$$s_n^m = \int_{-\infty}^{\infty} s(t) 2^{m/2} \psi(2^m t - n) dt$$

$$s(t) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} s_n^m 2^{m/2} \psi(2^m t - n)$$

Wavelet Function

$$a_n^{m+1} = \int_{-\infty}^{\infty} s(t) \phi_n^{m+1}(t) dt$$

Scaling Function

$$A_{m+1}s(t) = \sum_{n} a_n^{m-1} \phi_n^{m+1}(t)$$

Properties of Wavelet Transforms

- Due to higher spectral containment property of wavelets, it is better to ameliorate the effects of narrowband interference
- Better Frequency and Time Localization
- Orthogonality

Filter Bank Implementation-Synthesis FB

$$a_n^{m+1} = \sum_{l} h(2l-n)a_l^m + \sum_{l} g(2l-n)s_l^m$$

Filter Bank Implementation-Analysis FB

$$a_n^m = \sum_{l} h(l-2n)a_l^{m+1}$$
 $s_n^m = \sum_{l} g(l-2n)a_l^{m+1}$

Classical OFDM

Wavelet OFDM

WOFDM Limitations

Sensitivity of CFO for WOFDM

High PAPR for WOFDM and OFDM

Performance Analysis

Performance Analysis [2]

Performance Analysis [3]

Thank You